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Graphical abstract 

 

 

 

Highlights: 

-Angiotensin II increases key steroidogenic enzymes level in adrenal mitochondria. 

-Angiotensin II promotes a mitochondrial fused network. 

-Mitochondrial mitofusin 2 is upregulated by angiotensin II and potassium.  

-Mitofusin 2 is mandatory for mitochondrial localization of key steroidogenic proteins. 

 

Abstract 

In steroid-producing cells, cholesterol transport from the outer to the inner mitochondrial 

membrane is the first and rate-limiting step for the synthesis of all steroid hormones. Cholesterol 

can be transported into mitochondria by specific mitochondrial protein carriers like the 

steroidogenic acute regulatory protein (StAR). StAR is phosphorylated by mitochondrial ERK in a 

cAMP-dependent transduction pathway to achieve maximal steroid production. Mitochondria are 

highly dynamic organelles that undergo replication, mitophagy and morphology changes, all 

processes allowed by mitochondrial fusion and fission, known as mitochondrial dynamics. 

Mitofusin (Mfn) 1 and 2 are GTPases involved in the regulation of fusion, while dynamin-related 

protein 1 (Drp1) is the major regulator of mitochondrial fission. Despite the role of mitochondrial 

dynamics in neurological and endocrine disorders, little is known about fusion/fission in 

steroidogenic tissues. In this context, the present work aimed to study the role of angiotensin II 

(Ang II) in protein subcellular compartmentalization, mitochondrial dynamics and the 

involvement of this process in the regulation of aldosterone synthesis.  
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We demonstrate here that Ang II stimulation promoted the recruitment and activation of PKC, 

ERK and its upstream kinase MEK to the mitochondria, all of them essential for steroid synthesis. 

Moreover, Ang II prompted a shift from punctate to tubular/elongated (fusion) mitochondrial 

shape, in line with the observation of hormone-dependent upregulation of Mfn2 levels. 

Concomitantly, mitochondrial Drp1 was diminished, driving mitochondria toward fusion. 

Moreover, Mfn2 expression is required for StAR, ERK and MEK mitochondrial localization and 

ultimately for aldosterone synthesis. 

Collectively, this study provides fresh insights into the importance of hormonal regulation in 

mitochondrial dynamics as a novel mechanism involved in aldosterone production. 

 

 

 

Keywords: mitochondrial fusion, adrenocortical human cells, mitofusin 2, angiotensin II, protein 

kinases, StAR. 
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1. Introduction 

Adrenal gland, ovary, testis, placenta and brain are steroidogenic tissues strictly required for 

normal reproductive function and body homeostasis. Specialized cells from these tissues produce 

large amounts of steroid hormones from a unique substrate which is cholesterol. Translocation of 

cholesterol from the outer (OMM) to the inner mitochondrial membrane (IMM) is the rate-limiting 

step in the production of all steroids and requires a mitochondrial transporter known as 

steroidogenic acute regulatory protein (StAR) [1–3]. 

In the adrenal zona glomerulosa, aldosterone secretion is stimulated by angiotensin II (Ang II) and 

K+, in addition to ACTH. Ang II binds to Ang II type 1 (AT1) receptors triggering the activation 

of the inositol 1,4,5-trisphosphate (IP3)–Ca2+/calmodulin system [4], while K+ activates voltage-

operated Ca2+ channels. Both stimuli promote phosphorylation events, independently of 

cAMP/PKA pathway activation. It is completely recognized up to date that steroid biosynthesis is 

modulated by hormones, ions or growth factors through the post-translational phosphorylation of 

proteins, despite the differences in signal transduction pathways for each steroidogenic hormone. 

Steroidogenesis involves the activation of cAMP-dependent protein kinase (PKA), protein kinase 

C (PKC), Ca2+/calmodulin-dependent protein kinase [5] and mitogen-activated protein kinases 

(MAPKs) [6–9]. In Leydig MA-10 cells, an interacting module between PKA/MEK/ERK exists in 

mitochondria to form a multiprotein complex essential for the phosphorylation of intermediary 

proteins in hormonal action [10]. It is well known that the activation of the extracellular signal-

regulated kinases 1/2 (ERK1/2) and its upstream activator–mitogen-activated protein kinase 

kinase–(MEK1/2) is required for hormonally induced steroid biosynthesis. ERK activity can 

induce StAR gene in adrenocortical cell line Y1 [7] and, specifically, mitochondrial ERK is able to 

phosphorylate StAR protein exclusively in the presence of cholesterol [6]. 

The different isoforms of PKC are involved in the signal transduction mechanism triggered by 

numerous hormones such as Ang II [11,12] to regulate the production of adrenocortical steroids, 

among others [13]. Ang II activates multiple pathways to MAPK in bovine adrenal glomerulosa 

cells mainly through a major PKC-dependent pathway [14]. PKC activation is increased by Ang 

II to further act as an upstream regulator of ERK1/2 in H295R human adrenocortical cells [11]. It 

has also been described that PKC is located in mitochondria of cardiomyocytes where it regulates 

the formation of a module between ERK and other mitochondrial MAP kinases, favoring 

cardioprotection [15], while isoform  of the PKC translocates to mitochondria in the brain of 

hypertensive rats [16]. Therefore, it could be suggested that the same mitochondrial module is 

formed with PKC in other steroid-producing tissues. However, neither PKC nor ERK present 
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domains in their molecules that function as directional signal to mitochondria, nor are there 

intracellular transport proteins of these kinases. Compartmentalization is also evidenced by 

localized steroid secretion at the site of hormonal stimulation [17]; however, the mechanisms or 

proteins involved in this reorganization remain unknown. 

Even if mitochondria play an important role in all cell types, they are essential in highly 

specialized ones such as steroidogenic cells. These essential mitochondrial functions have been 

attributed to their dynamic nature, i.e. their ability to undergo fusion and fission cycles which 

result in modifications in morphological changes and movement throughout the cytoskeleton. The 

key regulators of these mitochondrial dynamics are high molecular weight GTPases, mitofusin 

proteins (Mfn1 and Mfn2) and optic atrophy 1 (OPA1) as essential modulators of mitochondrial 

fusion in mammals. Both Mfn1 and 2 are located on the OMM, and Mfn2 in particular is involved 

in a tight association between mitochondria and the endoplasmic reticulum (ER), a subdomain 

called mitochondria-associated ER membrane (MAM). In turn, OPA1 plays a role in IMM fusion 

[18,19]. In contrast, dynamin-like related protein 1 (Drp1) participates in mitochondrial fission. 

