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Abstract

Ecological niche models (ENMs) is a popular metioacology, mostly due to its broad
applicability and the fact that required data imm@e and easily accessible from digital
databases. Nevertheless, there is an underlyingotietogical complexity, often overlooked
by many scientists that rely on ENMs to achieveeptbbjectives. We present here the
package ENMTML, an Open Source R package. The maipose of this package is to
assemble all this methodological complexity spreaer several papers and bring it into the
spotlight in a simple way for people not used te tletails of ENMs. The package contains
several alternatives to different methodologicapst e.g., pseudo-absence allocation and
accessible area delimitation, formulated withinirgle function, to make it accessible for

people not used to the programming environment.

Keywords: Species distribution model; open-source softwadegshe modelling; Model

evaluation;

Software and data availability

Availability of Software License GPL
Name of software: ENMTML Code repository
Type of software: Add-on package for Rttps://cran.r- https://github.com/andrefaa/ENMTML

project.org Installation in Rinstall_githul{"andrefaa/ENMTML")
First available 2019
Program language: R

Requires R version 3.6.0 or later

1. Introduction

Ecological Niche and Species Distribution ModeldNKEs and SDMs, respectively), are
widely applied in ecology, providing important basdormation for the most diverse fields,
such as conservation (e.g. Keppelal, 2012; Razgouet al, 2018), biological invasions
(Peterson, 2003; Campes al, 2014; Linset al, 2018), phylogenetic/evolutionary studies
(e.g. Carstens & Richards, 2007; Chiffettal, 2016) and disease management (Peterson &
Shaw, 2003). While there are theoretical differesnamong ENMs and SDMs (see Peterson
& Soberdn, 2012), we will adopt the nomenclatureMEMom now on as most studies are
closer to estimating species’ niche. Such broadicgiplity is related to two significant

properties of ENMs: (i) a simple underlying modeatt requires only occurrence data and



environmental variables, and (ii) a huge effort tayed by researchers to develop robust
methods and software. There is a significant chamgeethods from first ENMs studies, that
uses one to few algorithms and do not explore osheps that could influence the result
(Peterson & Holt, 2003), to current studies, whisle several algorithms and diverse steps to
fit models, such as pseudo-absence allocation eceksible area definition (e.g., Velazto
al., 2019).

One of the major assets of ENMs is its communitithvgeveral researchers dedicated to
delving into specific methodological aspects of thedeling process. Some noteworthy
aspects involve the control of collinearity amongieonmental variables (De Marco &
Nobrega, 2018), different strategies for the afiioca of pseudo-absences (Engkr al,
2004; Barbet-Massigt al, 2012; Senagt al, 2013); careful definition of the accessible area
(Petersonet al, 2001; Soberon, 2010; Barwet al, 2011; Cooper & Soberon, 2018);
ensemble of different algorithms (Marmiat al, 2009; Thuilleret al, 2009; Haoet al,
2019); different evaluation metrics (Allouclet al, 2006; Leroyet al, 2018) and diverse
methods to partition the occurrence data for fittand evaluating the model (Muscaretia
al., 2014; Robertst al, 2017). Given the wide variety of methods for eank of the several
steps of fitting ENMs and the possible interactidngt may arise, the number of models

produced for a single species may easily surpéssusand.

The great diversity of choices creates a dualitiENMs: while models are simple to fit and
the required data is easily available, several simes should be made regarding
methodological steps that must be done judicioaslg are not as readily available as the
data. As a result, studies that rely on ENMs uguddl not have the same methodological
rigor as studies that focus on developing ENMs, geveral studies still apply (Area Under
the Curve) AUC as an evaluation metric, even thotdtas been demonstrated for over 10
years that the metric is deeply affected by prevadgLoboet al, 2008) or the extent of the
accessible area (Petersamal, 2008; Barveet al, 2011). On the other side, there has been a
great effort to develop alternatives for the AUCI aseveral other methodological aspects,
which have been implemented in several R packagdsE&Ms software (Thuilleet al,
2009; Guo & Liu, 2010; Naimi & Araujo, 2016; Hijmaet al, 2017; Goldinget al, 2018;
Kasset al, 2018; Sanchez-Tapé al, 2018; Coboegt al, 2019).

Ideally, ENMs should be fit-for-purpose, which msahat fitting ENMs is a process that
must be thought carefully, as there is not a sicgheect way to fit models (Guillera-Arroita



et al, 2015; Qiacet al, 2015). Due to the great variety of methodologidabices and the
velocity that new alternatives arise, it may bedhtr keep up with novelties within the
ENMs’ field. As a result, people who are not invadvin the methodological developments
within the field or do not have connections to depers have small participation in all the
published papers (Ahmeat al, 2015). We introduce heEENMTML, a new R package to fit
ENMs. The main objective of this package is totogether all this methodological diversity
developed within the ENM field and present it tensssimply and transparently. Despite
being an R package, we also made it friendly fon-pmogrammers and summarized the
whole fitting process into a single function witbveral arguments that correspond to the

methodological alternatives.

2. Methods description
2.1 Arguments and settings

The ENMTML package and its processes can be divided intce thrgjor stages: pre-

processing, processing, and post-processing. Twisiah in three stages is familiar to most
ENMs routines. Identifying the stage in which eawéthodological step will be performed
may help users to understand the connections arhendifferent methodological steps and
provides an overview that assists the decision-ntgprocess (Figure 1).

