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ABSTRACT: This paper establishes the chemical nature of Pd nanoparticles protected by 

alkanethiolates that were prepared through a ligand place-exchange approach and the two-phase method, 

firstly developed for Au nanoparticles by Brust and Schiffrin. After ten years since the first study on this 

kind of Pd nanoparticles was published, the surface composition of the particles is a matter of debate in 

the literature and it has not been unambiguously assessed. The nanoparticles were studied by means of 

several techniques: UV-visible spectroscopy, scanning transmission electron microscopy (STEM), 

Fourier-transform infrared spectroscopy (FTIR), extended X-ray absorption fine structure (EXAFS) and 

X-ray photoelectron spectroscopy (XPS). The experimental data, obtained for the 3 nm diameter Pd 

particles, prepared by both synthetic routes, are consistent with nanoparticles composed by Pd(0) cores 

surrounded by a submonolayer of sulfide species, which are protected by alkanethiolates. Also, we 

unambiguously demonstrate that the chemical nature of these particles is very similar to that 

experimentally found for alkanethiolate-modified bulk Pd. The results from this paper are important not 

only for handling thiolate-protected Pd nanoparticles in catalysis and sensing, but also for the basic 

comprehension of metallic nanoparticles and the relation of their surface structure whit the synthesis 

method.  

KEYWORDS: thiols, alkanethiols, amines, palladium sulfide, self-assembled monolayers 

Page 2 of 26

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3

1. INTRODUCTION 

Noble metal nanoparticles (NPs) have recently attracted much attention due to their unique optical, 

electronic, and catalytic properties. The outstanding behavior of the different kind of particles arises 

from their distinctive electronic properties, which are intimately related to their size and the chemical 

nature of their core and surface species. Among NPs of noble metals, those made of Au cores protected 

by thiolates represent the most studied and better understood systems. Up to the point that, also when 

considering other metals, is mandatory to refer to alkanethiolate-protected Au NPs. This fact resulted in 

some drawbacks in the comprehension upon the behavior of NPs of platinum group metals, as they 

behave differently than the Au ones in many aspects. This is particularly true regarding the surface 

chemistry of thiols on Pd.1 It is generally accepted that thiols form a thiolate bond when they are self-

assembled on Au surfaces.2–6 On the other hand, Pd planar surfaces are better described considering a 

thin PdSx surface, which is located between the bulk metal and an alkanethiolate self-assembled 

monolayer (SAM).1,7 Although this structure was proposed years ago by the Whitesides’ group −and 

later studied in more detail in our laboratory−,1,8 the complexity of thiol/Pd system is still being 

underestimated. Certainly, even today it is simply described as a √3×√3 R30° n-alkanethiolate SAM on 

Pd(111) surfaces.9–11 Also, when considering the surface of Pd NPs, the same lack of precision or 

incomplete description of their chemistry is observed in the literature.10,12–14  Recently, Pd particles (3.0 

nm in size) prepared by the two-phase Brust-Schiffrin method3 in the presence of hexanethiol, −for the 

application in hydrogen sensing and catalysis− where simply described as hexanethiolate-coated Pd 

monolayer-protected clusters.12 It was assumed that the replacement of amines by thiols is dominated by 

the strongest Pd–SR bond, without taking into account the possibility of the formation of a sulfide layer. 

On the other hand, Pd NPs have been alternatively described as palladium sulfide NPs15 or as a metallic 

Pd core capped by a dialkyldisulfide layer.16 The above examples indicate a clear need for a deeper 

comprehension of the interface formed when Pd NPs are protected by thiol-derived species. 
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Regarding the applications of these kinds of particles in catalysis, very recently, Pd NPs protected by 

several thiols were synthesized through a one-phase approach. Although intriguing differences in the 

crystallinity of the particles prepared at low and room temperature were reported, no further 

interpretation on the chemical bases was provided.17 They also emphasized that Suzuki cross-coupling 

reactions are generally carried out using relatively large amounts of expensive Pd salts or organo-

palladium complexes, and Pd NPs can be used to overcome this problem. Moreover, they successfully 

applied 11-mercaptoundecanoic acid-covered Pd NPs as catalysts for coupling reactions, and reused this 

material several times. In a recent paper, it was demonstrated that thiolate-protected Pd NPs are 

excellent catalyst for Heck reactions.18 In another interesting report, it was shown that alkanethiol 

coatings improve the selectivity of 1-epoxybutane formation from 1-epoxy-3-butene on Pd catalysts 

from 11 to 94% at equivalent reaction conditions and conversions. It was found that, although sulfur 

species are generally considered to be indiscriminate catalyst poisons, the reaction rate for the desired 

product on a catalyst coated with a thiol was only slightly lower than that on an uncoated catalyst. 