Drp1 is mainly located throughout the cytosol, and a minor fraction of Drp1 localizes to the 

mitochondrial foci representing future fission sites [20]. The impairment of mitochondrial function 

has been proven a key factor for the development of several common diseases. For instance, Mfn2 

expression levels are diminished in type II diabetes and in some neurodegenerative diseases, like 

Charcot-Marie-Tooth [21–23] and it is affected in several types of cancer [24]. This decrease 

depends, at least in part, on the degree of ubiquitination of this protein [25]. In addition, Drp1 

regulation is essential to the maintenance of mitochondrial mass by balancing mitogenesis and 

mitophagy and mainly occurs by phospho/dephosphorylation [26–28].  

Despite the importance of these proteins in mitochondrial function in health and disease, little is 

known about their mechanisms of regulation in endocrine systems. We have reported in our 

laboratory that mitochondrial fusion is essential for the increase in steroid production, regulated by 

cAMP/PKA transduction pathways in Y1 murine adrenocortical and MA-10 Leydig cells [29]. 

Moreover, mitochondrial fusion is required for the localization of key steroidogenic proteins and 

kinases after activation of G protein coupled-receptors in MA-10 Leydig cells [29]. In this context, 

the present work evaluates the effect of Ang II stimulation on the compartmentalization of 

relevant steroidogenic proteins, on the regulation of mitochondrial dynamics and the involvement 

of this process in steroid biosynthesis. We demonstrate that Ang II promotes the translocation of 

PKC and the activation of MEK and ERK specifically in mitochondria, and that mitochondrial 

fusion increases after Ang II challenge probably due to the upregulation of Mfn2 at transcriptional 

level. Mfn2 expression induced by Ang II is required for proper mitochondrial protein 
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compartmentalization and for aldosterone synthesis in H295R human adrenocortical cells. These 

results reveal the importance of hormone regulation in key protein subcellular localization and 

highlight mitochondrial dynamics as a novel mechanism involved in aldosterone production.  
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2. Materials and methods 

 

Cell line 

The NCI-H295R cell line is a clonal strain of human adrenal carcinoma [30]. The cell line was 

from American Type Culture Collection (ATCC, Manassas, VA) and was handled as originally 

described [30]. The growth medium consisted of DMEM/Ham's F-12 1:1 containing 1.1 g/liter 

NaHCO3, 20 mM HEPES, 200 IU/ml penicillin, 200 μg/ml streptomycin sulfate, and 5% 

COSMIC serum. Flasks and multiwell plates were maintained at 37°C in a humidified atmosphere 

containing 5% CO2. Ang II (100 nM) and potassium (14 mM) were used to treat the cells for the 

indicated times. Prior to treatments, cells were kept in a medium serum-free for 24h. Aldosterone 

and progesterone production was measured in the culture medium by radioimmunoassay (RIA) 

developed in our laboratory. Aldosterone and progesterone antibodies were generously provided 

by Alain Bélanger (Laval University, Quebec, Canada), aldosterone and progesterone standards 

were purchased to Sigma Aldrich, Inc. (St. Louis, MO, USA) and respective tracers were obtained 

from NEN Life Science Products Inc.(Massachusetts, USA) [31] 

 

Isolation of mitochondria and post-mitochondrial fractions 

Mitochondria were isolated as previously described [32]. Briefly, cell cultures were washed with 

PBS, scrapped in 10 mM Tris-HCl (pH 7.4), 250 mM sucrose, 0.1 mM EDTA, 10 μM leupeptin, 

1μM pepstatin A, and 1mM EGTA (buffer A), homogenized with a pellet pestle motor 

homogenizer (Kimble Kontes, Vineland, NJ), and centrifuged at 1000 × g for 10 min. The 

supernatant was centrifuged at 18000 × g for 20 min and rendered a mitochondrial pellet that was 

resuspended in buffer A. The supernatant was defined as the soluble, post-mitochondrial 

supernatant fraction. The purity of each fraction was at least 80%, a value similar to that of 

previous publications [33]. Control markers of the fractions to determine their purity degree are 

depicted in Figure S1. 

 

Western blot 

Total or mitochondrial proteins (20 μg) were separated on 12% or 10% SDS/PAGE and 

electrotransferred to polyvinylidendifluoride membranes as previously described [34]. Membranes 

were then incubated with 5% fat-free powdered milk or 1% bovine serum albumin (BSA) in 500 

mM NaCl, 20 mM Tris-HCl (pH 7.5), and 0.5% Tween 20 for 60 min at room temperature with 

gentle shaking. Membranes were then rinsed twice in 500 mM NaCl, 20 mM Tris-HCl (pH 7.5), 
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and 0.5% Tween 20 and incubated overnight with appropriate dilutions of primary antibody at 

4°C. 1:1000 rabbit polyclonal anti-PKCε, anti-β-tubulin, anti-total MEK1/2, anti-Mfn2, anti-Drp1, 

anti- full length StAR (Santa Cruz Biotechnology Inc., Dallas, Texas, USA), anti-phospho 

ERK1/2, anti-phospho MEK1/2,anti-total ERK1/2 (Cell Signaling, Beverly, MA, USA)and 

1:10.000 mouse monoclonal anti-OxPhos Complex III core 2 subunit (Invitrogen, Carlsbad, CA, 

USA) were used. Bound antibodies were developed by incubation with secondary antibody that 

were obtained from Bio-Rad Laboratories Inc. (1:5000 goat anti-rabbit or 1:5000 goat anti-mouse 

horseradish peroxidase conjugated) (Hercules, CA, USA) and detected by chemiluminescence 

(BioLumina, Kalium Tech, BA, Argentina). Immunoblot bands were quantified using Gel-Pro 

Analyzer software. 