In the pre-processing stage, the data is inputcispeccurrences and predictors variables),
and a series of steps can be performed befonegfittie model. Occurrence data is input as a
tab-separated text file (TXT). The program autonaly uses unique occurrences per cell. In
addition, the user can control two steps acting dhre occurrence dataset: i) the minimum
number of occurrences valid for model fitting andperform a thinning process to reduce
sampling bias. Regarding predictors, there areetmethods to control for collinearity and
the possibility to include predictors for other @éinor geographic windows. As for pre-
processing steps, there are five different strated@dr pseudo-absence allocation with the
option to control for presence-absence ratio; fmethods to partition the data into subsets,
with the possibility to provide a specific datasat independent evaluation (a useful asset
when studying biotic invasions); two methods tcateespecies-specific accessible areas; and
it is also possible to identify extrapolation aréased on a Mobility-Oriented Parity analysis
(Owenset al, 2013).



The processing stage is when algorithms will fitdelg, and the suitability maps generated.
For starters, the user can choose if both pamidifaal suitability maps will be generated or
not. There are thirteen algorithms available fordelofitting: Bioclim (Nix, 1986),
Mahalanobis Distance (Farber & Kadmon, 2003), Domé&Carpenteret al, 1993),
Ecological Niche Factor Analysis (Hirzedt al, 2002), Generalized Linear Models
(McCullagh & Nelder, 1989), Generalized Additive tds (Hastie & Tibshirani, 1990),
Boosted Regression Tree (Friedman, 2001), Randamsto(Prasaédt al, 2006), Support
Vector Machine (Guet al, 2005), Maximum Entropy with quadratic and lin¢Anderson

& Gonzalez, 2011) and default features (Phillgisal, 2006; Phillips, 2017), Maximum
Likelihood (Royleet al, 2012) and Gaussian Process (Golding & Purse§)201

Finally, in the post-processing stage, the suitgbinaps generated from the different
algorithms are evaluated using seven different io&e{fAUC, True Skill Statistics (TSS),

Kappa, Jaccard, Sorensen, Boyce, ap. FVhen multiple models are fitted for the same
species (i.e., several replicates or geographiaditipns), the evaluation output result is the
mean and standard deviation of the partial modatiser post-processing options include the
creation of binary maps based on five differeneshiolds; six different ways to generate
ensemble models; and the application of spatiaticiens to reduce model commission and

bring the result closer to an estimation of thecggzerealized distribution (MSDM).

All features are organized in a single R functiathwnultiple arguments the user needs to fill
according to the specific purpose. We chose nestablish default arguments, so users must
think carefully about the choices. To provide suppae briefly explain the methodological

steps and indicate relevant studies for each altiemn
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Figure 1: General workflow of the ENMTML package and all steps that can be taken at
each stage of the modeling routine. In the pre-prassing stage occurrence and
predictors are imported and the user may take six ifferent steps before fitting the
models. The processing stage involves fitting theadels and producing the suitability
maps, which can be made using thirteen different gbrithms. In the post-processing
stage, the results are evaluated and the user maenborm analysis upon the different

suitability maps produced.

2.2. Occurrence data processing

Arguments involved: (occ_file/ Sp / x / y / min_occ / thin_occ)

Occurrence data is imported as a tab-separatedfileXthat needs to be specified by the user
as the file path of the file in the argumerdc_file. This file must contain information
about species name, longitude, and latitude (innticdegrees), and the name of those

columns must be provided in the argumesgs x, vy.

The user must also provide the minimum number ofjus occurrences valid for model

fitting in the argumenmin_occ, species below this number will be excluded frdme t
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analysis. There is not a rule for the definitioraahinimum number of occurrences, but there
are several studies that indicate that model acgusadirectly related to sample size (Wedz
al.,, 2008). There are several factors that affect thable minimum number of
occurrences(Mateet al, 2010), but a good framework for exploring thibjsat is the one
developed by van Proosdif al. (2015).

Finally, users might opt to reduce autocorrelatimmmccurrence data and possible sampling
bias by a thinning technique (argumetttin_occ), performed using the package spThin
(Aiello-Lammenset al, 2015). There are three alternatives for definirggthinning distance:
i) based on the distance of a Moran’s | Variograat minimizes the spatial autocorrelation;
i) retaining unique cells that fall within a grisho times greater than the original cellsize;
and iii) based on a minimum distance defined by tlser (Table 1). For a better

comprehension of the topic see (Aiello-Lammenal, 2015).

Tables 1: Thinning alternatives in theENMTML package (references for each method

indicate its original development or an example oits best practice use).

Acronym
Occurrence )
o used in the o -
thinning . Method description Additional arguments References
thin_occ
method
argument
None NULL Use original unique occurrences - -
Choose from pairs of occurrences
Moran ) o ) ]
_ MORAN  which are within a distance defined - Veloz (2009)
Variogram

by a Moran Variogram

Choose from pairs of occurrences

) ) o ) ] Velazcoet
2x cell-size  CELLSIZE which are within a distance defined -
) al.(2019)
by 2x cellsize
Choose from pairs of occurrences )
User- USER- ) o ) ] . Aiello-Lammens
) which are within a distance defined Distance
defined DEFINED et al(2015)

by the user (in km)

2.3 Predictors input and collinearity reduction

Arguments involved: (pred_dir / proj_dir / colin_var)



Predictors are imported in the argumened_dir, which specifies the folder path of the
predictors, and should be in any of the given fasmBIL, TIF, ASC, TXT. Predictors for
projection also accept the same formats and shioaldhcluded in nested folders, with a
major folder including all the projections datase#&sh with its respective sub-folder (Figure
2).

