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Abstract—The output scores of most speaker recognition
systems are not directly interpretable as stand-alone values.
For this reason, a calibration step is usually performed on
the scores to convert them into proper likelihood ratios (LR),
which have a clear probabilistic interpretation. The standard
calibration approach transforms the system scores using a
linear function trained using data selected to closely match the
evaluation conditions. This selection, though, is not feasible when
the evaluation conditions are unknown. In previous work, we
proposed a calibration approach for this scenario called trial-
based calibration (TBC). TBC trains a separate calibration model
for each test trial using data that is dynamically selected from a
candidate training set to match the conditions of the trial. In this
work, we extend the TBC method, proposing (1) a new similarity
metric for selecting training data that results in significant gains
over the one proposed in the original work, (2) a new option that
enables the system to reject a trial when not enough matched
data is available for training the calibration model, and (3) the
use of regularization to improve the robustness of the calibration
models trained for each trial. We test the proposed algorithms on
a development set composed of several conditions and on the FBI
multi-condition speaker recognition dataset, and we demonstrate
that the proposed approach reduces calibration loss to values
close to 0 for most conditions when matched calibration data is
available for selection and that it can reject most trials for which
relevant calibration data is unavailable.

Index Terms—Speaker Recognition, Trial-based Calibration,
Forensic Voice Comparison

I. INTRODUCTION

Speaker recognition has become a critical tool in a
myriad of domains including forensic voice comparison,
user authentication, and speaker search. Speaker recognition
systems output a score for each trial composed of two sets
of recordings: the enrollment or “known-speaker” recordings
and the test or “questioned-speaker” recordings. The goal of
calibration is converting these scores into proper likelihood
ratios, which provide an interpretable value that can be used
directly in some applications, like forensic voice comparison,
or converted to binary decisions using Bayes rule for other
applications, like user authentication. The likelihood ratio (LR)
for a speaker recognition trial is given by the likelihood of the
two recordings in the trial given the hypothesis that they come
from the same speaker divided by the likelihood of the two
recordings given the hypothesis that they come from different
speakers.
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The usual procedure for calibration is to transform the
scores using a linear function with trainable parameters. The
parameters are trained to optimize an objective function that
measures the quality of the resulting LRs using a set of trials
with corresponding scores. These trials must be representative
of the conditions of the test trials in order to guarantee that
the resulting LRs reflect the actual distribution of scores under
those conditions.

When test conditions are known ahead of time, the user
of the system can attempt to select representative data for
those conditions and use it to train a calibration model. If
the selected data is indeed a good match to the test data,
this procedure works quite well. This method is commonly
used in speaker recognition evaluations organized by NIST,
where a small set of predefined conditions is considered
and clearly described in the evaluation plans. Representative
development data is usually available for those conditions. In
these cases, developers can train a separate calibration model
for each evaluation condition, leading to reasonable calibration
performance.

The problem arises when the test conditions are unknown
and potentially differ among trials, as will likely occur outside
controlled evaluations. In this case, pre-training a matched
calibration model is not possible. One approach that can be
used for these cases is to train a calibration model using
trials from many different conditions, in the hope that the
model will generalize to the test conditions. This, though, is
not necessarily optimal, since the best calibration model is
usually condition dependent. Estimating a single model for
all conditions then leads to suboptimal results within each
condition, which, in turn, leads to a suboptimal global result.

Several approaches have been proposed to tackle this
problem. One family of approaches involves extracting meta
or auxiliary information about the two recordings in a trial.
This information, which can be discrete or continuous, is then
used as input for the calibration process. The idea is that a
calibration model that takes into account this meta-information
will be able to accommodate all acoustic conditions, or at
least those with which the meta-information extractor was
trained. In [1], we proposed a method that uses meta-
information from the enrollment and test utterances, such
as the duration of utterances, estimated channel type, and
speaker gender. The meta-information for the enrollment and
test conversations from each trial was clustered, and separate
combiners were trained for each resulting cluster. Solewicz
[2], [3] proposed a very similar method for performing
combination using attributes obtained from the utterances.
Another similar approach was proposed in [4] where discrete



meta-information is used to condition the parameters of a
regularized linear logistic regression model. Finally, in [5],
continuous vectors of meta-information are used as input to
the calibration process. A bilinear function of the scores and
the meta-information vector for each sample in the trial is
optimized by using a logistic objective function.

A novel approach for condition-dependent calibration,
called trial-based calibration (TBC), was proposed in [6]. The
approach is based on training a separate calibration model for
every new trial, similar to the way in which a forensic expert
would aim to calibrate each trial individually. The model
is trained using a subset of the available development data
selected to match as closely as possible the characteristics of
the test trial. This method, while significantly costlier in terms
of computation, offers the advantage of being more flexible
than all methods previously described. The model obtained
for each trial is targeted to the characteristics of the particular
trial. If the test data contained a discrete number of conditions
that were well represented in the development data, then the
TBC approach could be implemented by pre-training a discrete
set of models which would then be retrieved for each trial
depending on its condition. In this case, the method coincides
with the one described in [4]. Yet, in the general case, each
test trial may be slightly different from all other trials and
require selecting a different subset of the development data
for training the calibration model.

All methods described above were designed to calibrate all
possible trials, regardless of whether the trial’s conditions are
well represented in the development data. This means that
if a trial’s conditions are not represented in the development
data, the system’s output will quite likely be poorly calibrated,
and the user may not be aware that the scores output by the
system, in this case, are not amenable to interpretation. That
is, the LR output by the system will not be a proper LR
reflecting the distribution of scores for the conditions of the
trial. While generating an output for every possible trial might
be acceptable or even necessary for some practical scenarios,
this is not always the case. For example, in the forensic
domain, a large error in the LR value may have a very high
cost for the defendant. This scenario must be avoided, even
if it means discarding the audio recordings as evidence in the
trial, as explained by Morrison [7] and Schwartz [8]. Schwartz
states: “In forensic speaker comparison, it is crucial to decide
when completion of the examination may not be possible.”
She makes a crucial distinction between rendering a decision,
even if that decision is “result inconclusive”, and determining
that the conditions of a trial are such that automatic speaker
recognition is not feasible. She makes it clear that, in her
practice, a substantial number of comparison trials must be
rejected a priori. In this paper, we make a first attempt at
automating the rejection of trials for which calibration cannot
be reliably performed.