 

RNA extraction 

Total RNA from the different treatment groups was extracted using TriZol reagent following the 

manufacturer’s instructions (Life Technologies, Inc.-BRL, Grand Island, NY). Any residual 

genomic DNA was removed by treating RNA with RQ1 Rnase-free DNase (Promega, Madison, 

WI, USA) at 37ºC for 30 min, which was subsequently inactivated by incubation with 2 mM 

EGTA for 10 min at 65°C. The RT and PCR analyses were made with 1 µg of Dnase-treated 

RNA. The cDNA generated were further amplified by qPCR under optimized conditions using the 

primer pairs named below. 

 

Real time PCR 

The specific primers used for real-time PCR were: human Mitofusin 2 cDNA forward, 5′- 

ATGCATCCCCACTTAAGC -3′ and reverse, 5′- GTTCTTCTGTGGTAACGG -3′; and human 

18S RNA forward, 5′-ATTCCGATAACGAACGAGACT-3′ and reverse, 5′-

AGCTTATGACCCGCACTTACT-3′ (obtained from RealTimePrimers.com, Elkins Park, PA, 

USA). Real-time PCR was performed using Applied Biosystems 7300 Real-Time PCR System. 

For each reaction we used 20 µl of a solution containing 5 µl of cDNA, 10 µM forward and 

reverse primers, and 10 µl of SYBR Select Master Mix (Applied Biosystems, Carlsbad, CA, 

USA). All reactions were performed in triplicate. Amplification was initiated by a 2-min 

preincubation at 50°C, 2-min incubation at 95°C, followed by 40 cycles at 95°C for 15 sec, 55°C 

for 15 sec and 72°C for 1 min, terminating at 95°C for the last 15 sec. Mfn2 mRNA expression 

levels were normalized to human 18S RNA expression, performed in parallel as endogenous 

control. Real-time PCR data were analyzed by calculating the 2−ΔΔCt value (comparative Ct 

method) for each experimental sample. 
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Mfn2-shRNA plasmids 

We used a murine Mfn2-shRNA which has been already proved in our previous works and 

reported [10]. BLAST data showed that the 19-mer RNAi sequence is specific against the mRNA 

sequence of human Mfn2 with 100% identity with the Mfn2 transcript of Homo sapiens, without 

targeting Mfn1, the other isoform that participates in mitochondrial fusion. We also designed a 

human Mfn2-specific shRNA. We used pSUPER.retro plasmid (OligoEngine, Seattle, WA, USA) 

containing a 19-bp DNA fragment of the human Mfn2 (GGAAGACATTGAGTTCCAT) named 

hMfn2-shRNA in the adequate frame shift to generate a shRNA. 

 

Cell transfection  

H295R cells were transiently transfected as previously described [29]. In all cases, empty vector 

was used as control (mock transfection). Briefly, one day before transfection, cells were grown up 

to 80% confluence onto cover glasses (12 mm) into 24-well plates, for microscopy or into 6-well 

plates, for Mfn2 knockdown. Transfection was performed according manufacter’s instructions 

using Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA). Cells were placed into normal 

culture medium 6h after transfection and grown for further 24h. Cells were then used as described 

in the respective figures.  

 

Confocal microscopy 

H295R cells cultured on poly-D-lysine-coated cover glasses (12 mm) were transfected with the yellow 

fluorescence protein targeted to mitochondria (mt-YFP, Clontech). Cells with the indicated 

mitochondrial morphology characterized as tubular fusion-shape mitochondria were quantified. More 

than a hundred cells were counted manually in at least four distinct optical fields. Mitochondrial 

morphology was scored by reference image-based model. For the former, images were assigned two 

different shapes by comparison to a set of reference images of mitochondrial clustering/punctuated and 

elongation/fusion [35]. Cell morphology was visualized by actin red staining with the fluorescence dye 

Phalloidin–TRITC (1∶2000), incubated for 1 h at room temperature. Coverslips were mounted onto the 

slides using Fluorsave antifade reagent (Calbiochem, CA). The images were visualized using a 

Fluoview 1000 Olympus® confocal microscope (IMEX-Academia Nacional de Medicina, Buenos 

Aires, Argentina). 

 

Protein quantification and statistical analysis 

Protein was determined by the Bradford method [36] using BSA as a standard. Statistical analysis 

was performed by Student's t test or ANOVA followed by the Tukey’s test. 
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3. Results 

 

3.1 Mitochondrial localization of key protein kinases in cholesterol transport: regulation by 

angiotensin II 

To accomplish the objectives of our work, we used the adrenocortical human cell line H295R, 

which maintains steroidogenic function and is widely used to study adrenocortical signal 

transduction mechanisms [30]. The participation of the α and ε isoforms of PKC has been 

demonstrated in H295R adrenocortical cells after stimulation with Ang II [11]. Although there 

are numerous studies about the role of the different isoforms of PKC in adrenal function, a 

differential localization of these proteins stimulated by Ang II has not been described so far. 

The subcellular fractionation of H295R cells was performed after hormone stimulation and the 

presence of PKC in the mitochondria was analyzed. The analysis of PKCε was chosen since it 

plays a key role in this cell line [11]. 

The stimulation with Ang II caused an increase in mitochondrial PKCε level after 2h of 

stimulation, which was maintained until the end of the experiment at 6h (Figure 1A). When we 

analyzed PKC total levels in cellular lysates, we detected an increase in the expression of this 

enzyme triggered by Ang II incubation for 1h, earlier than mitochondrial translocation (Figure 

1B). These results unveil that the pool of PKC which translocates to mitochondria after Ang II 

stimulation is enriched by the up regulation of its expression by the hormone, in a time-

dependent manner. These data represent novel results in the regulation and subcellular 

distribution of this kinase in this steroidogenic system. 

Figure 1 

 

Although the activation of ERK by Ang II has been previously described in H295R 

adrenocortical cells [37], it is not known yet whether the signal triggered by this hormone can 

lead to a subcellular compartmentalization of the MAPK cascade in adrenal cells. Therefore, we 

studied the activation kinetics of MEK and ERK, analyzing the cytosolic (post-mitochondrial) 

fraction for MEK and the mitochondrial fraction for MEK and ERK. 