Collinearity in predictors can be controlled usittyyee different strategies: i) Pearson
correlation with a threshold defined by the use); Variance Inflation Factor (VIF;
Marquaridt, 1970) and; Principal Component Analy§iI€A), using the axis that account for
95% of the total variance in the predictors asrtée predictors (Heikkinert al, 2006; De
Marco & Noébrega, 2018). Predictors eliminated by tRearson and VIF will also be
eliminated for projections datasets. When usere@stdo perform a PCA and have datasets
for projection, the linear relationship between ghedictors and the principal components is
projected onto the new datasets to create theipahcomponents for the projection datasets
(see De Marco & Nobrega, 2018).

Table 2: Methods to reduce predictor collinearity aailable in the ENMTML package.

) Acronym
Variable . -
_ ) used in the o Additional
collinearity Method description References
) colin_var arguments
reduction method
argument
Use original variables provided by
None NULL - -
the user
) Eliminates correlated variables Dormannet al.
Pearson Correlation PEARSON . Threshold
according to a chosen threshold (2013)
Variance Inflation VIE Eliminates correlated variables Marquaridt
Factor based on VIF (1970)
Principal Performs a PCA on variables and
o De Marco &
Components PCA use the principal components as - .
_ ) Nébrega (2018)
Analysis variables

2.4 Pseudo-absences and background points allatatio

Arguments involved: (pseudoabs method / pres_abs ratio)



The program allocates pseudo-absences and backbnooints within the area used to
calibrate the models (Table 3). Such allocation Wwé particular for those geographical
partitioning method (such us block- and band-ckadslation) in which pseudo-absences and
background points are created after performing spatition, in order to maintain a
homogeneous distribution of background points betwpartitions, as well as a constant
prevalence (conceived here as the relationship detwpresences and pseudo-absences).
Since algorithm’s performance may be sensible éowhy pseudo-absences are distributed
throughout the calibration area (Wisz & Guisan, 20Barbet-Massinet al, 2012), the
program offers five pseudo-absences allocation ousthi) ‘single random’ distribution
(Zaniewskiet al, 2002); ii) ‘geographically constrained methodg.j pseudo-absences are
allocated outside a buffer around presences (Bavllassinet al, 2012); iii) ‘environmental
constrained methods’ based on the lowest suitadxd@m predicted by a Bioclim model
(Engleret al, 2004); iv) ‘geographical and environmental casisted method’(Lobcet al,
2010) and; v) a three-step method which combinéremwmental and geographical approach
plus a k-mean non-agglomerative cluster processdigiribute homogeneously on
environmental space (Senatyal, 2013).

The program also allows for the user to define réit@ between presences and absences
(argumentpres_abs_ratio), a methodological step that received considerfddas from

researchers and affects algorithm performance @avtassiret al, 2012).

Table 3: Pseudo-absence allocation methods availedh the ENMTML package.

Acronym used in the
Pseudo-absence
pseudoabs_method

Description of restriction Reference

allocation method

argument
Random RND None Zaniews&t al. (2002)
Geographical _ ) Barbet-Massiret al.
) GEO_CONST Outside a distance buffer
Constrain (2012)
Environmental Within lowest suitability areas
ENV_CONST Engleret al. (2004)

Constrain

Environmental and

predicted by a Bioclim

Combination of Geographical

Geographical GEO_ENV_CONST ) Loboet al.(2010)
) and Environmental
Constrain
Combination of Environmental,
Three-Step )
) GEO_ENV_KM_CONST  Geographical and k-mean Senayet al. (2013)
Constrain

cluster




2.5 Methods to define the accessible area

Arguments involved: (sp_accessible_area)

A crucial decision at the moment to construct ENMthe hypothesized accessible area, i.e.,
the geographical region used by a species throughoeievant period of time (Banet al,
2011), also known as the movement component oBfid diagram (Soberon & Peterson,
2005). Such an accessible area can be delimitestilas the knowledge of species ecology,
dispersal ability, geographical barriers, and amicregion were species inhabited (Soberén,
2010; Petersost al, 2011). Nonetheless, this information is oftengimg for most species;
therefore, different techniques act as an appraxameaof the accessible areBENMTML
account with four option to define accessible argaso restriction, i.e., the entire predictors
extent will be used as accessible area; ii) dedime@ccessible area based on a buffer around
occurrence data; iii) define the accessible aresdan a mask, e.g., using a shapefile for
biogeographical ecoregions, or; iv) accessible daned by the user (supported formats:
SHP/TIF/BIL/IASC/TXT; Table 4).

Table 4: Methods to delimit species accessible aramailable at theENMTML package.

) Acronym used in the
Accessible area

o sp_accessible_area Type of data required Reference
definition method
argument
Whole predictors
NULL no data -

extent

Type 1 = buffer radius based on
occurrence data
Buffer BUFFER _ ) Barveet al. (2011)
Type 2 = buffer radius defined by
the user
Single shapefile or raster
(BIL/ASCITIF/SHP/TXT) mask
Mask MASK . ] ) Petersoret al. (2001)
from which boundaries will be
extracted
Folder with multiple shapefile or
User-delimited USER-DELIMITED raster (BIL/ASC/TIF/SHP/TXT) -

masks, one for each species

10



2.6 Data partition

Arguments involved: (eval _occ / part)

An ideal model evaluation requires a dataset inctvloccurrences are independent of the
ones used to fit the model; this independent datasebe supplied as the path to a TXT file

in the argumengéval_occ.