The novel contributions of this paper are as follows: We
propose a new similarity metric used to select development
trials for training each calibration model in TBC. This new
similarity metric provides significant gains over the one
proposed in the original TBC paper. We also propose using
a reject option when not enough data similar to a test

trial is found for calibration. Finally, we introduce the use
of regularization toward a global model when training the
calibration model for each test trial, enabling us to select
fewer and, hence, more matched, samples for calibration. We
thoroughly test the new contributions on a development set
composed of several different data sets and a held-out FBI
dataset.

II. CALIBRATION WITH LINEAR LOGISTIC REGRESSION

Consider a training set with M samples, S = {(x;,y;);¢ =
1,..., M}, where z; is the score output by the system for trial
i and y; € {—1,41} is the class corresponding to the trial (-
1 for an impostor trial, where the two samples correspond to
different speakers, and +1 for a target trial, where the samples
correspond to the same speaker). Our goal is to transform the
score x; into a proper log-likelihood ratio (LLR) log(p(z;|y; =
1)/p(x;ly; = —1)). In linear logistic regression, the LLR is
assumed to be a linear function of the scores. That is, we
wish to estimate « and 3 such that ax; + 8 is as close to
the proper LLR as possible. This is done by minimizing the
negative log-likelihood of the data given by

r _ - p(yi)

where we assume equal prior probabilities for both classes
to obtain the posterior from the LLR (so that P(y;|x;) =
1/(1 + e vi(e®i+h))y and where we have balanced the effect
of the positive and negative samples by weighting the log-
likelihood corresponding to each sample by the inverse of the
total number of samples for the sample’s class, N (y;), times an
effective prior probability p(y;) (with p(y; =1) =1 —p(y; =
—1)), which can be set depending on the operating point of
interest. See, for example, [9], for a discussion on the effect
this parameter has on the model’s performance.

In this work, we also consider a regularized version of linear
logistic regression where a term is added to the objective
function to penalize the distance from the estimated parameters
to a default set of parameters. The use of regularized
linear logistic regression for calibration of speaker recognition
systems was studied in several works (e.g., [4], [10]). Here we
use a version where we regularize toward default parameter
values. That is, we maximize the following objective function

log(1 + e~ vilamith)) (1)
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where Lo = L(«, fo) and is used to multiply A in an effort
to make that parameter easier to tune. The default values
for the parameters, oy and [y can be taken to be 1.0 and
0.0, respectively, or the values learned on a separate dataset.
The value of X is chosen empirically to optimize calibration
performance.

III. TRIAL-BASED CALIBRATION

The goal of TBC, first proposed in [6], is to customize the
model used to calibrate each test trial to the exact conditions of
the enrollment and test samples. To this end, enrollment and
test samples are selected from the available calibration data
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Fig. 1. The proposed TBC approach. Raw scores are computed for the
test trial (enrollment and test samples) using a speaker recognition system.
Calibration samples are selected based on their similarity to the enrollment
and test samples using a minimum similarity threshold. If enough calibration
target trials are selected, a calibration model is learned and applied to the
trial. Otherwise, the score is not calibrated.
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based on their similarity to the enrollment and test samples
in the trial. Finally, calibration trials are defined by pairing
up all selected enrollment and test samples and a model is
trained with the scores for these trials using linear logistic
regression. The test trial is then calibrated with the obtained
parameters. In the current work we propose a modification to
the original procedure proposed in [6] that includes the option
to reject a test trial if not enough calibration trials are found
that are similar to the test trial. Figure 1 depicts the revised
TBC process.

Trial-based calibration shares some aspects with adaptive
symmetric normalization (AS-Norm) [11]. This technique is
an adaptive version of symmetric normalization (S-Norm) [12]
where the statistics used for normalization are obtained from
data selected to match the characteristics of the trials’ samples.
In [13] we study the use of calibration and normalization
for different datasets. We found that, in most cases, the best
performance is achieved when both normalization and TBC
are performed. Hence, we believe that the gains obtained
from TBC in this paper would still apply on normalized
scores. Since the implementation of both normalization and
calibration poses some questions (which normalization method
is optimal for each calibration approach, how to split available
data for each purpose, etc.) we decided to leave the question
on the interaction between normalization and calibration for
a later work, focusing here on the main contributions of this
paper: the new similarity metric, the rejection option, and the
regularization approach.

A. Similarity Metrics

The key step in the TBC approach is the selection
of calibration trials. This selection is done based on a
similarity metric between the trial’s samples and the candidate
calibration samples. In this work, we evaluate three different
metrics.

I-vector (IV) similarity: The i-vector similarity is given
by the cosine similarity between the i-vectors corresponding
to the two samples. The cosine similarity is computed as the
dot product between two vectors divided by the product of the
Euclidean norms of the vectors.

UAC-based (UAC) similarity: This was the metric
proposed in the original TBC paper. A set of universal audio
characterization (UAC) models [14] are trained to predict
different aspects of an audio signal, which could include

gender, language, channel, noise type and level, and so on.
Each UAC model consists of a Gaussian model for each class
to be predicted (for example, female and male for the gender
UAC model) with shared covariance matrix. The features
modeled by the UAC are the same i-vectors extracted by the
speaker recognition system. The output of each UAC model is
the posterior probability for each of the corresponding classes.
The posteriors from all UAC models are concatenated and each
component is normalized by replacing it with the ranking of
the value. The ranking of each value is computed as its index
in the sorted vector of all the values for that component in the
calibration data. Finally, the similarity between two samples is
given by the dot product between the rank-normalized vectors
of UAC posteriors for the samples. A detailed explanation of
this metric is given in [6].