The H295R cells, previously grown without serum for 24h, were stimulated with Ang II for the 

indicated times and the subcellular fractions were then obtained. Anti-phospho-MEK1/2 (pMEK) 

and phospho-ERK1/2 (pERK) antibodies were used as a measure of kinase activation. It was 

observed that pMEK increased gradually in the cytosolic fraction, with a significant increase 

after 2h of stimulation which was sustained until 6h (Figure 2A). This was clearly observed for 
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pMEK1, which is the prominent isoform present in the cytoplasm of H295R cells, compared to 

pMEK2 that just showed an increase in the phosphorylated form at 6h after Ang II challenge. 

When total MEK levels (tMEK) were analyzed, it can be observed that MEK1 and 2 seem to 

display an increase in cytosol prior to its phosphorylation, in agreement with AMPc-stimulation 

in MA-10 Leydig cells [6]. Although both isoforms are present and modulated in cytosolic 

fraction, just MEK2 is strongly phosphoryated by Ang II, at acute times. 

On the other hand, we observed an increase in the mitochondrial pool of pMEK with a peak 

between 1-2h of stimulation with Ang II and a decrease after 6h (Figure 2B). Conversely, 

mitochondrial predominant isoform was MEK2. In agreement, a pool of total MEK2 is detected 

in basal conditions, which is increased after Ang II treatment. These results suggest the existence 

of upstream signaling for the activation of MAPKs, differentially compartmentalized and 

triggered by Ang II in adrenocortical cells. 

Figure 2 

 

Regarding the activation of ERK, we observed a strong signal from pERK2 and a weaker signal 

from pERK1 by immunoblot, as detected in previous works [37]. In the case of ERK1, a gradual 

increase was detected in phosphorylation, starting at 30 minutes and maintained after 6h 

stimulation with Ang II. About ERK2, we observed a marked increase in phosphorylation at 30 

min of stimulation, a peak between 1 and 2h and a decrease at 6h of stimulation, in agreement 

with the activation kinetics of pMEK in mitochondria. These results suggest differential activation 

kinetics of ERK1 and 2 isoforms triggered by Ang II, even in the same organelle. 

We also evaluated mitochondrial total ERK and we observed a basal mitochondrial localization 

for ERK in control cells, which is significantly increased during Ang II stimulation (Figure 3), as 

we described previously in MA-10 Leydig cells [38] and concomitantly phosphorylated, 

indicating that the pool of ERK that is translocated into mitochondria is effectively activated by 

Ang II. 

Figure 3 

 

3.2. Modulation of mitochondrial morphological changes after hormone stimulation 

Given that the synthesis of steroids involves the activation of different signaling cascades through 

different hormones and cellular receptors, we aimed to investigate changes in the morphology of 

mitochondria after hormone stimulation with Ang II. 

To pursue this goal, we transfected H295R cells with a mitochondria-targeted (mt-YFP) plasmid 

[29]. Twenty four hours after transfection, the cell medium was changed to serum-free medium for 
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another 24h. Then, (48h post-transfection) cells were incubated with Ang II for the indicated 

times. The morphological changes and mitochondrial rearrangements were evaluated according to 

a characterization of multiple mitochondrial shapes previously published by our group [29]. 

Under these experimental conditions, two main categories of mitochondrial morphology were 

clearly distinguished, dotted and elongated, which mainly correspond to mitochondrial fission and 

fusion, respectively [35]. 

Confocal microscopy revealed that control H295R cells mostly exhibit a mitochondrial punctate 

pattern, which switched to the fused pattern after Ang II treatment for 3h (Figure 4A). 

Mitochondria with the different morphologies were quantified, clearly showing that Ang II 

stimulation for 3h induced a significant increase in elongated mitochondria in H295R 

adrenocortical cells (Figure 4B). 

Figure 4 

 

3.3 Effect of Ang II and potassium on mitochondrial dynamics key regulator proteins 

 

3.3.1 Hormone regulation of fusion key proteins: Mfn2 and OPA1 

Having shown that Ang II promotes mitochondrial fusion, we further analyzed proteins involved 

in this process. Our group has previously reported the regulation of Mfn2 mRNA expression by 

hCG/cAMP stimulation in MA-10 Leydig cells [29]. Therefore, we focused on Mfn2 and decided 

to investigate a possible regulation of this protein by cAMP-independent pathways, such as Ang II 

and potassium, in steroids biosynthesis. 

As observed by quantitative PCR (qPCR) results, 1h of Ang II elicited a robust increase in Mfn2 

mRNA, with a prompt and marked decrease to control values thereafter (Figure 5A). In turn, Mfn2 

protein analyses showed increase promoted by Ang II stimulation up to 4h and a subsequent 

decrease, probably due to ubiquitination and proteasome-dependent degradation [25]. Chronic 

stimulation with Ang II (24h) failed to promote an increase in mitochondrial Mfn2 (Figure 5B). 

The other classical aldosterone secretagogue of adrenal zona glomerulosa is potassium and its 

capacity of regulate Mfn2 expression was evaluated. We detected that incubation with KCl 

positively modulates Mfn2 mitochondrial localization in a time-dependent manner, with a 

significant increase between 1-4h after KCl incubation and a decrease thereafter (Figure 5C). 

Then, Mfn2 levels were driven to basal levels, as a possible result of the degradation of this 

protein, as mentioned before. Taken together, these results demonstrate that Mfn2 expression is 
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hormonally regulated in an acute manner in adrenocortical cells by several transduction signaling 

pathways. 

Figure 5 

 

In H295R adrenocortical cells, OPA1 has a short and a long isoform and it negatively regulates 

mitochondrial Ca2+ uptake. Although it has been established that OPA1 silencing significantly 

increased both basal and angiotensin II-induced aldosterone production and extramitochondrial 

OPA1 does not affect cAMP-mediated aldosterone synthesis; the regulation of OPA1 isoforms by 

Ang II has not been elucidated yet [39,40,41]. 

In this regard, Western blot analysis revealed that the short OPA1 (S-OPA1) isoform is hormone-

modulated, with a decrease up to 4h of Ang II stimulation followed by an increase after 6h. The 

long isoform, L-OPA1, is differentially modulated by Ang II with a marked increase after 1h of 

stimulation. Both isoforms return almost to control levels at 24h of Ang II stimulation (Figure 6). 