Nevertheless, the most common evaluation methdd isartition occurrence data in two
subsets, one to fit the model and another for edign. For this option (argumepart), the
package offers four methods for data partitiontagy based on random partitions and two on
geographical partitions (Table 5). Among randontipan methods the user can choose: i)
bootstrap, in which users specify the number oficafes and proportion of the dataset used
for fitting the model, e.g., 10 replicates eachhwii0% for training models, the remaining
30% is used for validation; and ii) k-fold, in whithe dataset is split into a chosen number of
folds, and on each run the model is fit using lolti$ and evaluated on the folder left out. As
alternatives for geographical partitions, the dettagsan be split based on bands
(latitudinal/longitudinal) or based on a checkemdoéblocks), with occurrence data being
split into two subsets, alternatively used foririt and evaluating the model. The optimal
band or checkerboard is found based on the sizehwpresents (i) the lower spatial
autocorrelation, based on Moran’s |, (ii) the maimenvironmental similarity, based on
Multivariate Environmental Similarity Surface metriMESS) and (iii) the minimum
difference in the number of records between sulid&tkzcoet al, 2019). The importance
of carefully delimiting blocks for fitting and ewating the models is discussed by Robetts
al. (2017).

Table 5: Data partition methods available in theENMTML package.

Acronym
Data )
- Type of used in the o N
partition N Method description  Additional arguments References
partition part
method
argument
Random partition ) o
o replicates and Fielding & Bell
Bootstrap Random BOOT between training and .
proportion (1997)
test subsets
Random partition of Fielding & Bell
K-Fold Random KFOLD _ folds
occurrences in folds (2997)

11



Geographical

. o type=1(Latitude) Bahn & McGill
Bands  Geographical BAND partition in one- )
) _ type=2(Longitude) (2013)
dimension bands
Geographical
) partition in two-
Block  Geographical BLOCK ) _ - Robertset al. (2017)
dimensions
(checkerboard)

2.7 Measure of models’ extrapolation
Arguments involved: (extrapolation)

ENMs are fitted based on conditions found in ocemeces and absence/pseudo-
absence/background data. When making predictiangs nhot uncommon for models to
predict onto new conditions (nhon-analog climatespecially when performing projections to
other time periods or geographical regions. In ¢hastuations, models will perform
extrapolations, which means that there is somertaingy as models were not fitted on those
environmental conditions (Fitzpatrick & Hargrov®(®). To identify geographical locations
in which models are performing extrapolations, weluded a Mobility-Oriented Parity
analysis (MOP; Owenst al, 2013), which is based on the defined accessigle for each
species. If there is no accessible area, the pmogeadculates MOP based on all conditions
within the geographical extent of predictors. Ex&gf articles that discuss the main issues

caused by model extrapolation are discussed bly &lial. (2010) and Owenat al. (2013).

2.8 Modeling algorithms

Arguments involved: (algorithm)

As one of the primary sources of ENMs/SDMs uncetjais the method used to construct
them (Watlinget al, 2015; Thuilleret al, 2019), and assuming that no single methods can
lead with all modeling situation (Qiaat al, 2015), ouENMTML package fit 13 algorithms

that range different statistical techniques ane typpdata used to fit the models (Table 5).

Table 6: Algorithms used by theENMTML package to construct ecological niche and
species distribution models.

12



Acronym

) used in the Data used to create
Algorithm Package Reference package
algorithms models
argument
Bioclim (Envelope Score) BIO dismo Presences Hijmaret al. (2017)
Mahalanobis MAH dismo Presences Hijmaret al. (2017)
Domain DOM dismo Presences Hijmaret al. (2017)
Generalized Linear Presences and pseudo-
GLM stats R Core Team (2018)
Models absences
Generalized Additive Presences and pseudo- )
GAM gam Hastie (2018)
Models absences
) Presences and pseudo-
Support Vector Machine SVM kernlab Karatzoglouet al. (2004)
absences
. . Presences and pseudo-
Boosted Regression Trees  BRT dismo Hijmanset al. (2017)
absences
Presences and pseudo- _
Random Forest RDF randomForest Liaw & Wiener (2002)
absences
) o ) Presences and
Maximum Likelihood MLK maxlike ) Royleet al. (2012)
background points
Bayesian Gaussian Presences and pseudo- ]
GAU GRaF Golding (2014)
Process absences
Maximum Entropy simple
] ) Presences and .
(only linear and quadratic MXS maxnet ) Phillips (2017)
background points
features)
Maximum Entropy default Presences and o
MXD maxnet ) Phillips (2017)
(all features) background points
Ecological Niche Factor ] Presences and
ENF adehabitatHS Calenge (2006)

Analysis

background points

2.9 Model evaluation

Model evaluation is performed using seven differaetrics: Area Under the Curve (AUC,
(Fielding & Bell, 1997), Kappa (Cohen, 1960), Trakill Statistic (Alloucheet al, 2006),
Jaccard (Leroyet al, 2018), Sorensen (Lerogt al, 2018), By (Li & Guo, 2013), Boyce
(Boyceet al, 2002), partial ROC and its respective p-valuadiBenet al., 2008), omission

rate (OR; Fielding & Bell, 1997) and proportion tife total area in which species is
considered to be present (Peterson, 2001). Theevadtl the table are an average of the

several replicates (if the bootstrap partition vwdsen), folds (if random k-folds were
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chosen), or geographical subsets (if bands or bpackition was chosen), accompanied by
the respective standard deviation. Metrics arergiee each algorithm used to fit models for

each species, and each threshold chosen to crieary maps. The type of partition used to

create occurrence subsets is also indicated (Table

Table 7: Example of an evaluation table output fomodels created using the algorithm

Maxent for two different species and two differentthresholds evaluated by a random

Bootstrap partition.