Condition PLDA (CPLDA) similarity: The condition
probabilistic linear discriminant analysis (PLDA) similarity
proposed in this work is given by the score produced by a
PLDA model trained to estimate the log-likelihood ratio of the
samples’ i-vectors given the hypothesis that the two samples
come from the same condition versus the hypothesis that they
come from different conditions. The model is trained with data
from many different speakers under many different conditions.
Conditions are given by the cross-product of the samples’
gender, language, channel, noise type, noise dB level, etc.

The UAC and the CPLDA metrics are conceptually similar
in that they are trained to be independent of the similarity
between the speakers in the two samples, focusing on the
similarity between their conditions. The IV metric, on the
other hand will be sensitive to both the speakers and the
conditions in the two samples. In principle, this is not a
desirable characteristic of a metric for our purposes. We wish
to select calibration data that is similar to the test trial in
terms of condition so that any effect of the condition on the
score can be neutralized by the calibration procedure. If the
similarity metric is affected by the characteristics of the voices
in the test samples, then we will tend to select calibration data
that is similar to the test samples in terms of voice. In the
extreme, if the voices in the enrollment and test sides of the
trial are very different, we would not be able to find enough
target calibration trials that are similar to the test trial for
enrollment and test sides. As a consequence, we would not be
able to calibrate the easier impostor samples (those for which
the voices are so different that the system is quite confident on
its decision, leading to a very large negative score) for lack
of enough target samples to train the model. This may not
be an issue in some forensic applications where only trials
that are difficult reach the forensic expert [7]. In this case,
selecting calibration data that is similar to the test trial both in
terms of conditions and voices would be appropriate. In this
work, we will not consider this case, because our test data is
not restricted to difficult impostor trials. Nevertheless, as we
will see, the IV metric performs quite well, indicating, as is
well known, that the dot product between i-vectors is highly
affected by the conditions in the samples.
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Fig. 2. A toy example of the selection process. The rows of the matrix
correspond to the enrollment calibration samples, sorted by their similarity to
the enrollment sample in the test trial. The columns correspond to the test
calibration samples sorted by their similarity to the test sample in the test trial.
The “-” and “+” symbols correspond to impostor and target trials, respectively.
The highlighted trials would be selected for a similarity threshold of 4.5 if
MaxTgt is larger than 4.

B. Selection Algorithm

The selection of calibration data is governed by three
parameters: (1) a similarity threshold (SimThr), (2) a
maximum number of target trials (MaxTgt), and (3) a
minimum number of target trials (MinTgt). It also takes as
input the calibration set, composed of enrollment and test
samples. Given the parameters, the calibration set, and a given
trial to be scored, composed of an enrollment sample, E, and
a test sample, T', the selection algorithm proceeds as follows:
The similarity values from E to all enrollment samples in the
calibration set and from T to all test samples in the calibration
set are computed. All calibration enrollment samples with a
similarity to E larger than a certain threshold ¢ are selected.
Similarly, all calibration test samples with a similarity to T
larger than ¢ are selected. The trials obtained by pairing all
selected enrollment samples against all selected test samples
are used to train a calibration model for the trial to be scored.
The threshold ¢ is equal to the maximum between SimThr and
the threshold that would result in MaxTgt target trials being
selected. Hence, when the largest of these two thresholds is
SimThr, fewer than MaxTgt target trials are selected. If the
number of selected target samples is smaller than MinTgt then
calibration of the trial is not attempted. Figure 2 shows a toy
example for the selection process.

Note that our decision to reject a trial when not enough
matched calibration data can be selected could be replaced
by other strategies. For example, either the global calibration
model could be used to calibrate that trial, or the LLR could be
set to 0.0. Yet, this would mean that the resulting LLR might
be very different from what a well-calibrated LLR would
have been. Our goal in this work is to never allow a trial
to be wrongly calibrated, even if this is done at the cost of
rejecting some trials. Ultimately, we aim to only calibrate trials
for which we can achieve close to the matched calibration
performance. If the system believes this is not possible, then
the trial would not be calibrated.

'In this work, we will only consider single-enrollment single-test trials.

C. Training of Calibration Model

Once the calibration trials have been selected for a certain
test trial, a model is trained using regularized linear logistic
regression. The default parameters for regularization, oy and
Bo, are given by the parameters trained using all available
calibration data. As we will see, the use of regularization
enables us to reduce the MinTgt parameter, which in turns
allows us to properly calibrate a larger percentage of samples
when the amount of matched data to a certain trial is restricted.

D. Duration-Dependent Calibration

The duration of the samples was shown to have a significant
effect in calibration performance in [15]. Our preliminary
experiments confirmed that this is also the case in our
development data, in particular when the samples are relatively
clean and short. Speech duration can be directly obtained from
the speech activity detection output. Further, by chopping each
sample in the calibration data to a predefined set of durations
(see Section VI), we can create a multi-duration calibration set.
Hence, in our experiments, when the test data has variable
speech durations, we use a two-stage calibration approach.
First, for each side in a test trial, the calibration data that
best matches its duration is selected. Second, we apply global
calibration or TBC on this matched-duration subset of the data
only.

IV. EXPERIMENTAL DESIGN

We present results for the proposed approaches on two
datasets: (1) a large and varied development set where all
parameters are tuned, and (2) an FBI dataset composed of
several different language and microphone conditions for
independent evaluation of the chosen configuration.

A. Development Data

We tune all system’s parameters using a collection of
conditions where each condition is designed to be highly
homogeneous. This homogeneity allows us to define, for each
condition, a highly matched calibration set. This, in turn,
enables us to compute the matched calibration performance for
each condition, which can be used as a baseline to compare
the performance of the proposed algorithms.

The conditions used for development are all restricted to
male speakers and the waveforms are chopped to contain
approximately 20 seconds of speech as determined by our
speech activity detection system. The conditions are:

SWCELLP1: Switchboard Cellular Part 1, consisting of
cellphone conversations [16].

SWPH2: Switchboard 2 Phase 2 samples, consisting of
telephone conversations [17].

