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Abstract  

Ecological niche models (ENMs) is a popular method in ecology, mostly due to its broad 

applicability and the fact that required data is simple and easily accessible from digital 

databases. Nevertheless, there is an underlying methodological complexity, often overlooked 

by many scientists that rely on ENMs to achieve other objectives. We present here the 

package ENMTML, an Open Source R package. The main purpose of this package is to 

assemble all this methodological complexity spread over several papers and bring it into the 

spotlight in a simple way for people not used to the details of ENMs. The package contains 

several alternatives to different methodological steps, e.g., pseudo-absence allocation and 

accessible area delimitation, formulated within a single function, to make it accessible for 

people not used to the programming environment. 

Keywords: Species distribution model; open-source software; Niche modelling; Model 

evaluation;   

Software and data availability 

Availability of Software 

Name of software: ENMTML 

Type of software: Add-on package for R https://cran.r-

project.org 

First available 2019 

Program language: R 

Requires R version 3.6.0 or later 

License GPL 

Code repository 

https://github.com/andrefaa/ENMTML 

Installation in R install_github("andrefaa/ENMTML")  

 

1. Introduction 

Ecological Niche and Species Distribution Models (ENMs and SDMs, respectively), are 

widely applied in ecology, providing important basal information for the most diverse fields, 

such as conservation (e.g. Keppel et al., 2012; Razgour et al., 2018), biological invasions 

(Peterson, 2003; Campos et al., 2014; Lins et al., 2018), phylogenetic/evolutionary studies 

(e.g. Carstens & Richards, 2007; Chifflet et al., 2016) and disease management (Peterson & 

Shaw, 2003). While there are theoretical differences among ENMs and SDMs (see Peterson 

& Soberón, 2012), we will adopt the nomenclature ENM from now on as most studies are 

closer to estimating species’ niche. Such broad applicability is related to two significant 

properties of ENMs: (i) a simple underlying model that requires only occurrence data and 
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environmental variables, and (ii) a huge effort employed by researchers to develop robust 

methods and software. There is a significant change in methods from first ENMs studies, that 

uses one to few algorithms and do not explore other steps that could influence the result 

(Peterson & Holt, 2003), to current studies, which use several algorithms and diverse steps to 

fit models, such as pseudo-absence allocation and accessible area definition (e.g., Velazco et 

al., 2019). 

One of the major assets of ENMs is its community, with several researchers dedicated to 

delving into specific methodological aspects of the modeling process. Some noteworthy 

aspects involve the control of collinearity among environmental variables (De Marco & 

Nóbrega, 2018), different strategies for the allocation of pseudo-absences (Engler et al., 

2004; Barbet-Massin et al., 2012; Senay et al., 2013); careful definition of the accessible area 

(Peterson et al., 2001; Soberón, 2010; Barve et al., 2011; Cooper & Soberón, 2018); 

ensemble of different algorithms (Marmion et al., 2009; Thuiller et al., 2009; Hao et al., 

2019); different evaluation metrics (Allouche et al., 2006; Leroy et al., 2018) and diverse 

methods to partition the occurrence data for fitting and evaluating the model (Muscarella et 

al., 2014; Roberts et al., 2017). Given the wide variety of methods for each one of the several 

steps of fitting ENMs and the possible interactions that may arise, the number of models 

produced for a single species may easily surpass a thousand. 

The great diversity of choices creates a duality in ENMs: while models are simple to fit and 

the required data is easily available, several decisions should be made regarding 

methodological steps that must be done judiciously and are not as readily available as the 

data. As a result, studies that rely on ENMs usually do not have the same methodological 

rigor as studies that focus on developing ENMs, i.e., several studies still apply (Area Under 

the Curve) AUC as an evaluation metric, even though it has been demonstrated for over 10 

years that the metric is deeply affected by prevalence (Lobo et al., 2008) or the extent of the 

accessible area (Peterson et al., 2008; Barve et al., 2011). On the other side, there has been a 

great effort to develop alternatives for the AUC and several other methodological aspects, 

which have been implemented in several R packages and ENMs software (Thuiller et al., 

2009; Guo & Liu, 2010; Naimi & Araújo, 2016; Hijmans et al., 2017; Golding et al., 2018; 

Kass et al., 2018; Sánchez-Tapia et al., 2018; Cobos et al., 2019).  

Ideally, ENMs should be fit-for-purpose, which means that fitting ENMs is a process that 

must be thought carefully, as there is not a single correct way to fit models (Guillera-Arroita 
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et al., 2015; Qiao et al., 2015). Due to the great variety of methodological choices and the 

velocity that new alternatives arise, it may be hard to keep up with novelties within the 

ENMs’ field. As a result, people who are not involved in the methodological developments 

within the field or do not have connections to developers have small participation in all the 

published papers (Ahmed et al., 2015). We introduce here ENMTML, a new R package to fit 

ENMs. The main objective of this package is to put together all this methodological diversity 

developed within the ENM field and present it to users simply and transparently. Despite 

being an R package, we also made it friendly for non-programmers and summarized the 

whole fitting process into a single function with several arguments that correspond to the 

methodological alternatives. 