However, the thiol/Pd surface was simply described as equivalent to Au modified by thiols.10  

All in all, proved the importance of Pd NPs due to their exceptional catalytic, sensing and magnetic19 

properties, an accurate interpretation of their electronic structure with the aim to understand the behavior 

of these NPs has as a prerequisite a correct description of the chemical composition and surface 

structure of these systems. In this regard, it is remarkable the approach made by Kornberg’s and 

Häkkinen’s groups, who precisely determined the structure of thiolate-protected Au NPs,5 and based on 

it described their electronic structure.20  

The objective of the present study is to gain insight into the composition, geometric and electronic 

structures of Pd NPs protected by alkanethiols, which are approximately 3 nm in size. We have 

compared the chemical nature of the thiol capping molecules on Pd NPs prepared by two different 

approaches: the NPs produced by the two-phase Brust-Schiffrin method and the ones obtained by ligand 

place-exchange of alkylamines by alkanethiols on previously synthesized alkylamine-protected Pd NPs. 
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 5

The results were contrasted with those obtained for alkanethiolate monolayer-protected Au NPs of 

comparable size and also with SAMs of alkanethiolates on extended planar Pd and Au surfaces. In this 

paper we demonstrate that the structure and composition of thiolate-protected Pd NPs is comparable to 

that found for extended surfaces. Metallic Pd cores are surrounded by a palladium sulfide with 

submonolayer coverage, while thiolate moieties protect them from sintering. This structure is found 

both, for Pd NPs prepared by Brust-Schiffrin method and those produced by ligand place-exchange. 

 

2. EXPERIMENTAL SECTION 

2.1. Synthesis of the Nanoparticles. Dodecanethiolate-protected Pd NPs were synthesized by the Brust-

Shriffrin method3 or by ligand place-exchange of dodecylamine-protected Pd NPs, prepared by the Leff 

method.21 Details on the synthesis of the nanoparticles are given in the Supporting Information. 

2.2. UV/Visible Absorption Spectroscopy (UV/vis). UV/vis spectra were recorded with a Perkin Elmer 

Lambda 35 Spectrometer, equipped with a double beam. Hexane or toluene was used as reference. 

2.3. Fourier-Transform Infrared Spectroscopy (FTIR). FTIR spectra were recorded on a nitrogen-

purged Varian 660 spectrometer equipped with a DTGS detector. A thick film of the sample was 

prepared on a KBr window by drop-casting a toluene solution of the NPs, which was further dried under 

nitrogen. The spectra were acquired in the transmission mode with a spectral resolution of 4 cm-1 

accumulating 128 scans. Additionally, the baselines of the spectra were corrected using the Varian FTIR 

spectrometer software. 

2.4. Scanning Transmission Electron Microscopy (STEM). STEM was carried out with a JEOL 

JEM-ARM200F aberration-corrected microscope, operating at 200 kV, equipped with a Schottky FEG, 

a hexapole spherical aberration (Cs) probe corrector (CEOS GmbH) and a high-angle annular dark field 

(HAADF) detector. The probe size used for acquiring the HAADF images was 0.095 nm. The alignment 

of the microscope was verified through the CESCOR software. A focus/tilt tableau was acquired 
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measuring defocus and two-fold astigmatism as a function of both radial and azimuthal tilt angles. 

HAADF-STEM images were acquired with a camera length of 120 mm and a collection angle of 33-125 

mrad. Nanoparticle suspension was drop-cast on an amorphous carbon covered copper grid. Details on 

the size distribution of the particles are included in the Supporting Information. 

2.5. Extended X-Ray Absorption Fine Structure (EXAFS). EXAFS experiments at the Pd K edge 

(24350 eV) were performed using a RIGAKU R-XAS Looper in-house spectrometer in transmission 

mode. Ionization chambers filled with Xe were used to measure the incident radiation and a solid state 

detector to measure the transmitted intensity. Homogeneous dry samples of Pd@SC12 NPs were 

mounted on an acrylic sample holder. The thickness of the sample provided an X-ray absorption jump at 

the Pd K edge of approximately 0.75. The energy calibration and the determination of the S0 = 0.56 ± 

0.02 were done using a metallic Pd foil. 