This result shows for the first time a regulation of OPA1 isoforms triggered by Ang II. Even if 

there is no evidence for the role of OPA1 in cAMP-mediated steroid hormone production [41], 

Ang II does promote a regulation of the two main OPA1 isoforms detected in H295R cell line. 

Figure 6 

 

These results support that mitochondrial fusion is a triggered event in Ang II and potassium signal 

transduction pathway, a novel mechanism in adrenocortical cells steroidogenesis until now. 

 

3.3.2 Effect of Ang II on Drp1 subcellular localization 

Drp1 is mainly a cytosolic protein which is dynamically recruited to mitochondria and 

peroxisomal membranes, where it oligomerizes and drives membrane constriction in a GTP-

dependent manner. Indeed, genetic loss of Drp1 leads to a drastic elongation of both mitochondria 

and peroxisomes in multiple cell lines and a variety of animal models [20]. As we presented here, 

Ang II promotes mitochondrial fusion, thus we assessed a possible regulation of Drp1 in 

adrenocortical cells. Western blot analyses revealed the presence of Drp1 in mitochondria under 

basal conditions. In contrast, Ang II stimulation promoted a significant time-dependent decrease in 

Drp1 levels in mitochondria (Figure 7), in agreement with a clear transition to fusion mechanisms. 

Figure 7 
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3.4 Role of mitochondrial fusion in cholesterol transport: localization of StAR, MEK and 

ERK in mitochondria and steroids synthesis 

To address the question whether mitochondrial fusion has a functional role in cholesterol 

transport, we used the RNA interference technique to transiently knockdown Mfn2, using two 

different sequences. We used a shRNA directed to murine Mfn2 (pSUPER-Mfn2-shRNA) 

extensively proved in our previous works [29,38], which showed 100% identity with the Mfn2 

transcript of Homo sapiens, without targeting Mfn1. We also designed a human Mfn2-specific 

shRNA (pSUPER-hMfn2-shRNA) to reinforce our down-regulation experiments. The efficiency 

of Mfn2 knockdown in H295R cells was evaluated by Western blot in mitochondrial proteins 

(Figure 8A and B). A significant reduction in mitochondrial Mfn2 levels was observed, with both 

shRNAs, a pronounced effect although the transfection efficiency of this cell line is not a 100% 

[40]. 

On the basis of this evidence, further experiments were carried out to evaluate whether 

mitochondrial fusion and Mfn2 Ang II-dependent regulation have a role in the 

compartmentalization of cholesterol transport key proteins, also induced by Ang II. We also 

stimulated with 8Br-cAMP (cAMP permeant analogue) in this experiment (Figure 8A) to compare 

with previous results obtained in MA-10 Leydig cells [38]. Western blot confirmed that, in H295R 

cells transfected with both shRNAs, the localization of StAR in the mitochondria was diminished, 

both at basal level and after stimulation with Ang II (Figure 8A and B) or 8Br-cAMP (Figure 8A), 

in agreement with previous work [38]. The down regulation of Mfn2 did not affect complex III 

levels in mitochondria, allowing this OxPhos protein to be used as loading control for these 

experiments. Although StAR is a classic mitochondrial protein with a targeting leader peptide, 

mitochondrial fusion appears to be necessary for StAR localization in mitochondria, even in the 

presence of such directing sequence. 

Figure 8 

 

Although it is well known that MAPKs present diverse scaffold proteins to allow the correct 

subcellular distribution and activation of the cascade, it is not known yet whether these proteins 

present a selective anchoring to the organelles or the specific mechanism of association to them. 

Through Mfn2-knocking down experiments using the two shRNAs described above, the results 

shows that proper Mfn2 expression is required for Ang II-mediated pMEK and pERK 

mitochondrial localization (Figure 9A and B), with the consequent physiological role of these 

kinases in the organelle, probably to form the mitochondrial multiprotein complex essential in 

steroidogenesis [10]. Interestingly, Mfn2 ablation did not affect total MEK and ERK levels, so 
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their association to mitochondria is not dependent on mitochondrial fusion but rather 

phosphorylation and functional activation of these kinases. 

Figure 9 

 

Next, we tested the effect of Mfn2 on aldosterone and progesterone synthesis. Stimulation by Ang 

II has been reported to produce a fast increase in progesterone (after 3h) and a later increase in 

aldosterone synthesis after 15 hours in H295R cells [42]. The current results further show that the 

knockdown of Mfn2 caused a significant reduction in progesterone and aldosterone levels 

produced by H295R cells and released to the medium after 16 hours of stimulation with Ang II 

(Figure 10). Mfn2 depletion did not modified basal nor aldosterone neither progesterone 

production levels. Therefore, it is shown that the increase in hormone-stimulated mitochondrial 

fusion through an increase in Mfn2 mitochondrial levels plays a functional role in the stimulated 

synthesis of different steroids produced by H295R cells. These results are in agreement with those 

obtained in MA-10 Leydig cells [29]. 

Figure 10 
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4  Discussion 

 

Cellular compartmentalization in membranes and organelles is critical to intracellular signal 

specificity, as it strategically locates the kinases and their specific substrates. These mechanisms 

might underlie the localized secretion of steroids, not fully elucidated yet, and arise as a novel 

approach to the study of cell compartmentalization. 

As widely established, steroidogenic hormones act through different message transduction systems 

to regulate protein phospho-dephosphorylation mechanisms by activating kinases and 

phosphatases. Transduction of the ACTH and LH/CG signal includes cAMP, PKA and events 

dependent on phosphorylation by this kinase [43–45], while Ang II and K+ promote non-cAMP-

dependent phosphorylation events, mostly by Ca2+ and PKC [4,46]. 