2. Methods description  

2.1 Arguments and settings 

The ENMTML package and its processes can be divided into three major stages: pre-

processing, processing, and post-processing. This division in three stages is familiar to most 

ENMs routines. Identifying the stage in which each methodological step will be performed 

may help users to understand the connections among the different methodological steps and 

provides an overview that assists the decision-making process (Figure 1). 

In the pre-processing stage, the data is input (species occurrences and predictors variables), 

and a series of steps can be performed before fitting the model. Occurrence data is input as a 

tab-separated text file (TXT). The program automatically uses unique occurrences per cell. In 

addition, the user can control two steps acting over the occurrence dataset: i) the minimum 

number of occurrences valid for model fitting and ii) perform a thinning process to reduce 

sampling bias. Regarding predictors, there are three methods to control for collinearity and 

the possibility to include predictors for other time or geographic windows. As for pre-

processing steps, there are five different strategies for pseudo-absence allocation with the 

option to control for presence-absence ratio; four methods to partition the data into subsets, 

with the possibility to provide a specific dataset for independent evaluation (a useful asset 

when studying biotic invasions); two methods to create species-specific accessible areas; and 

it is also possible to identify extrapolation areas based on a Mobility-Oriented Parity analysis 

(Owens et al., 2013). 
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The processing stage is when algorithms will fit models, and the suitability maps generated. 

For starters, the user can choose if both partial and final suitability maps will be generated or 

not. There are thirteen algorithms available for model fitting: Bioclim (Nix, 1986), 

Mahalanobis Distance (Farber & Kadmon, 2003), Domain (Carpenter et al., 1993), 

Ecological Niche Factor Analysis (Hirzel et al., 2002), Generalized Linear Models 

(McCullagh & Nelder, 1989), Generalized Additive Models (Hastie & Tibshirani, 1990), 

Boosted Regression Tree (Friedman, 2001), Random Forests (Prasad et al., 2006), Support 

Vector Machine (Guo et al., 2005), Maximum Entropy with quadratic and linear (Anderson 

& Gonzalez, 2011) and default features (Phillips et al., 2006; Phillips, 2017), Maximum 

Likelihood (Royle et al., 2012)  and Gaussian Process (Golding & Purse, 2016). 

Finally, in the post-processing stage, the suitability maps generated from the different 

algorithms are evaluated using seven different metrics (AUC, True Skill Statistics (TSS), 

Kappa, Jaccard, Sorensen, Boyce, and Fpb). When multiple models are fitted for the same 

species (i.e., several replicates or geographical partitions), the evaluation output result is the 

mean and standard deviation of the partial models. Other post-processing options include the 

creation of binary maps based on five different thresholds; six different ways to generate 

ensemble models; and the application of spatial restrictions to reduce model commission and 

bring the result closer to an estimation of the species realized distribution (MSDM). 

All features are organized in a single R function with multiple arguments the user needs to fill 

according to the specific purpose. We chose not to establish default arguments, so users must 

think carefully about the choices. To provide support, we briefly explain the methodological 

steps and indicate relevant studies for each alternative. 
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Figure 1: General workflow of the ENMTML package and all steps that can be taken at 

each stage of the modeling routine. In the pre-processing stage occurrence and 

predictors are imported and the user may take six different steps before fitting the 

models. The processing stage involves fitting the models and producing the suitability 

maps, which can be made using thirteen different algorithms. In the post-processing 

stage, the results are evaluated and the user may perform analysis upon the different 

suitability maps produced. 

 

2.2. Occurrence data processing 

Arguments involved: (occ_file/ Sp / x / y / min_occ / thin_occ) 

Occurrence data is imported as a tab-separated TXT file that needs to be specified by the user 

as the file path of the file in the argument occ_file. This file must contain information 

about species name, longitude, and latitude (in decimal degrees), and the name of those 

columns must be provided in the arguments Sp, x, y. 

The user must also provide the minimum number of unique occurrences valid for model 

fitting in the argument min_occ, species below this number will be excluded from the 



7 
 

analysis. There is not a rule for the definition of a minimum number of occurrences, but there 

are several studies that indicate that model accuracy is directly related to sample size (Wisz et 

al., 2008). There are several factors that affect the viable minimum number of 

occurrences(Mateo et al., 2010), but a good framework for exploring this subject is the one 

developed by van Proosdij et al. (2015). 

 Finally, users might opt to reduce autocorrelation in occurrence data and possible sampling 

bias by a thinning technique (argument thin_occ), performed using the package spThin 

(Aiello-Lammens et al., 2015). There are three alternatives for defining the thinning distance: 

i) based on the distance of a Moran’s I Variogram that minimizes the spatial autocorrelation; 

ii) retaining unique cells that fall within a grid two times greater than the original cellsize; 

and iii) based on a minimum distance defined by the user (Table 1). For a better 

comprehension of the topic see (Aiello-Lammens et al., 2015). 

Tables 1: Thinning alternatives in the ENMTML package (references for each method 

indicate its original development or an example of its best practice use). 