2.6. X-Ray Photoelectron Spectroscopy (XPS). The samples were characterized by XPS using both a 

conventional X-ray source and synchrotron radiation. In the laboratory, a Mg Kα source (XR50, Specs 

GmbH) and a hemispherical electron energy analyzer (PHOIBOS 100, Specs GmbH) were used. A two-

point calibration of the energy scale was performed using sputtered cleaned Au (Au 4f7/2, binding energy 

(BE) = 84.00 eV) and copper (Cu 2p3/2, BE = 932.67 eV) samples. The base pressure inside the ultra-

high vacuum (UHV) camber was below 10-9 mbar. XPS was also performed at the SGM beamline of the 

Laboratorio Nacional do Luz Síncrotron (LNLS), Campinas, Brazil. This beamline is equipped with a 

Spherical Grating Monochromator, which allows working in the range of 250 - 1000 eV. The endstation 

is composed by an UHV chamber (base pressure = 10-8 mbar) with a hemispherical electron energy 

analyzer (PHOIBOS 150, Specs GmbH). The energy of the incident photons was set to 250 eV. For 

spectra deconvolution of the S 2p region, a Shirley type background and a Gaussian-Lorentzian function 

were used. The full width at half maximum (fwhm) was fixed at 1.1 eV in the case of 1253.6 eV of 

incident energy and 0.8-0.9 eV for 250 eV. The spin-orbit doublet separation of S 2p signal was set to 

1.2 eV. The BEs and peak areas were optimized to achieve the best fit. S:Pd and C:S atomic ratios were 
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estimated by the measurement of the areas of Pd 3d, S 2p and C 1s signals, corrected by the atomic 

ionization cross sections at the corresponding X-ray energies.22 The dried NPs were suspended in 

hexane and drop-cast on graphite or a platinum foil substrate and then dried before their introduction at 

the main chamber. Valence-band region was measured only in samples deposited on graphite, and C:S 

atomic ratio in samples deposited on platinum foil. 

 

3. RESULTS AND DISCUSSION 

The first route employed for the synthesis of dodecanethiolate-protected Pd NPs was the two-phase 

method developed by Brust and Schiffrin for the synthesis of thiolate monolayer-protected Au NPs.3 

This method was used for the first time with Pd by Chen, et al.23 and it was later studied in more detail 

by Zamborini, et al.24 As represented in the scheme of Figure 1, Pd(II) species that form halide 

complexes ([PdCl4]
2-) are transferred from the aqueous solution to the organic phase by a quaternary 

ammonium salt (NR4X). Metal ions might reside inside inverse micelles of the ammonium salt in the 

organic solvent.25 As bromide anions can be exchanged with chlorides in the coordination sphere of 

Pd(II), the Pd complexes in the organic phase are simply called [PdX4]
2-. Contrary to what happens 

when this protocol is carried out for the synthesis of Au NPs,26 the addition of thiols (RSH) do not drive 

the reduction of the metallic species, i.e. palladium remains as Pd(II) after thiol addition. Furthermore, 

while recent experimental data have shown that ion-pairs of tetraalkylammonium and Au(I)-halide 

complexes ([NR4][AuX 2]) are the real precursors in the two-phase method for the synthesis of Au 

NPs,26 Pd(II)-thiol complexes are formed when thiols are added to Pd(II) species dissolved in toluene.24 

However, as the thiol amount used in the present study (0.5:1 thiol:Pd molar ratio) is lower than that 

needed to completely form the Pd(II)-thiolate complexes, also [PdX4]
2- species are present in the organic 

phase when the reducing agent, sodium borohydride, is added (see Supporting Information). When this 

happens, the reduction of Pd(II) species to Pd(0) is produced and dodecanethiolate-protected Pd NPs 

(Pd@SC12) are obtained. The attempts to form Pd NPs starting with thiol:Pd molar ratios higher than 
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1:1 have failed (see Supporting Information).24,27 The UV-vis absorption spectroscopy data (Figure 1) 

correlate very well with those previously reported for Pd NPs.13,23,24 The absence of peaks in the 300-

500 nm domain, which are related to Pd(II)-thiolates,24,27,28 indicates that no significant amount of these 

species is present in Pd NPs.13,23,24 It was not possible to prepare propanethiolate-protected Pd 

nanoparticles because of the short hydrocarbon chain length of the thiols. 

 

 

Figure 1. Scheme of the different routes for the synthesis of Pd NPs and Pd(II) thiolate complexes. The 

UV-vis absorption spectra of different products are also shown. For the systems studied in this paper, 

SCn = SC12 and NCn = NC12. The drawings are only schematic representations of the products or 

intermediates. 