FVC-int: Interviews from Australian English speakers from
the forensic voice comparison dataset [18].

COD: Test samples in this set were obtained by transcoding
the FVC-int test samples through a GSM codec. The
enrollment samples were not degraded.

REV: Test samples in this set were obtained by adding
reverberation to the FVC-int test samples. The reverberation



impulse response corresponded to a large room (the
Wangenheim Rare Books Room at the San Diego’s Central
Public Library) and was added using the FCONV tool [19].
The enrollment samples were not degraded.

NOI: Test samples in this set were obtained by adding
babble noise to the FVC-int test samples using the FANT tool
[20]. The same noise signal was added to all samples. The
enrollment samples were not degraded.

RATS-G: Subset of the RATS speaker verification data [21]
including only Pashto language and retransmitted channel G.

Each of these sets is divided equally into calibration and test
splits keeping approximately half of the speakers in each split.
The number of speakers in each set and each split ranges from
126 to 340. The number of trials in each split ranges between
300 and 1000 target trials and 34,000 and 65,000 impostor
trials.

B. Evaluation Data

We evaluate a small number of final configurations for the
calibration system using the FBI multi-condition dataset first
described in [6], calibrated with matched data from the same
set or with mismatched data from the large variability dataset
(LVD). Both sets are described below.

FBI: The FBI evaluation corpus was supplied by the Federal
Bureau of Investigation (FBI) and consists of 14 distinct
conditions including same/cross-channel and same/cross-
language trials. One of the languages in the cross-language
trials is always English while the other language varies. The
data is sourced from several different corpora: LASR [22]
(LA), PanArabic [23] (PA), Nist99 [24] (N99), NoTel [25]
(NT), CrossInt (CI), Cavis (CA), ABSpanish (AB), and
CHArabic (CH). The CHArabic dataset contains interviews
in Arabic with a studio quality cardioid microphone about 1
meter from the target speaker. The ABSpanish set contains
Spanish and English data also collected with a cardioid studio
microphone. Cavis is a conversational dataset in English
collected with both a studio microphone and a telephone
microphone. CrossInt contains speech from 3000 speakers
across three conditions (landline telephone, cellular and
live room microphone), with two different speaking styles
(interview and spontaneous conversation) using bilingual
participants in India to allow for cross-language and same
language trials for all the conditions. Languages were English
for the first session of the collect and the participants native
language (Hindi, Gujarati, Bengali, Marathi, Tamil, Kannada
and Telugu) for the second session. The NoTel corpus
contains telephone recordings from naturally noisy locations
in Indian accented English. The PanArabic set contains speech
from 100 subjects in five different Arabic dialects, recorded
in a studio using a lapel microphone. The NIST99 set
corresponds to the data used in the 1999 speaker recognition
evaluation organized by the National Institute of Standards and
Technology (NIST) and contains telephone conversations in
English from approximately 600 subjects. Finally, the LASR
corpus is composed of data from 100 bilingual speakers from
each of three languages: Arabic, Korean and Spanish. Each
speaker is asked to perform a series of tasks in two sessions
recorded on different days using several devices.

TABLE I

CHANNELS, LANGUAGES, NUMBER OF MALE AND FEMALE SPEAKERS
AND SOURCES INCLUDED IN EACH OF THE FBI CONDITIONS USED IN THIS

WORK. THE CHANNELS ARE STUDIO MICROPHONE (MIC), TELEPHONE

(TEL) OR CELLPHONE (CELL). CROSS INDICATES CROSS-LANGUAGE
TRIALS FOR WHICH THE LANGUAGE OF ONE OF THE TWO SIDES OF EACH

TRIAL IS ENGLISH AND THE OTHER LANGUAGE DEPENDS ON THE
SOURCES INCLUDED IN THE CONDITION.

Cond Chan(s) Lang(s) #Male #Fem Source Corpora
02 Mic Arabic 422 280 PA, LA, CH
03 Mic Cross 179 193 LA, AB
05 Tel English 467 519 LA, NT, N99, CA
06 Tel Cross 597 264 CI, LA
08 Cell Cross 460 97 CI
09 Mic, Tel English 645 264 CI, LA, CA
10 Mic, Tel Cross 768 281 CIL, LA
11 Mic, Cell  English 460 97 CI
12 Mic, Cell Cross 632 114 CI
14 Tel, Cell Cross 460 97 CI

This set of corpora were selected by the FBI for calibration
research to represent a very wide range of different conditions,
collection sources, environments, languages, and channels. See
Table I for a detail of the conditions and the corpora from
which they were sourced. We exclude conditions 1 and 4
for being subsets of conditions 2 and 5, respectively, and
conditions 7 and 13 for having too few speakers.

The FBI data is split into calibration and evaluation sets,
choosing one third of the speakers in each condition for
calibration and the rest for evaluation. This calibration data
is used for some experiments on the FBI data, while other
experiments use the LVD data described next. The mean
speech duration in the FBI samples is 85 seconds, with only
2% of the samples having less than 30 seconds of speech. To
enable duration-dependent calibration, each calibration sample
is cut to obtain new samples with approximately 5, 10, 20, 40,
80 and 160 seconds of speech, up to the maximum duration
available in the sample. Test samples are not cut.

LVD: For calibration of the FBI data we also create a
multi-condition set sourced from datasets not included in
testing, in order to generate a challenging scenario for the
calibration algorithms. Data was obtained from telephone and
microphone sources of the NIST 2004-2008 SRE corpora,
and clean telephone data from the non-English DARPA RATS
SID task [21]. Speakers were not overlapping with system
training data as we have empirically found that avoiding
overlap between the calibration data and data used to train the
speaker recognition system improves calibration results. This
data consists of 1259 waveforms from 144 speakers, roughly
balanced across the SRE and RATS data sources. Distribution
of conditions in the waveforms included 4% microphone data
and 96% telephone data, a 55% female 45% male split, and
representation of over 27 languages with the top 5 languages
(Farsi, Levantine Arabic, English, Pashto, and Urdu) each
having a share of 8-12%. These samples are cut to create new
samples that contain 5, 10, 20, 40 and 60 or 80 seconds of
speech, up to the maximum duration available for each sample,
to enable duration-dependent calibration.