Occurrence 

thinning 

method 

Acronym 

used in the 

thin_occ 

argument 

Method description Additional arguments References 

None NULL Use original unique occurrences - - 

Moran 

Variogram 
MORAN 

Choose from pairs of occurrences 

which are within a distance defined 

by a Moran Variogram 

- Veloz (2009) 

2x cell-size CELLSIZE 

Choose from pairs of occurrences 

which are within a distance defined 

by 2x cellsize 

- 
Velazco et 

al.(2019) 

User-

defined 

USER-

DEFINED 

Choose from pairs of occurrences 

which are within a distance defined 

by the user (in km) 

Distance 
Aiello-Lammens 

et al.(2015) 

 

2.3 Predictors input and collinearity reduction 

Arguments involved: (pred_dir / proj_dir / colin_var) 
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Predictors are imported in the argument pred_dir, which specifies the folder path of the 

predictors, and should be in any of the given formats: BIL, TIF, ASC, TXT. Predictors for 

projection also accept the same formats and should be included in nested folders, with a 

major folder including all the projections datasets each with its respective sub-folder (Figure 

2). 

Collinearity in predictors can be controlled using three different strategies: i) Pearson 

correlation with a threshold defined by the user; ii) Variance Inflation Factor (VIF;  

Marquaridt, 1970) and; Principal Component Analysis (PCA), using the axis that account for 

95% of the total variance in the predictors as the new predictors (Heikkinen et al., 2006; De 

Marco & Nóbrega, 2018). Predictors eliminated by the Pearson and VIF will also be 

eliminated for projections datasets. When users choose to perform a PCA and have datasets 

for projection, the linear relationship between the predictors and the principal components is 

projected onto the new datasets to create the principal components for the projection datasets 

(see De Marco & Nóbrega, 2018). 

Table 2: Methods to reduce predictor collinearity available in the ENMTML package. 

Variable 

collinearity 

reduction method 

Acronym 

used in the 

colin_var 

argument 

Method description 
Additional 

arguments 
References 

None NULL 
Use original variables provided by 

the user 
- - 

Pearson Correlation PEARSON 
Eliminates correlated variables 

according to a chosen threshold 
Threshold 

Dormann et al. 

(2013) 

Variance Inflation 

Factor 
VIF 

Eliminates correlated variables 

based on VIF 
- 

Marquaridt 

(1970) 

Principal 

Components 

Analysis 

PCA 

Performs a PCA on variables and 

use the principal components as 

variables 

- 
De Marco & 

Nóbrega (2018) 

 

2.4 Pseudo-absences and background points allocation 

Arguments involved: (pseudoabs_method / pres_abs_ratio) 
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The program allocates pseudo-absences and background points within the area used to 

calibrate the models (Table 3). Such allocation will be particular for those geographical 

partitioning method (such us block- and band-cross validation) in which pseudo-absences and 

background points are created after performing such partition, in order to maintain a 

homogeneous distribution of background points between partitions, as well as a constant 

prevalence (conceived here as the relationship between presences and pseudo-absences). 

Since algorithm’s performance may be sensible to the way pseudo-absences are distributed 

throughout the calibration area (Wisz & Guisan, 2009; Barbet-Massin et al., 2012), the 

program offers five pseudo-absences allocation methods: i) ‘single random’ distribution 

(Zaniewski et al., 2002); ii) ‘geographically constrained method’, i.e., pseudo-absences are 

allocated outside a buffer around presences (Barbet-Massin et al., 2012); iii) ‘environmental 

constrained methods’ based on the lowest suitable region predicted by a Bioclim model 

(Engler et al., 2004); iv) ‘geographical and environmental constrained method’(Lobo et al., 

2010) and; v) a three-step method which combine environmental and geographical approach 

plus a k-mean non-agglomerative cluster process to distribute homogeneously on 

environmental space (Senay et al., 2013). 

The program also allows for the user to define the ratio between presences and absences 

(argument pres_abs_ratio), a methodological step that received considerable focus from 

researchers and affects algorithm performance (Barbet-Massin et al., 2012). 

Table 3: Pseudo-absence allocation methods available in the ENMTML package. 

Pseudo-absence 

allocation method 

Acronym used in the 

pseudoabs_method 

argument 

Description of restriction Reference 

Random RND None Zaniewski et al. (2002) 

Geographical 

Constrain 
GEO_CONST Outside a distance buffer 

Barbet-Massin et al. 