Sp Alg Part Thr AUC  Kappa TSS Jaccard  Sorensen  Fpb pRC OR %Area Boyce
Sp_18 MXS BOOT MAX_TSS 0.995 0.950 0.950 0.954 0.976 1.909 1.754 0.240 65.765% 1.000
Sp_18 MXS BOOT LPT 0.990 0.929 0.928 0.938 0.966 1.875 74.6 0.000 78.345%  0.831
Sp_34 MXS BOOT MAX_TSS 0.998 0.966 0.966  0.969 0.984 1.938 1.876 0.120 72.972%  0.807
Sp_34 MXS BOOT LPT 0.990 0.929 0.928 0.938 0.966 1.875 92.2 0.000 87.029%  0.831
Sp AUC_SD  Thr Kap_SD TSS SD Jacc_ SD Sor SD Fpb_SD pROSD OR_SD %Area_SD Boyce SD
Sp_18 0.007 MAX_TSS  0.071 0.071 0.064 0.034 0.129 0.023 .12@ 2.875% 0.002
Sp_18 0.014 LPT 0.101 0.101 0.088 0.047 0.177 0.042 0.014 5.897% 0.015
Sp_34 0.003 MAX_TSS 0.047 0.047 0.044 0.023 0.088 0.054 .02® 3.471% 0.023
Sp_34 0.003 LPT 0.047 0.047 0.044 0.023 0.088 0.076 0.270 9.743% 0.042

2.10 Threshold for binary maps

Arguments involved: (thr)

The different thresholds are used to create binsps, being that more than one option can

be chosen, which results in different sets of himaaps created within a single script run
(Table 8). The thresholds are chosen based onuiteb#ity value that maximizes a given
metric. For instance, the MAX_TSS threshold usessthitability value that gives the highest
TSS value to create binary maps. This is the comitmoeshold at which the sum of
Specificity and Sensitivity is maximum. The samgidostands for all the other alternatives,
except for Lowest Presence Threshold (LPT; Pear20@7) and Sensitivity. LPT threshold

establishes a threshold value in which suitabiktythe lowest among all occurrence data.

Sensitivity requires users to specify a desirecsisigity value for the resulting binary map
(Table 8).

Table 8: Threshold for binary maps available in theENMTML package.

Chosen Acronym Method description Additional arguments References

14



metric for used in the
threshold thr

definition argument

Least S
Lowest suitability value among
Presence LPT - Pearson (2007)
occurrence data

Threshold
True Skill Suitability value that maximizes Alloucheet al.
o MAX_TSS -
Statistics the TSS (2006)
Suitability value that maximizes Alloucheet al.
Kappa MAX_KAPPA -
the Kappa (2006)

o Suitability value that results in the
Sensitivity SENSITIVITY - o sens -
specified sensitivity value

Suitability value that maximizes
Jaccard JACCARD - Leroyet al.(2018)
the Jaccard Index

Suitability value that maximizes
Sorensen  SORENSEN - Leroyet al.(2018)
the Sorensen Index

2.11 Ensemble methods

Arguments involved: (ensemble)

The major source of model uncertainty is causethbydifferent algorithms used to fit ENMs
(Diniz-Filho et al, 2009; Thuilleret al, 2019). A commonly used method to deal with this i
to create an ensemble model of different algoritliAraidjo & New, 2007; Marmioret al,
2009). ENMTML offers six ensemble methods, three based on eiffewvays to calculate
models™ average and three based on PCA derivedtfrermodels. Average-based ensembles
can be created using: i) a simple average of alllel®) i) weighted average, in which
models™ suitability is weighted by how well thatgatithm performed and iii) superior
average, in which a simple average is calculatdg fam those algorithms that performed
better than the average of all algorithms. PCA-lasasemble performs a principal
components analysis on suitability maps and useditst component as the final map, this
can be performed: i) using all models, ii) usindgydhe superior models, selected similarly to
the superior average, and iii) principal componemts calculated using only suitability
values above the threshold for each algorithm, eslibelow the threshold are set to zero
(Table 9).
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Table 9: Ensemble methods available in thENMTML package.

Acronym used

in the
Ensemble method Method description Reference
ensemble
argument
None NULL No ensemble is performed -
Simple average of suitability predicted by diffdaren Thuiller et al.
Mean MEAN )
algorithms (2009)
) Average of suitability values weighted by the  Thuiller et al.
Weighted mean W_MEAN )
performance of the algorithms (TSS) (2009)
Mean of the best sUP Average of the best algorithms, i.e., those witlsTS Velazcoet
models over the average for a single species al.(2019)
o Performs a PCA with algorithms suitability and
Principal Component . . o ]
PCA returns the eigenvalues of the first principal  Thuiller (2004)

Analysis (PCA) component

o Performs a PCA with the suitability of the best
Principal Component ) ) )
o algorithms, i.e., those with TSS over the average f
Analysis with the PCA_SUP _ ) ) -
a single species, and returns the eigenvaluesof th
best models ] o
first principal component

Principal Component . o
o Performs a PCA with suitability values above
Analysis with PCA_THR o ) -
thresholds used to binarize each algorithm
threshold

2.12 Methods to constrain ENMs

Arguments involved: (msdm)

There is an underlying difference between ecoldgmehe models (ENMs) and species
distribution models (SDMs), being that both thehei@and the distribution are more suitable
to answer different questions (Peterson & Sobe20t2). Usually, models’ output represents
the niche (ENMs), being that methods that bring EN#lbser to SDMs, called here MSDM,
is a topic lightly treated on species distributidfendes et al.in prep. MSDM procedures
are grouped in two approachaspriori anda posteriorimethods. The first set of techniques
creates geographic variables that are incorpogutedictors for ENMs fitting (Allouchet

al., 2008). The second set of methods constrains getkspecies suitability patterns using
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estimates of site accessibility, not being includsdredictors while fitting models (Mendes

et al.,in prep).