 

The second route employed was the ligand place-exchange of alkylamines (RNH2) by alkanethiols on 

previously synthesized dodecylamine-protected Pd NPs (Pd@NC12). To prepare these particles, the Leff 

method was followed.21 These particles are commonly described as a Pd(0) core protected by alkylamine 

molecules,12,29 as depicted in Figure 1. However, since the interaction of alkylamines with Pd, is not as 

strong as with thiols, these NPs are more susceptible than Pd@SC12 ones of being oxidized by the 

oxygen presents in the reaction media. Therefore, some amount of palladium oxide could be present in 

these particles.  
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 9

After rinsing Pd@NC12 NPs, they were placed in contact with dodecanethiol (thiol:Pd molar ratio ~ 

1:1) in toluene overnight to accomplish the ligand place-exchange. After rinsing these particles with 

ethanol, Pd NPs covered by a mixture of dodecylamine and dodecanethiol were obtained (Pd@NC12-

SC12).  

Figure 2 presents STEM images, recorded using a HAADF detector (HAADF-STEM), of Pd@NC12 

and Pd@SC12 NPs. In this configuration −also called Z-contrast imaging− the intensity of the signal is 

approximately proportional to the square of the atomic number (∼Z2) of the elements in the specimen 

and its thickness.30 Consequently, Pd atoms from the NPs appear with white contrast on the image 

surrounded by the almost black background corresponding to the amorphous carbon support. As insets 

in Figure 2, high-resolution HAADF-STEM images of Pd@SC12 and Pd@NC12 are also shown. The 

results observed in these images disagree with the model proposed by Sun, et al., for Pd@SC12 NPs 

prepared in a similar way.31 In that paper, the authors proposed that Pd(0) clusters were immersed in a 

palladium sulfide phase. If this were the case, the background of the HAADF-STEM images should be 

brighter than in our micrographs, due to the presence of the Pd atoms surrounding the NPs. Thus, we can 

affirm that Pd atoms are constrained into a well defined size on the order of ∼3 nm, rather than dispersed 

in an extended palladium sulfide phase.   

The high-resolution HAADF-STEM images also show a clear difference in the crystallinity of the 

particles. While Pd@NC12 NPs present a crystalline structure, it was not possible to distinguish lattice 

fringes in any of the images of Pd@SC12 NPs for any defocus value. This is clear evidence that the 

crystal structure of the particle is largely affected by the capping agent: the strong Pd-thiolate interaction 

or the incorporation of sulfur, as sulfide, on the nanoparticle surface could be responsible for these 

distortions. Similar results were already obtained, but the physical origin of those images remains 

unclear.17,32,33 A detailed study on these phenomena, supported by image simulations, will be reported in 

a future work. 
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 10

 

Figure 2. Representative HAADF-STEM images of a) Pd@SC12 NPs b) Pd@NC12 NPs. Scale bars = 

50 nm. The insets show high-resolution images of the NPs (scale bars = 1 nm). Particle size distribution 

histograms and their Log-normal fit for c) Pd@SC12 NPs and d) Pd@NC12 NPs. 

 

FTIR spectroscopy was used to verify the presence of the dodecanethiol derived species as protecting 

agents of the Pd@SC12 NPs. The position of the methylene symmetric (d+) and antisymmetric (d-) CH2 

stretching vibrations (νd+=2850 cm-1 and νd-=2921 cm-1) in the FTIR spectrum (Figure 3) reveals that the 

alkyl chains are present and extended in a trans zigzag conformation.34 The absence of an absorption 

peak in the ν(S−H) region (inset of Figure 3), which appears at 2575 cm-1 for free dodecanethiol, 

indicates the breakage of the S−H bond of the dodecanethiol.35 In the low wavenumber region of the 
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spectrum, the peak at 720 cm-1 (P1) is the principal band of the rocking progression.34 As reported for 

thiolate-covered Au nanoparticles,36 the C–S stretches adjacent to trans methylene units ν(C–S)T appears 

as a significantly intense shoulder at 700 cm-1.36,37 On the other hand, the gauche band ν(C–S)G was 

undetectable (i.e., the uncertainty associated with the background subtraction has a magnitude 

comparable to the intensity of the small peaks observed for wavenumbers smaller than 700 cm-1). Thus, 

we can conclude that the number of adsorbates with the C–C bond adjacent to the C–S in gauche 

conformation is relatively low. Contrary to our results, a 100% gauche conformation, which was 

interpreted considering dioctyl-disulfide as capping species, was found for octanethiol-protected Pd 

NPs.16 See the Supporting Information for a detailed analysis of the FTIR data. 