(2012)  

Environmental 

Constrain 
ENV_CONST 

Within lowest suitability areas 

predicted by a Bioclim 
Engler et al. (2004)  

Environmental and 

Geographical 

Constrain 

GEO_ENV_CONST 
Combination of Geographical 

and Environmental 
Lobo et al. (2010) 

Three-Step 

Constrain 
GEO_ENV_KM_CONST 

Combination of Environmental, 

Geographical and k-mean 

cluster 

Senay et al. (2013)  



10 
 

 

2.5 Methods to define the accessible area 

Arguments involved: (sp_accessible_area) 

A crucial decision at the moment to construct ENMs is the hypothesized accessible area, i.e., 

the geographical region used by a species throughout a relevant period of time (Barve et al., 

2011), also known as the movement component of the BAM diagram (Soberon & Peterson, 

2005). Such an accessible area can be delimited based on the knowledge of species ecology, 

dispersal ability, geographical barriers, and ancient region were species inhabited (Soberón, 

2010; Peterson et al., 2011). Nonetheless, this information is often missing for most species; 

therefore, different techniques act as an approximation of the accessible area. ENMTML 

account with four option to define accessible areas: i) no restriction, i.e., the entire predictors 

extent will be used as accessible area; ii) define an accessible area based on a buffer around 

occurrence data; iii) define the accessible area based on a mask, e.g., using a shapefile for 

biogeographical ecoregions, or; iv) accessible are defined by the user (supported formats: 

SHP/TIF/BIL/ASC/TXT; Table 4).  

Table 4: Methods to delimit species accessible area available at the ENMTML package. 

Accessible area 

definition method 

Acronym used in the 

sp_accessible_area 

argument 

Type of data required Reference 

Whole predictors 

extent 
NULL no data - 

Buffer BUFFER 

Type 1 = buffer radius based on 

occurrence data 

Type 2 = buffer radius defined by 

the user 

Barve et al. (2011)  

Mask MASK 

Single shapefile or raster 

(BIL/ASC/TIF/SHP/TXT) mask 

from which boundaries will be 

extracted 

Peterson et al. (2001)  

User-delimited USER-DELIMITED 

Folder with multiple shapefile or 

raster (BIL/ASC/TIF/SHP/TXT) 

masks, one for each species 

- 
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2.6 Data partition 

Arguments involved: (eval_occ / part) 

An ideal model evaluation requires a dataset in which occurrences are independent of the 

ones used to fit the model; this independent dataset can be supplied as the path to a TXT file 

in the argument eval_occ. 

Nevertheless, the most common evaluation method is to partition occurrence data in two 

subsets, one to fit the model and another for evaluation. For this option (argument part), the 

package offers four methods for data partitioning, two based on random partitions and two on 

geographical partitions (Table 5). Among random partition methods the user can choose: i) 

bootstrap, in which users specify the number of replicates and proportion of the dataset used 

for fitting the model, e.g., 10 replicates each with 70% for training models, the remaining 

30% is used for validation; and ii) k-fold, in which the dataset is split into a chosen number of 

folds, and on each run the model is fit using k-1 folds and evaluated on the folder left out. As 

alternatives for geographical partitions, the dataset can be split based on bands 

(latitudinal/longitudinal) or based on a checkerboard (blocks), with occurrence data being 

split into two subsets, alternatively used for fitting and evaluating the model. The optimal 

band or checkerboard is found based on the size which presents (i) the lower spatial 

autocorrelation, based on Moran’s I, (ii) the maximum environmental similarity, based on 

Multivariate Environmental Similarity Surface metric (MESS) and (iii) the minimum 

difference in the number of records between subsets (Velazco et al., 2019). The importance 

of carefully delimiting blocks for fitting and evaluating the models is discussed by Roberts et 

al. (2017). 

Table 5: Data partition methods available in the ENMTML package. 

Data 

partition 

method 

Type of 

partition 

Acronym 

used in the 

part 

argument 

Method description Additional arguments References 

Bootstrap Random BOOT 

Random partition 

between training and 

test subsets 

replicates and 

proportion 

Fielding & Bell 

(1997) 

K-Fold Random KFOLD 
Random partition of 

occurrences in folds 
folds 

Fielding & Bell 

(1997) 
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Bands Geographical BAND 

Geographical 

partition in one-

dimension bands 

type=1(Latitude) 

type=2(Longitude) 

Bahn & McGill 

(2013) 

Block Geographical BLOCK 

Geographical 

partition in two-

dimensions 

(checkerboard) 

- Roberts et al. (2017)  

 

2.7 Measure of models’ extrapolation 

Arguments involved: (extrapolation) 

ENMs are fitted based on conditions found in occurrences and absence/pseudo-

absence/background data. When making predictions, it is not uncommon for models to 

predict onto new conditions (non-analog climates), especially when performing projections to 

other time periods or geographical regions. In those situations, models will perform 

extrapolations, which means that there is some uncertainty as models were not fitted on those 

environmental conditions (Fitzpatrick & Hargrove, 2009). To identify geographical locations 

in which models are performing extrapolations, we included a Mobility-Oriented Parity 

analysis (MOP; Owens et al., 2013), which is based on the defined accessible area for each 

species. If there is no accessible area, the program calculates MOP based on all conditions 

within the geographical extent of predictors. Example of articles that discuss the main issues 

caused by model extrapolation are discussed by Elith et al. (2010) and Owens at al. (2013). 