PKC isoforms are known to take part in the regulation of steroidogenesis at least in two separate 

enzymatic steps, the transformation of cholesterol to pregnenolone [13] and the conversion of 

deoxycorticosterone to aldosterone [47]. PKC also participates in the mobilization of cholesterol 

to the mitochondria mediated by Ang II in H295R cells, which enhances steroid production in its 

acute stage by increasing substrate availability [48]. PKCε-mediated phosphorylation of the 

protein kinase D (or PKC) is involved in the production of aldosterone stimulated by Ang II 

through over-expression of 11-β hydroxylase and aldosterone synthase mRNA, in H295R cells 

[30,49–51]. Here, we have found that PKC levels are regulated by Ang II specifically in a 

mitochondrial pool, a novel finding to the best of our knowledge. Interestingly, PKC appears to 

be upregulated by Ang II as we observed in cell lysates before translocation to mitochondria. It 

suggests that newly synthesized enzyme translocates to mitochondria where it is activated by a 

well established mechanism [52]. Moreover, while total PKC is degraded by the proteasome 

according to the literature [53], the association of this enzyme to mitochondria seems to exert a 

protective mechanism. PKC appears to translocate to mitochondria under numerous conditions 

[54–56], in agreement with our results in adrenocortical cells. In particular, PKC can form a 

module in mitochondria with MAPKs with a fundamental function in cardioprotection [15] and 

the δ isoform of PKC translocates to mitochondria in the brain of hypertensive rats [16]. PKCε 

translocation was regarded as ischaemic preconditioning-mediated protective effect on 

mitochondria and cell survival. Although some scaffold proteins have been described for PKC 

[57,58], the mitochondrial scaffold proteins for PKC which take part in steroid-producing tissues 

remain elusive. Future studies will aim to determine putative mitochondrial substrates of PKC and 
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whether phosphorylation of these substrates is critical for cholesterol transport in adrenocortical 

steroid biosynthesis. 

There is abundant evidence about the location of MAPKs in the mitochondria in multiple cellular 

models and tissues [15,59,60] and particularly in adrenal gland [46,61]. Ang II causes a rapid and 

transient increase in mitochondrial phospho and total MEK1/2, particularly for MEK2, which 

suggests that a phosphatase in the context of the mitochondria dephosphorylates this kinase after 4 

hours of stimulation with Ang II, probably as a way to regulate and attenuate the signal. However, 

the activation of MEK in the soluble fraction shows a different time profile of activation, with a 

delayed activation of MEK, specially marked for MEK1. These results are in line with that 

observed in Leydig MA-10 cells after stimulation with 8Br-cAMP, where differential activation of 

MEK is also observed in different subcellular compartments [6]. Cytosolic and mitochondrial total 

MEK are increased after Ang II incubation in a time-dependent manner, in fact prior to MEK 

phosphorylation; it can be suggested that powerful stabilization mechanisms are triggered by Ang 

II to establish a favored scenario for MEK phosphorylation and MAPK cascade activation. We 

have observed that after hormone stimulation with Ang II the translocation of total ERK to the 

mitochondria is acute, at 30 min of stimulation up to 4h with a decline at 6h after Ang II. As soon 

ERK translocates, is phosphorylated by mitochondrial MEK, which is beginning its activation in 

mitochondria. It could be argued that shorter times in the presence of Ang II favor the 

mitochondrial signaling pathway of MEK, possibly for the acute and non-genomic effects of the 

pathway (i.e. activating ERK to phosphorylate mitochondrial substrates); while after 2h MEK is 

activated in the cytosol to then phosphorylate cytoplasmic ERK, which translocates to the nucleus 

and thus regulates the transcription of certain target genes. However, a difference is visualized for 

the activation of ERK1 and ERK2, with a major phosphorylation for isoform 2. These results are 

in agreement with the literature, where a major activation of ERK2 is detected against ERK1 in 

the H295R cell line [37]. 

With respect to the regulation of ERK phosphorylation, MKP-1, a MAP kinase phosphatase of 

dual specificity, is increased after stimulation with Ang II in human and bovine adrenal models 

[62,63]. A study of MKP-1 overexpression has shown inactivation of ERK1/2 leading to a 

decrease in aldosterone synthesis [64]. Moreover, the fact that MKP-1 is induced approximately 2 

hours after stimulation and is located in mitochondria in steroidogenic cells [65] could constitute a 

mechanism of regulation of the mitochondrial ERK signal in H295R adrenocortical cells. The fact 

that ERK continues to translocate into the organelle during Ang II treatment suggests that 

stimulation by Ang II rapidly promotes the phosphorylation of the translocated ERK pool in 

mitochondria through the activation of MEK and a later translocation of more ERK molecules is 

ACCEPTED M
ANUSCRIP

T



achieved to sustain mitochondrial ERK further activation. ERK is known to phosphorylate StAR 

in mitochondria, as it does in MA-10 Leydig cells [6], although its action in adrenocortical cells 

remains to be tested. 

As already presented, mitochondrial dynamics are required to preserve the correct functioning of 

the cell. It is currently accepted that mitochondria are fundamental platforms in the construction of 

various cellular processes. Despite the importance of mitochondrial dynamics, little has been 

studied about this process in tissues or cells where mitochondria are involved in specialized 

functions, such as the synthesis of steroids in endocrine systems. For instance, our group has 

published results obtained in a line of mitochondrial dynamics research on cAMP/PKA-mediated 

signal transduction in Leydig cells [29]. Most importantly, in the current work we show for the 

first time that Mfn2 mRNA and protein levels are modulated by Ang II in a time-dependent 

manner in adrenocortical cells, which has a strong correlation with the promotion of mitochondrial 

fusion by Ang II stimulation. The positive regulation on Mfn2 mitochondrial levels is also 

observed with potassium, suggesting that mitochondrial fusion promotion is a necessary event for 

steroidogenesis under different steroid secretagogues. It is not known how Mfn2 could be 

regulated at the transcriptional or post-transcriptional level by Ang II or potassium. Mfn2 

promoter is activated by PCG-1, ERR y Sp1 in skeletal and smooth muscle [21,66]. 

Particularly, Sp1 is a key factor in steroids synthesis [67], therefore it will be of great interest to 

further study transcriptional factors role, mRNA stabilization and post-traductional mechanisms 

that could be involved in Mfn2 regulation, in aldosterone synthesis stimulation. 