  

Figure 3. FTIR spectrum of Pd@SC12 NPs. The absorbance in the region between 1650 and 600 cm-1 

was multiplied by a factor of 4. In the inset, the region near 2575 cm-1 is amplified to verify the absence 

of the peak corresponding to ν(S–H). 

 

In the following, X-ray absorption and photoelectron spectroscopies will give valuable information 

with regards to the structure, chemical composition and electronic properties of Pd NPs. 

In order to carry out the EXAFS analysis, a dry sample of Pd@SC12 NPs was studied at the Pd K-

edge to determine the radial distribution of the atoms, i.e., the average coordination number and Pd-

bond distances. EXAFS spectrum of bulk Pd was also recorded for comparison and calibration purposes. 

The Fourier Transform (FT) of the EXAFS data corresponding to Pd NPs is shown in Figure 4. This 
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spectrum exhibits two main contributions between 0.13 and 0.28 nm (uncorrected for the photoelectron 

phase shifts). The presence of Pd–Pd contribution with a bond distance longer than that of the bulk Pd 

can be determined by comparison with the FT of the Pd foil signal.19,31,38 We attribute the contribution 

in the FT between 0.13 and 0.21 nm to the presence of Pd–S coordination shells.15,19,31,38 To analyze the 

first nearest neighbor region we did a nonlinear curve fit using the IFEFFIT package,39,40 integrated into 

the ATHENA and ARTEMIS user interfaces. The fitted parameters for each coordination shell proposed 

in the model were the average coordination number (N), path length (d), correction to the threshold 

energy (∆E0) and Debye-Waller factor (σ2). To perform the fitting, two different shells were proposed, 

one to take into account the Pd–Pd contribution and the other one corresponds to the Pd–S shell. These 

contributions were calculated using the FEFF code41 from crystallographic structure of metallic Pd and 

palladium sulfide. Since sulfur from the sample suffered from radiation induced damage during the 

measurements (generation of high oxidation state sulfur species), the deconvolution of this signal into 

contributions of different Pd–S distances coming from different sulfur species might not be reliable. 

Accordingly, the Pd–S shell was fitted considering only one species, although it can be composed by 

different compounds. The results of the analysis of the EXAFS data shown in Figure 4 are reported in 

Table 1. 

The small N value (1.8 ± 0.6) for the Pd–Pd contribution cannot be only explained by the formation of 

small Pd NPs. Instead of that, another phase with no Pd as first neighbors is needed in order to explain 

the low N. This is due to the fact that this parameter represents an average over all Pd atoms present in 

the sample. If a fraction of Pd atoms is forming a structure in which they are bonded to a different type 

of atom, they will contribute with zero to the Pd–Pd average coordination number. The Pd–Pd distance 

obtained in the fitting of Pd@SC12 NPs (0.275 ± 0.001 nm) is larger than that obtained for bulk Pd 

(0.273 ± 0.001 nm). Similar results for Pd–Pd distances in Pd NPs capped with thiols were obtained 

earlier.31,38  
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 13

 

Figure 4: Experimental Fourier Transform and corresponding fits of the EXAFS signal for a) Pd foil 

and b) Pd@SC12 NPs sample. 

 

Table 1. Structural parameters of Pd@SC12 NPs obtained by EXAFS.1 

. Pd@SC12 NPs Pd Foil 
 Pd–Pd shell Pd–S shell Pd–Pd shell 
N 1.8 ± 0.6 1.3 ± 0.5 12 
∆E0 (eV) 7 ± 2 7 ± 2 -1 ± 2 
σ2 (10-5 nm2)  6 ± 2 7 ± 4 4.4 ± 0.6 
d (nm) 0.275 ± 0.001 0.229 ± 0.003 0.273 ± 0.001 

 

The EXAFS data agrees with previous studies. However, the low N was interpreted by two models. 

The first one proposes Pd(0) clusters immersed in a palladium sulfide phase, which we discarded based 

on our HAADF-STEM analysis.31 The second one proposes a Pd-core PdSx-shell structure covered by 

thiolate moieties, in analogy with the planar Pd surfaces modified with thiols.19,38 However, the EXAFS 

                                                 

1 Average coordination number (N), path distance (d), threshold energy correction (∆E0) and Debye-
Waller exponent (σ2). 
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 14

data gave no further details with regards to the chemistry of the S/Pd interface, or the processes that 

occur during the formation of NPs. 