Table 10: Spatial restriction (MSDM) methods availdle in the ENMTML package.

Acronym used Reference
Method _ o
. Method names in the msdm Characteristic
ype
argument
None
None NULL Does not constrain ENMs -
A priori Create two layers with latitude andAlloucheet al.
Latlong XY )
longitude values (2008)
o ] Create a layer with the distance ofAlloucheet al.
Minimum distance MIN
each cell to the closest occurrence  (2008)
Create a layer with information of
) ) ) Alloucheet al.
Cumulative distance CML the summed distance from each cell (2008)
to all occurrences
Create a layer with a Gaussian- Alloucheet al.
Kernel KER
Kernel on the occurrence data (2008)
A posteriori - occurrences Based (N Uses the distance between points tdlendeset al.
Restriction exclude far suitable patches (in prep
Select 25% of suitability patches
. . Mendeset al.
Lower Quantile LR without presences that are nearest
o , (in prep
suitability patches with presences
Select only the patches with Mendeset al.
Presence PRES ] ]
confirmed occurrence data (in prep
o Excludes suitable cells outside the
Minimum Convex o Kremenet al.
MCP minimum convex polygon of the
Polygon (2008)
occurrence data
Buffered Minimum Kremenet al.
MCP-B Creates a buffer around the MCP
Convex Polygon (2008)

2.13 Parallel processing

Arguments involved: (cores)

The ENMTML package has the option to fit models using pdrglecessing, which
accelerates the process. However, as this is catimuotintensive, we chose to leave it open
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for users to decide the number of computer codesatkd for fitting ENMs. If the users do

not specify the number of cores, only a single eatebe used.

2.14 Output & Folders
Arguments involved: (save_part / save_final)

There are several possible outputs for a singleofthe ENMTML package. All the outputs
produced by the fitting process are withilRasultfolder, which is created at the same level
as the Predictors folders (Figure 2). Within Resultfolder, there is a sub-folder named
Algorithmthat contains the suitability and binary maps pozdl for each algorithm for each
species. If the user chose to create ensemble mjottedre is another subfolder named
Ensemblewith the combined maps created for each ensetypéechosen by the user. If the
user chose to perform projections to different gapugical regions or time periods there will
also be a sub-folder namé&dojection within which are the sub-folders for each pramct
scenario, with contains suitability maps generdtedll the algorithms and the ensemble of
those algorithms, if the user-specified an ensemi#éhod. Users can control if partial and
final models will be saved, altering the argumentsve_part and save_final
(TRUE/FALSE).

Files generated at the pre-processing stage avevélsin theResultsfolder. Accessible area
masks for each species are found within BEbdent_Maskssub-folder. Masks used to
constrain pseudo-absence allocation are also saitbth Results i.e., if the user chose to
restrict pseudo-absences allocation using an emwiental constraint, there will be a sub-
folder namedEnv_Constrainwhich indicates valid areas for pseudo-absencecation.
Finally, if the user chose to perform a geogradhpeatition of the occurrence dataset, there
will be a corresponding sub-folder namBdOCK or BANDS with the areas used to delimit

each occurrence subset.

Other than the folders, there is also a series)XoF Ttab-delimited) files within théResults
folder. The main ones are tHevaluation_Table which contains the results for model
evaluation; Thresholdscontains the suitability values used to create kimary maps, and
InfoModelling provides a summary of the arguments used toditntlodel. Other than those,
other useful files ar&lumber_Unique_Occurrencewhich specifies the number of unique
occurrences for each speci€gcurrences_Cleanednd Occurrences_Filteredeturns the

datasets produced after occurrences went throwghrtlyue occurrences and thinning steps;
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Occurrences_Fittingand Occurrences_Evaluatiometurns the dataset used for fitting and

evaluating the model&jloran_and_Meséiles have information about the Moran's | and the

environmental similarity (MESS) calculated betweeibsets, available both for random and

geographical partition.

Project Folder

L

Occurrences Folder

L Ej Occurrences File.txt (tab-delimited) (occ_file)

Predictors Folder (pred_dir)

— B rca

—" Projection Subfolder 1

L Projection Subfolder 2

| w2 Ej @ atw Predictors

Projection Folder(proj_dir)

Accessible Area Folder (sp_accessible_area = User-Defined)

[T 0 o
[ier | E_}I wim /° Species Accessible Areas

— B Projection_pcA

- Projection Subfolder 1 PCA

- Projection Subfolder 2 PCA

—. Result

—- Algorithm

B vxs
L &, seuif
B s

L Sp1tif
wa

— B Ensemble

BB vean
L & spvtif
s

L g SelLtif

— B Projection

L

L

ata Spl.tif
- Ensemble
L- MEAN

I—. Projection Subfolder 1

B wvixs

SpLtif

Required Folders

Optional Folders

- Output Folders

% TXT File (tab-delimited)

— - Extent_Masks
L.ﬁ, Sp1.tif
—P  Env_constrain

I—m, Spi.tif

— B sBlock

SpaL.tif

* Best Partitions

E‘) OccurrencesBlock &

I

I

I

I

I

I

I

I

P 07 [ P [P O

4

sl Tiff File

ASC File

L Bil File

<P ®E

Shapefile

Number_Unique_Occurrence.txt

Occ_Cleaned & Occ_Filtered.txt (thin_occ)
Occurrences_Evaluation & Occurrences_Fitting.txt
Random Partition Cross_Validation_Moran_MESS.txt
Evaluation_Table.txt

Thresholds_Algorithms.txt
Thresholds_Ensemble.txt

InfoModelling.txt

Figure 2: All folders and subfolders involved in asingle run of theENMTML package.