C. Performance Metrics

Throughout this report, we measure performance using
three metrics: the cost of likelihood ratio (Cllr), the Clir
loss (Closs), and the percent of rejected trials (%Rej). The
ClIr [26] measures the quality of the scores as LLRs using
a logarithmic cost function. This metric is affected both by
the discrimination and calibration performance of the system.
In this work, we are not aiming to improve discrimination,
though we may do so as a side-effect since TBC is not
a global transformation and might end up better aligning
the scores from different trials which may, in turn, improve
discrimination. Yet, our main goal is to improve calibration of
the scores. That is, we want to make sure that the system’s
scores are interpretable as proper LLRs, regardless of the
system’s discrimination performance. To this end, we use the
Closs as our main metric.

We define the Closs as the relative difference between
the ClIr of a certain calibration procedure (TBC, or global
calibration), Cllry, and the Cllr obtained when training the
calibration model with calibration data well-matched (same
condition from the same dataset) to the test set, Cllry;:

Closs = (Cllrp — Cllryy ) /Cllryy 3)

Both Clir values involved in the computation of the Closs
are calculated using only the trials that are calibrated (i.e.,
not rejected) by the system under study. Figure 3 depicts the
process used to obtain the Closs values.

Note that we could have defined Closs in a more traditional
way as the relative difference (or absolute difference) between
the actual Cllr on a certain test set and the minimum Cllr
obtained using some optimal calibration procedure like the
pool adjacent violators algorithm (PAV) [27] or perhaps by
linear logistic regression on the test data itself. Yet, we believe
a minimum ClIr calculated in this way would result in an
inadequate baseline since such Cllr would not be achievable
in practice by any calibration procedure because it is optimized
on the test data itself. For this reason, we believe that using
matched held-out data for computing the minimum CllIr in the
Closs computation is a better approach for the purpose of this
paper. Further, this Closs has a nice characteristic: if a TBC
algorithm happens to select for each trial exactly the matched
data for that trial, then the Closs will be 0.0. Note that we
could also, in fact, get negative Closs values. This would mean
that the calibration method under evaluation is better than the
matched calibration model for that test set. As we will see,
this happens in our experiments for a few conditions.

Our proposed TBC algorithm has the option of refusing to
calibrate a trial if no sufficient matched data can be selected
for calibration. Hence, another performance metric of interest
is the percent of trials that were calibrated by the system. As
mentioned above in all cases the Closs is computed only over
the trials that were calibrated by the system under study.

Finally, for some of the experiments, we want to summarize
metrics over all the test sets within a certain group. For this
purpose, we use a weighted average Closs where the weight is
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Fig. 3. Computation of the CllIr loss (Closs) performance metric. The speaker
recognition scores for three sets are used: a test set for a certain condition
X, a matched calibration set for that condition and a large heterogeneous set.
Standard linear logistic regression calibration is performed using the matched
calibration set. An alternative calibration method like TBC is also applied
to the test trial’s scores using the heterogeneous calibration set. Different
number of trials may come out of each calibration method (indicated by the
different arrow widths). Finally, the scores calibrated by both systems are used
to compute their respective CllIr. The Closs is given by the relative difference
between these two Cllrs.

given by the fraction of trials that are calibrated by the system
for each test set. That is

>; w;iCloss;

> wi

where ¢ runs over the test sets under consideration and w; =
1—%Rej; /100 is the fraction of trials calibrated by the system
for test set 7. This coincides with the standard average when the
system calibrates all trials as is the case for global calibration
and TBC when no similarity threshold is used.

For the final set of results, we also show the equal error rate
(EER) and the minimum ClIr on each condition. The EER
is defined as the false alarm rate at the operating point in
which this rate is equal to the miss rate. The minimum ClIr
is obtained using the PAV algorithm which gives the smallest
Cllr value that can be obtained by mapping the test scores
with a monotonic non-parametric transformation.

WEIGHTED_AVE(Closs) = (4)

D. MFCC i-vector/PLDA Speaker Recognition System

All experiments in this work, except otherwise indicated,
use a standard mel-frequency cepstral coefficient (MFCC)-
based i-vector/PLDA speaker recognition system. The MFCC
acoustic features are based on 20-dimensional MFCCs
including CO, spanning the frequency range of 200-3300 Hz
using 24 filter banks, a window of 25ms, and a step size of
10ms. These features are used as input for speech activity
detection (SAD) and for the speaker recognition system.

For SAD we used a deep neural network (DNN)-based
model trained on telephone and microphone data from a subset
of the Mixer data [28] used in SRE 2008, consisting of
more than 19,000 samples. The MFCC features are mean and
variance normalized using a sliding window of two seconds,
and are concatenated over a window of 31 frames. The
resulting 620-dimensional feature vector forms the input to
a DNN that consists of two hidden layers of sizes 500 and
100. The output layer of the DNN consists of two nodes
trained to predict the posteriors for the speech and non-speech
classes. These posteriors are converted into likelihood ratios
using Bayes rule (assuming a prior of 0.5), and a threshold of
0.5 is applied to obtain the final speech regions.



We trained a gender-independent UBM model with
2048 Gaussians followed by a 400-dimensional i-vector
extractor [29]. For i-vector extraction, the MFCC features are
contextualized with deltas and double deltas prior to utterance-
level mean and variance normalization over the speech frames
as determined by the SAD system. A PLDA model is used
to generate the scores for the i-vectors in each test set. I-
vectors are length-normalized and reduced to a dimension of
200 using LDA before PLDA. These scores are the input
to the calibration stage. All system components are trained
using only the SRE 2008 subset of the Mixer data, excluding
speakers used in the LVD set described in IV-B. There is
no overlap between this system’s training speakers and the
calibration or test speakers.