In order to address the surface chemical composition of Pd@SC12 NPs we will discuss XPS data of 

this material, in relation with results obtained for dodecanethiolate-protected Au NPs (Au@SC12, 

prepared as explained in the Supporting Information), Pd@NC12, Pd@NC12-SC12 NPs and 

dodecanethiolate SAMs on extended Pd and Au surfaces.  

XPS spectra for the Pd@SC12 NPs show a broad S 2p signal at ∼162.5 eV (Figure 5a). The analysis 

of the S 2p and Pd 3d signals indicate that the total sulfur to palladium ratio (S:Pd = 0.7 ± 0.1) is twice 

the value found for the S:Au ratio in Au@SC12 NPs of comparable size. On the other hand, the same 

factor is found in the (S:Pd)/(S:Au) ratio derived from XPS S 2p data of alkanethiolate SAMs on 

Pd(111)7,8 and Au(111).2 This value is clear evidence that there is a sulfur excess in the Pd@SC12 NPs 

surfaces in relation to that expected in systems where the capping species are alkanethiolates. A similar 

conclusion can be derived from the thermogravimetric analysis reported by Zamborini, et al., who found 

a bigger organic content than that predicted based on a simple thiolate adsorption model.24 On the basis 

of these results we can immediately discard simple thiolate-Pd interface models reported in recent years 

for this system.10,12,13  

The fitting of the S 2p peak yields two main components at 162.1 eV and 162.9 eV and a small one at 

164.1 eV (Figure 5a). The assignment of the components was done following the work by the 

Whitesides’ group for alkanethiolate adlayers on bulk Pd: thiolates (162.9 eV component) are placed on 

sites of a diluted sulfide layer (162.1 eV component) adsorbed on the nanoparticle surface.1,7,8 The 

assignment of the small 164.1 eV component is more complicated and it could correspond to 

physisorbed disulfide molecules7 or physisorbed alkanethiols.42 Note that our results disagree with the 

data reported for n-octadecyl mercaptan-protected Pd NPs prepared by the two-phase method, for which 

binding energies were found to range from 161.4 to 161.7 eV.43  
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For the sake of comparison, the S 2p components for dodecanethiolate-modified extended planar Pd 

surfaces are presented (Figure 5b). It is evident that the components in the spectra of planar and 

nanoparticle Pd surfaces are quite similar, and clearly different from that corresponding to Au@SC12 

NPs (Figure 5d) and previously reported data for Au(111) surfaces.2 These results evidence that sulfur 

species present on both Pd surfaces, planar and 3 nm NPs, are probably of the same nature. If 

dialkyldisulfides were the main ligands, as previously proposed,16 the 163-164 eV component should 

dominate the S 2p signal which is clearly not the case in Pd@SC12 NPs (Figure 5a).  

The C:S atomic ratio obtained is smaller than that expected for NPs capped only by thiolate moieties, 

in concordance with the presence of a mixed sulfide/thiolate adlayer (see Supporting Information). 

Dodecanethiolate-protected Pd NPs prepared by ligand place-exchange of Pd@NC12 NPs were also 

studied by XPS. The alkylamines were partially exchanged by dodecanethiol molecules, resulting in 

particles with a mixed capping agent (Pd@NC12-SC12 NPs), as revealed by XPS, which evidenced 

some amount of nitrogen after the ligand place-exchange. In Figure 5c, it can be observed that these NPs 

have a composition very similar to Pd@SC12 NPs, prepared by the two-phase method. The quantitative 

data is presented in Table 2. Although the total S:Pd molar ratio was lower compared to Pd@SC12 NPs, 

due to an incomplete exchange of the ligands, the contributions to the S 2p peak show the presence of 

sulfide in these NPs. This makes evident the S–C bond breakage by Pd core upon thiol adsorption. Even 

though these two routes to obtain thiolate-protected NPs are completely different, the final composition 

is very similar.  
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Figure 5. The S 2p spectra of different systems are shown for comparison. a) Pd@SC12 NPs prepared 

by two-phase Brust-Schiffrin method, b) Dodecanethiol adsorbed on bulk Pd, c) Pd@NC12-SC12 NPs 

prepared by ligand place-exchange of Pd@NC12 NPs with dodecanethiol, d) Au@SC12 NPs prepared 

by two-phase Brust-Schiffrin method.  