Regarding mitochondrial fusion, OPA1 mediates IMM tethering. OPA1 harbors at least two sites 

for proteolytic cleavage which generate shorter and soluble fragments. These fragments are 

detectable by immunoblot and identified mainly as L-OPA1and S-OPA1. The abundance of the 

different OPA1 isoforms is cellular context-specific and affects mitochondrial dynamics 

regulation [20]. The L-OPA1 isoform alone is sufficient to drive fusion and its overexpression is 

responsible for mitochondrial hyperfusion. Indeed, L-OPA1 accumulation drives fusion during 

stress-induced mitochondrial hyperfusion [68,69]. Recent advances remark how each OPA1 

isoform is able to fulfill "essential" mitochondrial functions, whereas only some variants carry out 

"specialized" features. Long forms determine fusion, long or short forms alone build cristae, 

whereas long and short forms together tune mitochondrial morphology [70]. Therefore, the 

modulation of the balance between both isoforms by Ang II could be a mechanism intended to 

strongly promote mitochondrial fusion. 
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In addition to hormone regulation of mitochondrial fusion, we analyzed mitochondrial fission 

under Ang II stimulation by measuring the levels of Drp1 key fission protein. Drp1 is recruited 

from the cytosol to the mitochondria, which determine the site for the onset of fission. After 

stimulation with Ang II for different times, Drp1 levels showed to be decreased from the 

mitochondria, which is associated with a decrease in fission rates and concomitant balance toward 

fusion. The regulation of Drp1 includes a great variety of post-translational modifications such as 

phosphorylation, ubiquitination and sumoylation [28,71–74], which may promote interesting 

future studies of these modifications in Ang II transduction signaling, in adrenal tissue.  

Several studies have now suggested a role for ERK1/2 in regulating Drp1 function. It has been 

demonstrated that Ser616 of Drp1 is phosphorylated by ERK1/2 in cancer cells and that this event 

promotes mitochondrial fission [26,75]. So far, our results suggest that the decrease in 

mitochondrial Drp1 could impair its interaction with ERK1/2 in mitochondria, preventing 

mitochondrial fission after Ang II stimulation. In agreement, PKC translocates to the 

mitochondria and exerts a myocardial protection in mice, promoting the dephosphorylation of 

Drp1 at Ser616 and avoiding activation of mitochondrial fission process [76]. Interestingly, our 

results suggest that Ang II-dependent translocation of PKC could lead to inhibition of Drp1 

phosphorylation, loss of Drp1 association to mitochondria and mitochondrial fusion promotion, in 

H295R adrenocortical cells. 

We have clearly demonstrated in this work that mitochondrial fusion through an increase in Mfn2 

is strictly required for the localization of StAR in the mitochondria after stimulation with Ang II. It 

is well established that StAR is directed to the mitochondria by its signal peptide, which is cleaved 

and then acquires a molten globule shape necessary for its subsequent association with the OMM 

and the transport of cholesterol to the IMM [77]. Thus, lipid distribution is also a key influence on 

StAR location. In this sense, mitochondrial fusion could exert changes in the membranes of 

mitochondria in such a way that interaction with StAR is favored. 

In addition, different variants of StAR mRNA are known to be regulated by cAMP-mediated 

stabilization in Leydig MA-10 cells [78]. StAR mRNA must be associated to the mitochondria 

through AKAP1, which stabilizes the translational complex in the mitochondria [79]. Thus, 

mitochondrial fusion could be thought to mediate the approach between StAR mRNA and 

AKAP1, increasing the level of StAR mRNA and protein in the mitochondria through 

stabilization. An effect of Mfn2 on the promoter of the Star gene, not known until now, should 

also be considered. The effect of Ang II on MEK and ERK mitochondrial phosphorylation, but not 

on total kinases levels, is also abolished by Mfn2 down-regulation. This result suggests that 
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kinases translocation/association with mitochondria have more to do with anchoring or scaffold 

proteins in organelles while phosphorylation may depend on spatial conformation probably helped 

by active mitochondrial fusion. 

 

4.1 Conclusions 

Mitochondrial fusion mediated by Mfn2 also proved necessary for MEK/ERK1/2 activation in the 

mitochondria, which indicates that hormone-induced mitochondrial fusion is required for effective 

MEK interaction with its upstream kinase or association with mitochondria. It can be surmised 

that decrease of mitochondrial pMEK results in lower phosphorylation and activation of ERK, 

which leads to a significant decrease in steroid production, together with the decrease in StAR 

mitochondrial localization. 

Reorganization of organelles and contact between membranes can be a primary process in steroid 

production and secretion through the plasma membrane, with enzyme localization as a key feature 

to ensure appropriate steroidogenic rates. These regulatory mechanisms that involve mitochondrial 

fusion are universal to steroid producing tissues, acting by different signal transduction pathways 

like the Ang II/PKC/Ca2+and potassium in adrenocortical cells, and could be extended to other 

tissues which metabolize cholesterol, such as the liver in the production of bile salts. Taken 

together, our findings reveal a novel role of mitochondrial fusion in the re-localization of proteins 

(as StAR) and kinases that are essential for adrenal steroidogenesis. These results emphasize that 

the subcellular activation of MAPKs is hormone-dependent on active mitochondrial fusion and 

Mfn2 expression. The fusion of mitochondria might represent an obligatory mechanism in the 

onset of processes that require transport of intermediate metabolites to achieve steroids 

production. 
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Figure Legends 

 

Figure 1: PKCε translocates from the cytosol to mitochondria upon stimulation with Ang 

II. 

H295R cells were incubated with or without Ang II (100 nM) during the times indicated. 

Mitochondrial (A) and lysate (B) proteins were isolated and analyzed by Western blot. 

Membranes were sequentially incubated with anti-PKCε and anti-complex III (CIII) or anti-β-

tubulin antibodies. Representative images of three experiments are shown and results are 

expressed as the means ± SD: ***p0.001 and ** p0.01vs control. Control sample intensity 

was arbitrarily defined as 1 and variations in PKCε/loading control protein are indicated as fold 

change. 
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Figure 2: MEK1 and MEK2 are differentially activated in the cytosolic and mitochondrial 

fractions upon stimulation with Ang II. 

H295R cells were incubated with or without Ang II (100 nM) during the indicated times. (A) 

Cytosolic and (B) mitochondrial proteins were isolated and analyzed by Western blot. 

Membranes were sequentially incubated with anti-pMEK1/2 (pMEK), total MEK1/2 (tMEK) 

and anti-β-tubulin or anti-CIII antibodies. The histograms show the normalized densitometric 
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results of three independent experiments and are expressed as the means ± SD: ***p0.001, ++ 

p0.01 and +++ p0.001 vs respective control without Ang II. MEK1/2 phosphorylation and 

total MEK1/2 levels in control group were taken as 1. For cytosol, pMEK1/MEK1 and for 

mitochondria, pMEK2/MEK2 were respectively normalized. 