Yellow folders (occurrence and predictors) are mandtory to run the main function.

Green folders (projection and accessible area) areptional and will be required

according to the modeling objective. Blue foldersra produced by the script, is that

most outputs are within the main Results folders, Wich contains a set of TXT files with

model evaluation and information and sub-folders wh the models produced by each

algorithm and ensemble methods. Folders related tihe accessible area, pseudo-absence

allocation, and geographical partition are also crated to avoid repeating those analyses

in the future.
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3. Comparison with other packages and innovations

There are several R packages to fit ENMs. We pedra literature search and found seven
alternatives:biomod (Thuiller et al, 2009), ModEco (Guo & Liu, 2010),sdm (Naimi &
Araujo, 2016),Model-R (Sanchez-Tapi&t al, 2018) Wallace (Kasset al, 2018),ZOON
(Golding et al, 2018), andkuenm(Coboset al, 2019). We summarize those packages in a
table, highlighting each package features and astitrg them with the features available at
ENMTML (Table 10). Most packages focus on the developrakat specific aspect of the
modeling process, e.g., the packagemodwas proposed as a platform for creating ensemble
models, while the packadeienmis heavily focused towards accurately developinaxéht

models; therefore a crucial aspect of software/pgelselection lies on the study objective.

We introduce the packadeNMTML, which proposes to integrate complex methodoldgica
developments in the ENMs’ field, published from el different sources, in a single

package and make them visible for users, whichnateaccustomed to the methodological
details of ENMs. Our secondary objective was to entiie package user-friendly, even for
people not comfortable with the programming envinent; therefore, we summarized the
whole process into one single function with argutsetihat must be filled by the user

according to the study objectives. We covered tlagrity of the ENMs process, from pre-

processing occurrences and predictors to post-psote suitability models into ensembles or
MSDM and provided several methodological alterredivo the different modeling steps

(Table 10).
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Table 10: Comparison of features included in seveR packages used for fitting ENMs and th&NMTML package.

Package

biomod2

sdm

ZOON

Wallace

ModEco

kuenm

Model-R

ENMTML

Variable

Treatment

X

VIF/PCA/
Pearson/
Spearman

X XXX X
X X X

VIF/Pearson/
PCA

Variable

Contribution

Variable
Importance

Variable
Importance/
Response
Curves

Variable
Importance/
Response
Curves

Response
Curves

Variable
Importance/
Response
Curves

Occurrence
Treatment

X

Spatial
Autocorrelation

litter Occurrence,
Thining (spThin)

Thining (spThin)

X
X

Unique
Occurrences/
Remove user-

specified errors

Unique
Occurrences/
Thining (spThin)

Pseudo-Absence

Selection

Random/

Geographical/

Environmental/
User-defined

Random/
Geographical/
Environmental

XXX X

Random/
Geographical

Random/
Geographical/
Environmental/
GEO-ENV/
GEO-ENV-KM

Data Partition

Random

Random

Random

Random/
Geographical
(ENMEval)

Random

Random

Random/
Geographical
(Andrade et. al.,
in prep)

Model Evaluation

ROC/Kappa/
TSS/FAR/SR/
Accuracy/Bias/
POD/CSI/ETS/

Boyce/MP

TSS/SENS/SPEC/
AUC/COR/
Jacknife/
p-value

AUC/Kappa/
SENS/SPEC

Maxent & Bioclim
Evaluation Plots

TSS/ROC/AUC/
Kappa/RMSE

partialROC/TPR/
AlCc

AUC/TSS/Kappa

AUC/Kappa/
TSS/Jaccard/
Sorensen/Boyce

Independent
Dataset
for Evaluation

L XAXX & X X

Algorithms

GLM/GMB/GAM/
CTA/ANN/SRE/
FDA/MARS/RDF/
Maxent(Java)/
Maxent(Tsuroka)
BIO/DOM/MAH/
GLM/GAM/CART/
BRT/MARS/MAD/
RDF/SVM/ANN/
ENFA/Maxent(Java)/

MLK
DOM/GLM/GAM/
GBM/CTA/FDA/
MARS/SRE/ANN/
GLMNet/RDF/
Maxent(Maxnet)/
MLK/GAU/NULL

BIO/Maxent

BIO/DOM/GLM/
ANN/SVM/CART/
Maxent(Java)/Bayes

Maxent

BIO/MAH/DOM/
GLM/RDF/SVM/
Maxent(Java)

BIO/MAH/DOM/
ENFA/GLM/GAM/
BRT/RDF/SVM/
Maxent(Maxnet)/
MLK/GAU

Binary Maps

Numeric
Threshold

X X X

95%/
Statistical
(Elkan & Noto 2008)