E. Hybrid I-vector/PLDA Speaker Recognition System

For the final evaluation of the proposed approaches, we
also use a DNN-based speaker recognition system, which we
call the hybrid system. The hybrid-alignment framework [30]
provides competitive speaker recognition performance across
mixed conditions. This system leverages a DNN trained to
predict 3450 tied tri-phone states to extract 80-dimensional
bottleneck features. These phonetically rich bottleneck features
are used to train a UBM of 2048 Gaussians, which is later
used to generate frame occupancies or alignments for input
audio. The alignments are used to generate zero-order statistics
and combined with 20-dimensional MFCCs appended with
deltas and double-deltas to calculate first-order statistics. The
statistics are used in the training of an i-vector subspace
of 400 dimensions, from which i-vectors are extracted for
our PLDA experiments. Training data for the DNN included
Fisher, Switchboard and Callhome data (more details on the
DNN can be found in [31]), the UBM and i-vector extractor
for this system are trained with the non-degraded subset of the
PRISM training dataset [32], while LDA and PLDA are trained
using the full PRISM dataset including over 73,000 files from
3300 unique speakers. This system is only used to evaluate
on the FBI data, with which there is no speaker overlap. Care
was also taken to avoid overlap between the training speakers
for this system and the speakers included in the LVD set.

F. TBC Systems

For the UAC similarity metric, three models are used which
predict gender, style/channel, and language. These models
are trained using the same Mixer data used for all system
components in the MFCC i-vector/PLDA speaker recognition
system (Section IV-D). The data includes 19,298 files from
965 speakers. The input to each of the models are the same
i-vectors used for the speaker recognition system and the
output classes are given by (1) female vs male for the gender
model, (2) interview microphone speech vs telephone speech
over microphone channel vs telephone speech over telephone
channel for the style/channel model, and (3) English vs non-
English speech for the language model.

For the CPLDA similarity metric, the models use the same
i-vector extractor as the speaker recognition system to be
calibrated. We compute three models using different subsets

of the PRISM collection [32]. The PRISM collection includes
telephone and microphone data from Switchboard, Fisher and
Mixer collections, and simulated noisy and reverberated data.
Based on our work in [33], we also added transcoded data
using a large variety of codecs including AAC, AMR-NB,
CODEC2, MP3, OPUS, and SPEEX, among others, each of
them at different sampling rates for a total of 32 different
codecs.

For the development experiments, we compare two CPLDA
models, one trained with the small Mixer list used for training
the UAC models and another one trained with a subset of the
PRISM set after discarding Switchboard data and all samples
used for calibration of the development set (Section IV-A).
This latter set includes 125,077 files from 15,248 speakers. The
condition of each file, used as label when training the CPLDA
model, is determined by combining the gender, microphone
type, degradation type, language spoken, vocal effort and
collection name. The smaller training list contains 83 distinct
conditions, while the larger list contains 428 conditions.

For the evaluation experiments we use a subset of the
PRISM set after discarding all samples in the LVD calibration
set (Section IV-B) as well as any files used to train the i-vector
extractors for both speaker recognition systems. We found that
discarding the data used to train the i-vector extractors gave a
modest but consistent improvement in TBC performance. This
training list contains 72,975 files from 1400 speakers and 396
distinct conditions.

All calibration models are trained using linear logistic
regression. TBC calibration models are regularized toward the
global calibration parameters. In all cases, we use an effective
prior of 0.01.

V. DEVELOPMENT RESULTS

We initially tune the system parameters using the weighted
average Closs as well as the worst Closs over all development
sets. If a system setup is similar or even slightly better to
another setup in terms of average but significantly worse in
terms of the worst Closs, then we choose the one where
the worst Closs is lower, since we wish to design a robust
system that can handle a wide variety of conditions without
failing. After finding the system’s parameters in this way, we
show results for a few chosen configurations compared to the
baseline on all individual development sets. All results in this
section use the MFCC speaker recognition system described
in Section IV-D.

Except for some of the experiments in Section V-C, the
calibration data for all other experiments in this section is
obtained by merging the calibration data from each of the
development sets. In this way, matched calibration data is
available within the calibration set for every set. A good
similarity metric should be able to retrieve that matched data
for each trial, resulting in a Closs close to 0.

A. Similarity Metric Comparison

Figure 4 shows the average and worst-case Closs for global
calibration and four TBC systems using the UAC, IV metrics,
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Fig. 4. Comparison of similarity metrics on the development set as a function
of the MaxTgt parameter. The global calibration system is independent of
MaxTgt and, hence, is a flat line in this plot. Solid lines correspond to the
average Closs over all the development sets, while dashed lines correspond
to the worst Closs (the color of the dashed lines indicate the corresponding
system). Two dashed lines are missing for being too far from the range of the
other lines. The worst Closs for the global calibration performance is 151.6,
while the worst Closs for TBC-UAC is between 127.6 and 131.7 depending
on MaxTgt.

and the CPLDA metric for two different training sets. CPLDA-
SM refers to a model trained with the small training set also
used to train the UAC models and CPLDA refers to the model
trained with the full training set (both sets are described in
Section I'V-F). Results are shown as a function of the MaxTgt
parameter. The TBC systems do not use a similarity threshold
for these results. They select for each trial the best-matching
data based on the corresponding similarity metric that results
in MaxTgt target samples being selected.

We can see that all TBC methods outperform the global
calibration performance. The UAC metric, though, fails on
one of the test sets (FVC-int), leading to a worst-case Closs
of 127%, close to the worst-case Closs of the global calibration
on that same set, which is 151%. The other three metrics
give similar results to each other for all values of MaxTgt
in terms of average Closs, with the CPLDA metric giving
a significantly better worst-case Closs than the other two
metrics. A detailed comparison of the three metrics over all
development conditions can be found in Section V-D.

Results show that large MaxTgt values result in a significant
degradation in the worst Closs. This is due to the fact that
the calibration dataset does not contain enough matched-
condition target samples. Hence, increasing the required
number of target samples implies that a larger number of
mismatched samples are being selected, which in turn degrades
calibration performance. The optimum value of MaxTgt for
our development set is somewhere between 100 and 300. If the
calibration set was smaller and only provided a small number
of matched target samples, the optimum would probably be
smaller.