2.8 Modeling algorithms 

Arguments involved: (algorithm) 

As one of the primary sources of ENMs/SDMs uncertainty is the method used to construct 

them (Watling et al., 2015; Thuiller et al., 2019), and assuming that no single methods can 

lead with all modeling situation (Qiao et al., 2015), our ENMTML package fit 13 algorithms 

that range different statistical techniques and type of data used to fit the models (Table 5). 

 

Table 6: Algorithms used by the ENMTML package to construct ecological niche and 

species distribution models. 
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Algorithm 

Acronym 

used in the 

algorithms 

argument 

Package 
Data used to create 

models 
Reference package 

Bioclim (Envelope Score) BIO dismo Presences Hijmans et al. (2017)  

Mahalanobis MAH dismo Presences Hijmans et al. (2017)  

Domain DOM dismo Presences Hijmans et al. (2017)  

Generalized Linear 

Models 
GLM stats 

Presences and pseudo-

absences 
R Core Team (2018) 

Generalized Additive 

Models 
GAM gam 

Presences and pseudo-

absences 
Hastie (2018) 

Support Vector Machine SVM kernlab 
Presences and pseudo-

absences 
Karatzoglou et al. (2004)  

Boosted Regression Trees BRT dismo 
Presences and pseudo-

absences 
Hijmans et al. (2017)  

Random Forest RDF randomForest 
Presences and pseudo-

absences 
Liaw & Wiener (2002) 

Maximum Likelihood  MLK maxlike 
Presences and 

background points 
Royle et al. (2012)  

Bayesian Gaussian 

Process 
GAU GRaF 

Presences and pseudo-

absences 
Golding (2014) 

Maximum Entropy simple 

(only linear and quadratic 

features) 

MXS maxnet 
Presences and 

background points 
Phillips (2017) 

Maximum Entropy default 

(all features) 
MXD maxnet 

Presences and 

background points 
Phillips (2017) 

Ecological Niche Factor 

Analysis 
ENF adehabitatHS 

Presences and 

background points 
Calenge (2006) 

 

2.9 Model evaluation 

Model evaluation is performed using seven different metrics: Area Under the Curve  (AUC, 

(Fielding & Bell, 1997), Kappa (Cohen, 1960), True Skill Statistic (Allouche et al., 2006), 

Jaccard (Leroy et al., 2018), Sorensen (Leroy et al., 2018), Fpb (Li & Guo, 2013), Boyce 

(Boyce et al., 2002), partial ROC and its respective p-value (Peterson et al., 2008), omission 

rate  (OR; Fielding & Bell, 1997) and proportion of the total area in which species is 

considered to be present (Peterson, 2001). The values at the table are an average of the 

several replicates (if the bootstrap partition was chosen), folds (if random k-folds were 
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chosen), or geographical subsets (if bands or block partition was chosen), accompanied by 

the respective standard deviation. Metrics are given for each algorithm used to fit models for 

each species, and each threshold chosen to create binary maps. The type of partition used to 

create occurrence subsets is also indicated (Table 7). 

Table 7: Example of an evaluation table output for models created using the algorithm 

Maxent for two different species and two different thresholds evaluated by a random 

Bootstrap partition. 

Sp Alg Part Thr AUC Kappa TSS Jaccard Sorensen Fpb pROC OR %Area Boyce 

Sp_18 MXS BOOT MAX_TSS 0.995 0.950 0.950 0.954 0.976 1.909 1.754 0.240 65.765% 1.000 

Sp_18 MXS BOOT LPT 0.990 0.929 0.928 0.938 0.966 1.875 1.675 0.000 78.345% 0.831 

Sp_34 MXS BOOT MAX_TSS 0.998 0.966 0.966 0.969 0.984 1.938 1.876 0.120 72.972% 0.807 

Sp_34 MXS BOOT LPT 0.990 0.929 0.928 0.938 0.966 1.875 1.290 0.000 87.029% 0.831 

             

Sp AUC_SD Thr Kap_SD TSS_SD Jacc_SD Sor_SD Fpb_SD pROC_SD OR_SD %Area_SD Boyce_SD 

Sp_18 0.007 MAX_TSS 0.071 0.071 0.064 0.034 0.129 0.023 0.120 2.875% 0.002 

Sp_18 0.014 LPT 0.101 0.101 0.088 0.047 0.177 0.042 0.014 5.897% 0.015 

Sp_34 0.003 MAX_TSS 0.047 0.047 0.044 0.023 0.088 0.054 0.028 3.471% 0.023 

Sp_34 0.003 LPT 0.047 0.047 0.044 0.023 0.088 0.076 0.270 9.743% 0.042 

 

2.10 Threshold for binary maps 

Arguments involved: (thr) 

The different thresholds are used to create binary maps, being that more than one option can 

be chosen, which results in different sets of binary maps created within a single script run 

(Table 8). The thresholds are chosen based on the suitability value that maximizes a given 

metric. For instance, the MAX_TSS threshold uses the suitability value that gives the highest 

TSS value to create binary maps. This is the common threshold at which the sum of 

Specificity and Sensitivity is maximum. The same logic stands for all the other alternatives, 

except for Lowest Presence Threshold (LPT; Pearson, 2007) and Sensitivity. LPT threshold 

establishes a threshold value in which suitability is the lowest among all occurrence data. 