 

Table 2. XPS data for different dodecanethiolate-covered Pd surfaces.2  

 Pd Bulk Pd@SC12 NPS Pd@NC12-SC12 NPs 
Sulfide 48 ± 3 % 46 ± 2 % 37 ± 3% 
Thiolate 39 ± 4 % 42 ± 3 % 44 ± 4% 

-S-S-, Sn  or 
physisorbed 
thiols 

13 ± 2 % 12 ± 3 % 19 ± 6 % 

 

In order to get insight into the distribution of the different sulfur species in the nanoparticles we 

carried out high resolution XPS measurements with X-rays of lower energies. The 250 eV synchrotron 

light used for the analysis of the S 2p signal produces photoelectrons of markedly lower kinetic energies 

                                                 

2 Relative contribution of the different components of the S 2p signal for dodecanethiol SAM on bulk 

Pd, Pd NPs prepared by Brust-Schiffrin method (Pd@SC12) and Pd NPs prepared by ligand place-

exchange of Pd@NC12 NPs (Pd@NC12-SC12 NPs).  
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than those produced in our laboratory with Mg Kα source. The measurements at 250 eV allowed 

sensitivity to the composition of the surface rather than to the whole nanoparticle. In this regard, it is 

interesting to note that the inelastic mean free path of the S 2p photoelectrons emitted due to the 

incidence Mg Kα radiation (1253.6 eV) in a metallic phase is about 2.5 nm, while for those produced by 

an incident photon energy of 250 eV it is estimated to be 0.5 nm.44 The deconvolution of the spectrum 

taken with 250 eV (see Supporting Information) showed the same thiolate to sulfide area ratio (∼ 1) that 

was found with the Mg Kα source (∼ 0.9), within the experimental error. If sulfide were homogeneously 

distributed in the cores of the Pd@SC12 NPs, its relative contribution to the S 2p signal should be 

smaller in the case 250 eV incident energy. Thus, we can infer that thiolate and sulfide species are both 

at the surface of the NPs. Based on it, we can discard the idea of sulfide homogeneously distributed in 

the cores of the nanoparticles. 

In summary, independently of the route used to produce thiolate-protected NPs and the nature of the 

surface (extended planar or NPs), comparable amounts of thiolate and sulfide species are found as 

components of the systems. Additionally, the sulfur species are located in the surface of the 

nanoparticles. It is important to note that this last conclusion could not be reached from EXAFS or 

conventional XPS. 

The analysis of the Pd 3d signal is also important to understand the nature of sulfur species on Pd 

nanoparticle surface. When compared to clean Pd surface, the samples prepared in the presence of thiols 

exhibit a significant shift towards greater binding energies, indicating partial Pd oxidation, which has 

been related to the presence of PdSx at the interface.8,33 However, as it was already stated by Cook, et al.45 

the positive BE shift, can be produced by several effects. XPS measurements of supported metal clusters 

and calculations on core-level binding energy shifts have been reported. In this studies several 

phenomena have been proposed to explain values up to ~ 1 eV in the binding energy shifts.46–50 

The study of the valence-band spectra can yield valuable data on the behavior of metals towards the 

adsorption of different species, since the reactivity of transition metals is closely related to the 
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population of the d-band. The closer the d-band center is to the Fermi level, the easier the charge transfer 

between the metal surface and the adsorbate states. Therefore, metals with d-bands populated near the 

Fermi level are capable of breaking bonds of the adsorbates on their surface. Figure 6 shows the 

valence-band spectra of Pd@SC12 and Au@SC12 NPs, measured with Mg Kα source. As it is 

observed, the valence-band of Au NPs is located at greater binding energies than the one of Pd NPs. As 

already known in catalysis, this fact is closely related to the high reactivity of Pd compared to Au. The 

changes in the density of states (DOS) of Pd(111) as a consequence of methanethiol adsorption, were 

recently analyzed by means of density functional theory (DFT).1 It was proposed that the presence of 

sulfide species on Pd surfaces in contact with thiol molecules is produced due to the S−C bond rupture 

by Pd.1 Upon thiol adsorption on Pd, there is an electron density transfer from the metal d-band to the 

antibonding molecular orbitals of thiol molecules that weakens the S−C bond, resulting in the elongation 

and finally breakage of S−C bond. It was verified by DFT that after the adsorption of sulfide atoms on 

Pd(111), the surface is passivated, and the position of the d-band is shifted towards values more similar 

to the ones found on Au, where it is known that S−C bond scission does not occurs for the case of 

alkanethiols. Once some sulfide is adsorbed, the surface cannot break more S−C bonds and, accordingly, 

the thiols adsorption becomes possible on top of this diluted palladium sulfide layer. Cook, et al.,45 

attributed a valence-band shift to a higher d-electron depletion on thiolate-protected Pd NPs compared to 

alkylamines-protected particles. This d-electron depletion is produced by the charge transfer from Pd to 

adsorbed sulfur species. 