B. Effect of the Regularization Weight

Figure 5 shows a comparison of results when using no
regularization (as in Figure 4) and when using different values
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Fig. 5. Comparison of performance on the development set for the TBC-
CPLDA method using different regularization weights and no regularization
(equivalent to a regularization weight of 0). Solid lines correspond to the
average Closs over the test sets and dashed lines correspond to worst-case
Closs.

for the regularization weight on the TBC-CPLDA method.
We can see that regularization offers an improvement in
performance, specially for the worst-case Closs when MaxTgt
is relatively small. Values between 0.02 and 0.05 lead to the
best performance for the smaller values of MaxTgt. Since
we aim to design a system that will work well for smaller
calibration databases for which MaxTgt might have to be set
to a relatively small value, we will set the regularization weight
for the rest of the experiments to 0.05, which is optimal for
MaxTgt in the range of 30 to 100, specially in terms of worst-
case Closs.

C. Effect of the Similarity Threshold

For the experiments in this section, we set the MaxTgt to
100 and the regularization weight to 0.05 and compare the
effect of varying the similarity threshold SimThr both on the
Closs and the %Rej trials for the TBC-CPLDA method.

Figure 6 shows the Closs and %Rej as a function of SimThr
and the MinTgt parameters when using all available calibration
data for all test sets. We can see that neither parameter has
a large effect on the Closs, except for MinTgt=10 which
degrades the worst-case Closs by a factor of two for one
specific case of SimThr. This means that training a calibration
model with this number of target trials is not sufficiently
robust, even when using regularization. Yet, values of MinTgt
above 20 already give stable performance.

The fact that the SimThr does not significantly affect Closs
is expected since the threshold is only a required minimum.
When more than MaxTgt calibration target trials have a
similarity to the trial’s side above the SimThr value then the
SimThr parameter has no effect on the selected trials. As we
increase SimThr, the selected trials get downselected to only
those with similarity above the threshold. Yet, this does not
have a big effect on performance either since we are only
selecting from an already well-matched set of trials.

On the other hand, the SimThr and MinTgt parameters have
a big effect on the percentage of trials that can be calibrated
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and the minimum number of target samples found (MinTgt) for the TBC-
CPLDA method when using all available calibration data for all the test sets.
Solid lines correspond to average over all the test sets, while dashed lines
correspond to the largest value.

by the system. Since for these plots we are selecting samples
from the full calibration set, matched data should be available
for most test trials. Hence, in this case, we would like to see
a small percentage of rejected trials. Indeed, this is what we
see for the lower values of SimThr and MinTgt. Once those
parameters start to increase, the percentage of rejected trials
also increases to undesirable levels.

The selection procedure with a rejection option was
designed to deal with cases in which the calibration does
not contain matched data for certain trials. To test how
the algorithm is working for such cases, we create a new
calibration set for each test condition by collecting all
calibration sets that are significantly mismatched to the test
set condition. A calibration set is considered as significantly
mismatched to a certain test set when a calibration model
trained on that set results in a Closs larger than 50% on the
corresponding test set. Hence, a different calibration set is used
for each test where no well-matched data should be available
for selection. Figure 7 shows the %Rej for these experiments.
The Closs for the global calibration method is 85% (compared
to 32% when matched calibration data is available). In this
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Fig. 7. %Rej as a function of the similarity threshold (SimThr) and the
minimum number of target samples found (MinTgt) for the TBC-CPLDA
method when using mismatched calibration data for each test set. Solid lines
correspond to average %Rej over all test sets, while dashed lines correspond
to the largest %Rej. Note that, in this case, all dashed lines overlap each other
at the top of the plot (%Rej~100).

case, we do not show the Closs because too few trials are
calibrated in most of the test sets, which results in a noisy
estimation of the Closs. Our goal in this scenario should be
to reject most trials since none (or very few) of them should
have matched calibration data available. As we can see from
the figure, a large percentage of trials is indeed rejected on
average for the larger values of SimThr and MinTgt.

The optimal system configuration is one that results in
a small percentage of trials being rejected for the matched
calibration case and a large percentage rejected for the
mismatched calibration case. One such configuration would
be, for example, SimThr=5.5 and MinTgt=20, which results
in 16% of trials rejected for the matched case and 82% of
trials rejected for the mismatched case.

D. Final Comparison on Development Data

Figure 8 shows a final comparison of results over all the
individual test sets for the global calibration model and five
selected TBC configurations. The Cllr values when using
matched calibration models are indicated below the names in
the bottom plot. These are the Cllry; values used to compute
the Closs (Equation (3)) values in both plots in that figure.

The top plot shows the results when the full calibration set
is used for all test sets. We can see that (with the exception
of SWPH2, for which the global calibration model is better
than the matched model) performance on all test sets greatly
improves with the proposed methods. Further, we can see that
the two newly proposed similarity metrics (IV and CPLDA)
significantly outperform the original UAC metric. Comparing
the IV and the CPLDA metrics, we can see, as was also
observed in Figure 4, that the IV metric has a significantly
worse worst case compared to CPLDA with a Closs for
SWCELLP1 of 19% compared to 4% for CPLDA. On average,
the TBC method using either of the two new metrics reduces
the Closs from 32% using the global calibration model trained
on all data to 2% or less, making the calibrated performance
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almost equal to that of the matched calibration model. In this
case, where matched calibration data is available, introducing
the rejection option (TBC-IV-R and TBC-CPLDA-R methods)
does make a significant difference in the results.