Sensitivity requires users to specify a desired sensitivity value for the resulting binary map 

(Table 8). 

Table 8: Threshold for binary maps available in the ENMTML package. 

Chosen Acronym Method description Additional arguments References 
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metric for 

threshold 

definition 

used in the 

thr 

argument 

Least 

Presence 

Threshold 

LPT 
Lowest suitability value among 

occurrence data 
- Pearson (2007) 

True Skill 

Statistics 
MAX_TSS 

Suitability value that maximizes 

the TSS  
- 

Allouche et al. 

(2006)  

Kappa MAX_KAPPA 
Suitability value that maximizes 

the Kappa 
- 

Allouche et al. 

(2006)  

Sensitivity SENSITIVITY 
Suitability value that results in the 

specified sensitivity value 
sens - 

Jaccard JACCARD 
Suitability value that maximizes 

the Jaccard Index 
- Leroy et al. (2018)  

Sorensen SORENSEN 
Suitability value that maximizes 

the Sorensen Index 
- Leroy et al. (2018)  

 

2.11 Ensemble methods 

Arguments involved: (ensemble) 

The major source of model uncertainty is caused by the different algorithms used to fit ENMs 

(Diniz-Filho et al., 2009; Thuiller et al., 2019). A commonly used method to deal with this is 

to create an ensemble model of different algorithms (Araújo & New, 2007; Marmion et al., 

2009). ENMTML offers six ensemble methods, three based on different ways to calculate 

models` average and three based on PCA derived from the models. Average-based ensembles 

can be created using: i) a simple average of all models, ii) weighted average, in which 

models` suitability is weighted by how well that algorithm performed and iii) superior 

average, in which a simple average is calculated only for those algorithms that performed 

better than the average of all algorithms. PCA-based ensemble performs a principal 

components analysis on suitability maps and uses the first component as the final map, this 

can be performed: i) using all models, ii) using only the superior models, selected similarly to 

the superior average, and iii) principal components are calculated using only suitability 

values above the threshold for each algorithm, values below the threshold are set to zero 

(Table 9). 
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Table 9: Ensemble methods available in the ENMTML package. 

Ensemble method 

Acronym used 

in the 

ensemble 

argument 

Method description Reference 

None NULL No ensemble is performed - 

Mean MEAN 
Simple average of suitability predicted by different 

algorithms 

Thuiller et al. 

(2009) 

Weighted mean W_MEAN 
Average of suitability values weighted by the 

performance of the algorithms (TSS) 

Thuiller et al. 

(2009) 

Mean of the best 

models 
SUP 

Average of the best algorithms, i.e., those with TSS 

over the average for a single species 

Velazco et 

al.(2019) 

Principal Component 

Analysis (PCA) 
PCA 

Performs a PCA with algorithms suitability and 

returns the eigenvalues of the first principal 

component 

Thuiller (2004) 

Principal Component 

Analysis with the 

best models 

PCA_SUP 

Performs a PCA with the suitability of the best 

algorithms, i.e., those with TSS over the average for 

a single species, and returns the eigenvalues of the 

first principal component 

- 

Principal Component 

Analysis with 

threshold 

PCA_THR 
Performs a PCA with suitability values above 

thresholds used to binarize each algorithm 
 - 

 

2.12 Methods to constrain ENMs 

Arguments involved: (msdm) 

There is an underlying difference between ecological niche models (ENMs) and species 

distribution models (SDMs), being that both the niche and the distribution are more suitable 

to answer different questions (Peterson & Soberón, 2012). Usually, models’ output represents 

the niche (ENMs), being that methods that bring ENMs closer to SDMs, called here MSDM, 

is a topic lightly treated on species distribution (Mendes et al., in prep). MSDM procedures 

are grouped in two approaches, a priori and a posteriori methods. The first set of techniques 

creates geographic variables that are incorporated as predictors for ENMs fitting (Allouche et 

al., 2008). The second set of methods constrains generated species suitability patterns using 
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estimates of site accessibility, not being included as predictors while fitting models (Mendes 

et al., in prep).  

Table 10: Spatial restriction (MSDM) methods available in the ENMTML package. 

Method 

type 
Method names 

Acronym used 

in the msdm 

argument 

Characteristic 

Reference 

None 
None NULL Does not constrain ENMs - 

A priori 
Latlong XY 

Create two layers with latitude and 

longitude values 

Allouche et al. 

(2008)  

Minimum distance MIN 
Create a layer with the distance of 

each cell to the closest occurrence 

Allouche et al. 

(2008)  

Cumulative distance CML 

Create a layer with information of 

the summed distance from each cell 

to all occurrences 

Allouche et al. 

(2008)  

Kernel KER 
Create a layer with a Gaussian-

Kernel on the occurrence data 

Allouche et al. 

(2008)  

A posteriori Occurrences Based 

Restriction 
OBR 

Uses the distance between points to 

exclude far suitable patches  

Mendes et al. 