Page 18 of 26

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 19

 

Figure 6. Valence band signal for Pd@SC12 NPs compared with Au@SC12 NPs. The intensity was 

normalized by the intensity of Pd 3d and Au 4f signal, respectively. 

 

Based on the analysis of the above presented experimental data and the DFT results previously 

published, we present a plausible explanation for the processes that occur during the synthesis of 

dodecanethiolate-protected Pd NPs. In the case of place-exchange of dodecylamine by dodecanethiol, 

the processes should be very similar to the ones observed on extended planar Pd surfaces. Thiol 

molecules might replace alkyl amine molecules and approach the metallic Pd, which is able to cleave the 

S−C bond, and produce sulfide adsorbates. At this point, the particle surface is not active anymore for 

the alkanethiol decomposition into sulfide, but it is able to adsorb dodecanethiolate moieties. Thus, the 

depletion of the population of valence-band electrons near the Fermi level explains why the Pd NPs are 

not completely sulfidized. Since Pd@NC12-SC12 NPs, prepared through the ligand-exchange strategy, 

showed the same sulfur species than those prepared following the two-phase Brust-Schiffrin method, it 

is reasonable to propose a similar mechanism for the final steps in the formation of Pd@SC12 NPs. This 

method starts with the addition of alkanethiol to the organic phase, which partially converts the Pd(II) 

halogenide complexes into Pd(II)-thiolate complexes. Upon addition of the reducing agent, Pd(0) nuclei 

are formed. The small metallic particles grow in the presence of several species that can be adsorbed on 
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its surface (tetraoctylammonium cations, halogenides, palladium thiolates, dodecanethiol or species that 

are related with this thiol). Then, dodecanethiolate-related species might reach the metallic clusters 

which are able to cleave the S−C bond, and from this point the reaction should continue in the same way 

than in the other route. However, the synthesis does only drive to stable nanoparticle products if Pd(II) is 

in stochiometric excess with respect to the thiols (see UV-vis data in the Supporting Information and the 

results by Zamborini, et al.24). Nevertheless, further studies are needed to completely elucidate each of 

the steps in the synthesis of thiolate-protected Pd NPs through the Brust-Schiffrin method, as the ones 

recently published for the case of Au, Ag and Cu.25,26,51 

 

4. CONCLUSIONS 

Even today, the chemistry of the thiolate-protected Pd nanoparticles produced either by the two-phase 

Brust-Schiffrin method or by the ligand place-exchange method is not well understood. Based on 

diverse experimental results, they have been described by different groups in terms of simple thiolate-

capped Pd(0) particles –similar to thiolate-capped Au NPs–, alkyldisulfide-capped Pd(0) particles, 

palladium sulfide particles, Pd(0) clusters immersed in a palladium sulfide phase or complex thiolate-

sulfide capped Pd(0) particles, in analogy to the surface structure reported for alkanethiolate SAMs on 

Pd(111). Our experimental data for ~ 3 nm diameter Pd NPs prepared by both synthetic routes are 

consistent with the thiolate-sulfide capped Pd(0) particle composition. The NPs consist of a central core 

composed of metallic Pd, surrounded by a sulfidized Pd layer to which thiolate ligands are coordinated. 

Indeed, sulfur species in the Pd NPs should be present at the submonolayer level. In the present work we 

unambiguously demonstrate that the chemical nature of these particles is very similar to that 

experimentally found for alkanethiolate-covered bulk Pd and that recently proposed for Pd(111) surface, 

from DFT models.  
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The Pd(0) clusters, formed as a consequence of the reduction of Pd(II) species, are likely responsible 

for the S−C bond cleavage that leads to adsorbed sulfide. The Pd cores modified by submonolayer of 

sulfide are active for the adsorption of thiolate moieties, but they are not able to further decompose the 

thiol molecules. This result rules out the complete sulfidization of the Pd NPs, at least at this particle 

size. Then, the results from this paper are valuable not only for handling thiolate-protected Pd NPs for 

different applications but also for the basic comprehension of metallic nanoparticles and the relation of 

their surface structure whit the synthesis method. 
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