 

Figure 3: Ang II stimulates differentially ERK1 and ERK2 translocation and further 

activation in mitochondria. 

H295R cells were incubated with or without Ang II (100 nM) during the indicated times. 

Mitochondrial proteins were isolated and analyzed by Western blot. Membranes were sequentially 

incubated with anti-phospho-ERK1/2 (pERK), total-ERK1/2 (tERK) and anti-CIII antibodies. The 

histograms show the densitometric result of the phosphorylation of three independent experiments 

and results are expressed as the means ± SD: +++ p<0.001, *** p<0.001, and * p0.05 vs control 

without Ang II. ERK phosphorylation and total ERK levels in control group was taken as 1. 
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Figure 4: Ang II drives mitochondrial dynamics toward fusion. 

H295R cells were transfected with the mt-YFP plasmid and 48h later incubated with or without 

Ang II (100 nM) for 3h. (A) Representative confocal microscopy images, mt-YFP (green), 

phalloidin-TRITC (red). Right column shows a magnification of micrographs in the left column. 

Scale bars are indicated in the figure. (B) Cells were processed as described in materials and 

methods and observed with a fluorescence microscope. Cells with elongated mitochondrial 

morphology were quantified. Approximately a hundred cells were counted manually in at least 

four distinct optical fields. Results are expressed as the means ± SD of three independent 

experiments: ** p0.01 Ang II vs control.  ACCEPTED M
ANUSCRIP
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Figure 5: Ang II and potassium induces Mfn2 expression and mitochondrial localization. 

H295R cells were incubated with or without Ang II (100 nM) (A and B) or KCl (14 mM) (C) for 

the indicated times. (A) Total RNA was isolated, treated with DNase, reverse transcribed (RT) and 

cDNA subjected to qPCR using specific primers. Mfn2 mRNA expression levels were normalized 

to human 18S RNA expression, performed in parallel as endogenous control. qPCR data were 

analyzed by calculating the 2−ΔΔCt value (comparative Ct method) for each experimental sample. 
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Relative expression levels of Mfn2 are shown: **p<0.005. (B and C) Mitochondrial proteins were 

isolated and analyzed by Western blot. Membranes were sequentially incubated with anti-Mfn2 

and anti-CIII antibodies. Control sample intensity was arbitrarily defined as 1 and variations in 

Mfn2/CIII are indicated as fold change. Results are expressed as mean ± SD of three independent 

experiments: *** p<0.001, **p<0.01 vs. control. 

 

Figure 6: Ang II regulates OPA1 isoforms pattern. 

H295R cells were incubated with or without Ang II (100 nM) for the times indicated. Total lysate 

proteins were isolated and analyzed by western blot. Membranes were sequentially incubated with 

anti-OPA1 and anti-β-tubulin antibodies. Control sample intensity for each isoform was arbitrarily 

defined as 1 and variations in OPA1/β-tubulin are indicated as fold change. a: **p<0.01, b: *** 

p<0.001 vs control of corresponding isoform. 

 

Figure 7: Ang II reduces Drp1 mitochondrial levels. 
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H295R cells were treated with Ang II (100 nM) for the times indicated. Mitochondrial proteins 

were isolated and analyzed by western blot. The membrane was sequentially developed using anti-

Drp1 and anti-CIII antibodies. Representative Western blot images and fold change respect to 

control, taken as 1. Results are expressed as the mean ± SD of three experiments: **p <0.05; ***p 

<0.001 vs control. 

 

 

Figure 8: StAR mitochondrial localization depends on Mfn2 levels. 

H295R cells were transfected with a pSUPER.retro empty vector (mock) or containing the 

sequence for short hairpin RNA for (A) murine Mfn2 (Mfn2-shRNA) or for (B) human Mfn2 

(hMfn2-shRNA) to knockdown Mfn2. After 48 hours, cells were stimulated with Ang II (100 nM) 

or 8Br-cAMP (1 mM) for 1h (panel A) and with Ang II for the indicated times (panel B). Mfn2 

and StAR levels in mitochondrial proteins in the presence of empty vector (mock) or shRNA were 

tested. Representative Western blots of three experiments are shown and anti-CIII antibody was 

used sequentially in the same membranes, as loading control. Inset in panel A shows StAR 

quantification of an overexposed autoradiography (more intense and second StAR blot), to allow 

the detection of remnant StAR protein in mitochondria of Mfn2-shRNA-transfected cells. Results 

are expressed as the mean ± SD of three experiments: ***p<0.001 vs mock without stimuli, +++ 

p<0.001 shRNA vs mock for each treatment. 
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Figure 9: Mfn2 participates in mitochondrial MEK and ERK phosphorylation upon 

stimulation with Ang II. 

H295R cells were transfected with a pSUPER.retro empty vector (mock) or shRNA for (A) murine 

Mfn2 (Mfn2-shRNA) or for (B) human Mfn2 (hMfn2-shRNA) to knockdown Mfn2. After 48 

hours, the cells were incubated with Ang II (100 nM) for different times. Mitochondrial proteins 

were isolated and analyzed by Western blot. Membranes were developed using anti-pMEK and 

total MEK, pERK and total ERK and anti-CIII antibodies, as loading control. Representative 

Western blot images are shown and variations of phospho/total kinases are indicated as fold 

change. Results are expressed as the mean ± SD of three experiments: **p <0.05; ***p <0.001 

Ang II mock vs control mock; ^p <0.05, ^^^p <0.001 murine or human Mfn2-shRNA vs mock for 

each treatment. 
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Figure 10: Mitochondrial Mfn2 is required for steroids synthesis. 

H295R cells were transfected with pSUPER.retro empty vector (mock) or containing Mfn2-

shRNA and then Ang II (100 nM) was added to the culture media during 16 hours. Aldosterone 

(A) and progesterone (B) were quantified by RIA. Results are expressed as the corresponding 

steroid production (pg of hormone/mg of protein) as fold change considering control values as 1. 

*** p˂0.0001 Mfn2-shRNA with Ang II vs. mock with Ang II. 
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