(in prep) 

Lower Quantile LR 

Select 25% of suitability patches 

without presences that are nearest 

suitability patches with presences  

Mendes et al. 

(in prep) 

Presence PRES 
Select only the patches with 

confirmed occurrence data  

Mendes et al. 

(in prep) 

Minimum Convex 

Polygon 
MCP 

Excludes suitable cells outside the 

minimum convex polygon of the 

occurrence data  

Kremen et al. 

(2008)  

Buffered Minimum 

Convex Polygon 
MCP-B Creates a buffer around the MCP  

Kremen et al. 

(2008)  

 

2.13 Parallel processing 

Arguments involved: (cores) 

The ENMTML package has the option to fit models using parallel processing, which 

accelerates the process. However, as this is computation-intensive, we chose to leave it open 
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for users to decide the number of computer cores allocated for fitting ENMs. If the users do 

not specify the number of cores, only a single core will be used. 

2.14 Output & Folders 

Arguments involved: (save_part / save_final) 

There are several possible outputs for a single run of the ENMTML package. All the outputs 

produced by the fitting process are within a Result folder, which is created at the same level 

as the Predictors folders (Figure 2). Within the Result folder, there is a sub-folder named 

Algorithm that contains the suitability and binary maps produced for each algorithm for each 

species. If the user chose to create ensemble models, there is another subfolder named 

Ensemble, with the combined maps created for each ensemble type chosen by the user. If the 

user chose to perform projections to different geographical regions or time periods there will 

also be a sub-folder named Projection, within which are the sub-folders for each projection 

scenario, with contains suitability maps generated for all the algorithms and the ensemble of 

those algorithms, if the user-specified an ensemble method. Users can control if partial and 

final models will be saved, altering the arguments save_part and save_final 

(TRUE/FALSE).  

Files generated at the pre-processing stage are also within the Results folder. Accessible area 

masks for each species are found within the Extent_Masks sub-folder. Masks used to 

constrain pseudo-absence allocation are also saved within Results, i.e., if the user chose to 

restrict pseudo-absences allocation using an environmental constraint, there will be a sub-

folder named Env_Constrain which indicates valid areas for pseudo-absence allocation. 

Finally, if the user chose to perform a geographical partition of the occurrence dataset, there 

will be a corresponding sub-folder named BLOCK or BANDS, with the areas used to delimit 

each occurrence subset. 

Other than the folders, there is also a series of TXT (tab-delimited) files within the Results 

folder. The main ones are the Evaluation_Table, which contains the results for model 

evaluation; Thresholds contains the suitability values used to create the binary maps, and 

InfoModelling provides a summary of the arguments used to fit the model. Other than those, 

other useful files are Number_Unique_Occurrences, which specifies the number of unique 

occurrences for each species; Occurrences_Cleaned and Occurrences_Filtered returns the 

datasets produced after occurrences went through the unique occurrences and thinning steps; 
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Occurrences_Fitting and Occurrences_Evaluation returns the dataset used for fitting and 

evaluating the models; Moran_and_Mess files have information about the Moran`s I and the 

environmental similarity (MESS) calculated between subsets, available both for random and 

geographical partition. 

 

Figure 2: All folders and subfolders involved in a single run of the ENMTML package. 

Yellow folders (occurrence and predictors) are mandatory to run the main function. 

Green folders (projection and accessible area) are optional and will be required 

according to the modeling objective. Blue folders are produced by the script, is that 

most outputs are within the main Results folders, which contains a set of TXT files with 

model evaluation and information and sub-folders with the models produced by each 

algorithm and ensemble methods. Folders related to the accessible area, pseudo-absence 

allocation, and geographical partition are also created to avoid repeating those analyses 

in the future. 
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3. Comparison with other packages and innovations 

There are several R packages to fit ENMs. We performed a literature search and found seven 

alternatives: biomod (Thuiller et al., 2009), ModEco (Guo & Liu, 2010), sdm (Naimi & 

Araújo, 2016), Model-R (Sánchez-Tapia et al., 2018), Wallace (Kass et al., 2018), ZOON 

(Golding et al., 2018), and kuenm (Cobos et al., 2019). We summarize those packages in a 

table, highlighting each package features and contrasting them with the features available at 

ENMTML (Table 10). Most packages focus on the development of a specific aspect of the 

modeling process, e.g., the package biomod was proposed as a platform for creating ensemble 

models, while the package kuenm is heavily focused towards accurately developing Maxent 

models; therefore a crucial aspect of software/package selection lies on the study objective. 

We introduce the package ENMTML, which proposes to integrate complex methodological 

developments in the ENMs’ field, published from several different sources, in a single 

package and make them visible for users, which are not accustomed to the methodological 

details of ENMs. Our secondary objective was to make the package user-friendly, even for 

people not comfortable with the programming environment; therefore, we summarized the 

whole process into one single function with arguments that must be filled by the user 

according to the study objectives. We covered the majority of the ENMs process, from pre-

processing occurrences and predictors to post-processing suitability models into ensembles or 

MSDM and provided several methodological alternatives to the different modeling steps 

(Table 10).
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Table 10: Comparison of features included in seven R packages used for fitting ENMs and the ENMTML package. 
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4. Example 

We used the ENMTML package to fit current and future distribution for five virtual species. 