X X

LPT/Max_TSS/
Max_Kappa/
Max_Jaccard/
Max_Sorensen/
pr

Ensemble

Mean/Median/
Coef.Variation/
Conf.Interval/
Comited Average/
Weighted Average

Weighted Averrage

Mean/
Weighted Average

X

Mean/
Weighted Majority/
Mean over 0.7 (TSS)

Mean/
Weighted Average/
Superior Average/

PCA/
Superior PCA/
Threshold PCA

Extrapolation
Analysis

X

X
XXXX X X X

MESS

MESS

Accessible
Area
Delimitation

Buffer/Mask/
User-defined

Spatial

Restriction

(M-SDM)

XXXX X X X

Priori/
Posteriori

Parallel
Programming

L X
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4. Example

We used th&aNMTML package to fit current and future distribution fime virtual species.
We only present here the results produced for glesispecies (full models’ outputs can be
found in Appendix A). For this example, we usedefhioclimatic variables (biol, bio3, bio4,

biol12, and biol5) from the WorldClim database vPatps://www.worldclim.org). We

projected the models to 2080 climatic conditionghwa Representative Concentration
Pathway (RCP) of 8.5. We used the MOHC HadGEM2-Efslehand the same bioclimatic
variables used in current conditions sourced by G@dwnscaled Data Portal (http://ccafs-
climate.org). Current and future variables had aecmins of resolution. We performed a
Principal Component Analysis (PCA) in the enviromtaé data in order to reduce predictors
collinearity (see the details of this procedurethie Methods sub-sectiorPfedictors input
and collinearity reductiof). We employed Support Vector Machine (SVM), RamdBorests
(RDF), and Maximum Entropy with default tuning (MX&s algorithms. We used an equal
number of absences and presences (i.e., presdmsmstas ratio equal to 1), which were
randomly allocated within a calibration area (igpgecies accessible area) delimited by a
buffer of 500 km around the presences. Models weledated by spatial block cross-
validation. For the current condition we constrdinbe models using the method MCP-B
(see Methods sub-sectitMethods to constrain ENMg with a buffer of 200 km around the
MCP. Final models were constructed by ensemblimgh& algorithms with a PCA (see
details in Methods sub-sectioErisemble methot)s We calculated models’ extrapolation
for current and future conditions based on Mobiliigiented Parity (MOP) metric. The total
time used for fitting and processing the modeldivé species employing four cores was
2.545 minutes.

All these procedures are expressed in R commaadifow:

ENMTML (pred_dir = d_env, proj_dir = d_fut, occ_file = d_occ,

sp = 'species', x = 'x', y = 'y', min_occ = 10, thin_occ = NULL,

eval occ = NULL, colin_var = c(method = 'PCA'), imp_var = FALSE,

sp_accessible area = c(method='BUFFER', type= '2' , width = '500'),
pseudoabs_method = c(method = 'RND'), pres_abs ratio = 1,

part = c(method= 'BLOCK'), save_part = FALSE,

save_final = TRUE, algorithm = c('SVM', 'RDF', 'MXD'),

thr = c(type = "MAX_TSS'), msdm = NULL,
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ensemble = c(method = 'PCA'), extrapolation = FALSE, cores = 1)

Q Ofy

Extrapolation Suitability

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Fig. 3: Some output layers generated bENMTML package. a) The calibration area
used to construct the models based on a 200 km beffaround presences (white dots).
Black and yellow checkerboard shows the best geograic block partition found for this
species occurrences. b) and c) depict continuousdbinary suitability patterns without
restriction, respectively. d) and g) represent mods’ extrapolation for current and 2080
(RCP 8.5) environmental conditions, respectively. ¥rapolation is based on the
Mobility-Oriented Parity metric. The closer to zero, the higher the extrapolation. €) and
f) depict continuous and binary suitability patterns constrained by a Minimum Convex
Polygon plus a buffer of 200km. h) and i) represena continuous and binary suitability
pattern for 2080 environmental conditions (RCP 8.5) Current and 2080 suitability

patterns are ensembled models perfomed by Princip&omponent Analysis.
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5. Future Prospects

We present the release of tB&IMTML package, but we already have in mind ideas for
future implementations. As the main objective oé thackage is to approach complex
methodological developments to people that relfebiMs but do not focus the development
of new methods and are not comfortable using Rhénnext update we expect to launch a
web platform using Shiny. On the other hand, we &alslieve thaENMTML package might
be of great use for the whole ENMs’ community, @scenters on methodological
developments scattered around the literature, ahdlways implemented in R, in one single
location. With that in mind, we also look forwa groviding further options for people who
are interested in the fine-tuning of models. On¢hef first additions already planned is the
possibility for users to change algorithms paramnset® addition, we also plan to explore in-
depth the ensemble field and include more enseraldgnatives and uncertainty maps.
Finally, we believe an important aspect of ENMdasbe clear about model uncertainty;
therefore, in the upcoming update, we will implemenetrics to calculate source of
uncertainty for each species in a way similar t@athiig et al. (2015). Other than the already
planned improvements, users can expect novel melingidal approaches published in the
literature to be implemented in the future versiafsthe package and are welcome to

contribute with the development of the package saurgjest new features.
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Highlights

*  Wepresent ENMTML, an open source R package to fit ecological niche models
(ENMSs)

» The package covers awide variety of methodologica aspects gathered from several
studies

» Complex methodological features, which were not readily available in R, are now
easily accessible to users

* We condense al this complexity in asingle function to make it easier for usersto
follow aworkflow

*  Wedemonstrate an example of fitting models for four species with complex

methodological choices and its interactions
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