We only present here the results produced for a single species (full models’ outputs can be 

found in Appendix A). For this example, we used five bioclimatic variables (bio1, bio3, bio4, 

bio12, and bio15) from the WorldClim database v2.0 (https://www.worldclim.org). We 

projected the models to 2080 climatic conditions with a Representative Concentration 

Pathway (RCP) of 8.5. We used the MOHC HadGEM2-ES model and the same bioclimatic 

variables used in current conditions sourced by GCM Downscaled Data Portal (http://ccafs-

climate.org). Current and future variables had ten arcmins of resolution. We performed a 

Principal Component Analysis (PCA) in the environmental data in order to reduce predictors 

collinearity (see the details of this procedure in the Methods sub-section “Predictors input 

and collinearity reduction”). We employed Support Vector Machine (SVM), Random Forests 

(RDF), and Maximum Entropy with default tuning (MXD) as algorithms. We used an equal 

number of absences and presences (i.e., presences/absences ratio equal to 1), which were 

randomly allocated within a calibration area (i.e., species accessible area) delimited by a 

buffer of 500 km around the presences. Models were validated by spatial block cross-

validation. For the current condition we constrained the models using the method MCP-B 

(see Methods sub-section “Methods to constrain ENMs”) with a buffer of 200 km around the 

MCP. Final models were constructed by ensembling all the algorithms with a PCA (see 

details in Methods sub-section “Ensemble methods”). We calculated models’ extrapolation 

for current and future conditions based on Mobility-Oriented Parity (MOP) metric. The total 

time used for fitting and processing the models of five species employing four cores was 

2.545 minutes. 

All these procedures are expressed in R command line below: 

ENMTML(pred_dir = d_env, proj_dir = d_fut, occ_file = d_occ,  

       sp = 'species', x = 'x', y = 'y', min_occ = 10, thin_occ = NULL, 

eval_occ = NULL, colin_var = c(method = 'PCA'), imp_var = FALSE, 

sp_accessible_area = c(method='BUFFER', type= '2' , width = '500'), 

pseudoabs_method = c(method = 'RND'), pres_abs_ratio = 1,  

       part = c(method= 'BLOCK'), save_part = FALSE,  

       save_final = TRUE, algorithm = c('SVM', 'RDF', 'MXD'),  

       thr = c(type = 'MAX_TSS'), msdm = NULL,  
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       ensemble = c(method = 'PCA'), extrapolation = FALSE, cores = 1) 

 

 

Fig. 3: Some output layers generated by ENMTML package. a) The calibration area 

used to construct the models based on a 200 km buffer around presences (white dots). 

Black and yellow checkerboard shows the best geographic block partition found for this 

species occurrences. b) and c) depict continuous and binary suitability patterns without 

restriction, respectively. d) and g) represent models’ extrapolation for current and 2080 

(RCP 8.5) environmental conditions, respectively. Extrapolation is based on the 

Mobility-Oriented Parity metric. The closer to zero, the higher the extrapolation. e) and 

f) depict continuous and binary suitability patterns constrained by a Minimum Convex 

Polygon plus a buffer of 200km. h) and i) represent a continuous and binary suitability 

pattern for 2080 environmental conditions (RCP 8.5). Current and 2080 suitability 

patterns are ensembled models perfomed by Principal Component Analysis. 
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5. Future Prospects 

We present the release of the ENMTML package, but we already have in mind ideas for 

future implementations. As the main objective of the package is to approach complex 

methodological developments to people that rely on ENMs but do not focus the development 

of new methods and are not comfortable using R, in the next update we expect to launch a 

web platform using Shiny. On the other hand, we also believe that ENMTML package might 

be of great use for the whole ENMs’ community, as it centers on methodological 

developments scattered around the literature, and not always implemented in R, in one single 

location. With that in mind, we also look forward to providing further options for people who 

are interested in the fine-tuning of models. One of the first additions already planned is the 

possibility for users to change algorithms parameters. In addition, we also plan to explore in-

depth the ensemble field and include more ensemble alternatives and uncertainty maps. 

Finally, we believe an important aspect of ENMs is to be clear about model uncertainty; 

therefore, in the upcoming update, we will implement metrics to calculate source of 

uncertainty for each species in a way similar to  Watling et al. (2015). Other than the already 

planned improvements, users can expect novel methodological approaches published in the 

literature to be implemented in the future versions of the package and are welcome to 

contribute with the development of the package and suggest new features. 
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Highlights 

 

• We present ENMTML, an open source R package to fit ecological niche models 

(ENMs) 

• The package covers a wide variety of methodological aspects gathered from several 

studies 

• Complex methodological features, which were not readily available in R, are now 

easily accessible to users 

• We condense all this complexity in a single function to make it easier for users to 

follow a workflow 

• We demonstrate an example of fitting models for four species with complex 

methodological choices and its interactions 
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