The bottom plot in Figure 8 shows the same plot as in
the top of the figure but changes the calibration set for each
test set by discarding all matched calibration sets as in Figure
7. In this case, we can see that the TBC method without a
rejection option fails to improve performance over the global
calibration method in terms of weighted average Closs. This
is because we are forcing the system to calibrate all trials
even though no matched data is available to train the models.
On the other hand, the two TBC methods with a rejection
option successfully reject most trials in most conditions (the
percentage of rejected trials can be found in bold at the top
of each bar), which is the expected behavior given that no
matched calibration data should be available for most trials in
this scenario. Further, for the sets for which most trials are not
rejected (FVC-int), the Closs is much lower on average than
the Closs for global calibration. Yet, we consider this case to
be a failure of the similarity metric. We would want any set
of trials with a Closs as high as that obtained on FVC-int to
be rejected. The fact that our CPLDA metric is not able to
reject 87% of the trials resulting in a Closs over 100% (for
the TBC-CPLDA-R configuration) means that the metric still
requires some improvement.

Note that the Closs obtained with the TBC-CPLDA methods
in the bottom plot of Figure 8 should be disregarded, since
they are computed using very few trials (except for the FVC-
int set).

The similarity thresholds for the TBC-IV and TBC-CPLDA

methods with a reject option are set to 0.29 and 5.5,
respectively. These values were chosen to lead to a similar
percentage of rejected trials when matched calibration is
available (18% vs. 16%). We can see that for these thresholds,
the TBC-CPLDA method can reject a larger percent of trials
when no matched calibration data is available (82% vs. 64%).
This indicates that the CPLDA metric is better for rejecting
trials with no matched calibration data.

VI. EVALUATION RESULTS

In this section, we show results on the FBI dataset for the
TBC-CPLDA methods with and without a rejection option.
Note that for this dataset the Closs is not strictly the calibration
loss. The conditions are not perfectly homogeneous to ensure
that the matched calibration performance is indeed the best we
can do for each condition. Yet, we can still use this “matched”
calibration performance as a target performance in calculating
the Closs, keeping in mind that we might be able to improve
it, getting negative values of Closs.

The FBI data is quite variable in terms of duration. For
this reason we use the procedure described in Section III-D
where each calibration sample is first chunked to obtain several
shorter versions of each calibration sample. During testing,
the calibration samples with a duration that matches those of
the trial being calibrated are selected for global calibration
or as candidates for further selection in case of TBC. The
durations of two samples are considered to match if they fall
within the same bin, with bins determined by the following
thresholds: 7.5, 15.0, 30.0 and 50.0 seconds. In some cases,
for the matched calibration models, some bins do not have
enough calibration trials to result in robust models. In these



cases, the bin with too few samples is merged with the bin to
its left until enough samples are available for calibration.

The top plot in Figure 9 shows the results on FBI conditions
when using FBI data for calibration. Results show that our
proposed methods succeed in greatly reducing the Closs in
the two cases where the global calibration model has a large
Closs, conditions 10 and 2, reducing the Closs to close to 0 for
condition 10 and below 50% (a 16-fold reduction in Closs) for
condition 2. On average, the Closs goes from 92% for global
calibration to less than 10% for the two TBC methods. For
some conditions, the Closs degrades with respect to that of
the global calibration model (conditions 11, 14 and 5). The
degradation is small compared to the gain obtained on other
conditions. Yet, this again indicates that the similarity metric
can still be improved.

The bottom plot in Figure 9 shows the results on FBI
conditions when using LVD data for calibration. In this case,
global calibration is significantly worse for all conditions,
except condition 10. The benefit of using TBC is very clear
in this case, significantly reducing Closs in most cases. The
only case where the TBC methods do not behave as expected is
condition 2, where the Closs is reduced, though still remaining
extremely large and only rejecting 17% of the trials. Again,
this points to a weakness in the similarity metric that is finding
calibration samples that are not a good representation of the
test samples, resulting in bad calibration performance.

Interestingly, condition 2 and the FVC-int development
condition, which are the two conditions where TBC with
relatively mismatched data is failing to reduce Closs to usable
levels while also failing to reject a large percent of the trials,
share something in common: they have the lowest ClIr in
their corresponding group. The corresponding EER for those
conditions is 2.4% for FVC-int and 0.7% for FBI’s condition
2, when using the MFCC i-vector system. We believe that the
fact that our CPLDA metric does not behave as expected on
these conditions may be due to a shortcoming in the training
data for the CPLDA model, which is dominated by degraded
data, perhaps neglecting to learn from the cleaner conditions
from close-talking microphones. This is something we plan to
explore in the near future.

Finally, we repeat the above experiments using a DNN-
based system, described in Section IV-E. Figure 10 shows
these results. The DNN-based system is significantly better
than the one used for all other experiments in this paper, as
can be seen by comparing the Cllr numbers located under
the condition names in Figures 9 and 10. Yet, we can see
that TBC gives similar gains on both systems (with the only
exception of condition 9 where TBC is not able to reduce the
Closs significantly) indicating that the approach and chosen
configuration generalize reasonably well to this new system.

Note that the weighted average results in the bottom plots
of Figures 9 and 10 are mostly determined by the results for
condition 2 divided by the number of conditions (since all
other conditions have much smaller values) and, hence, should
not be taken as an indication of the systems’ performance
across conditions.

For completeness, Figure 11 shows the absolute values of
ClIr and minimum Cllr (minCllr) corresponding to the bottom

plot in Figure 10. We do not include the system with a
rejection option in this figure because those results would not
be comparable to the ones from other systems, given that they
are computed on a subset of the trials for each condition. We
show the global and the TBC-CPLDA results, as well as the
matched calibration results, which are used to compute the
Closs in Figure 10. The figure shows that the minCllr is not
significantly affected by the calibration approach. On the other
hand, the CllIr is greatly improved when using TBC compared
to global calibration, reducing the gap between global and
matched calibration by approximately 50%. As in the case
of minCllr, the EER is basically unaffected by the calibration
approach. For this reason, and to avoid cluttering the figure,
we only show the EER for the matched calibration approach
(under the x-axis labels).

The TBC results in Figures 10 and 11 are obtained
using a CPLDA-based similarity metric that uses i-vectors
obtained with the hybrid system. Nevertheless, we note that
using a CPLDA model based on i-vectors obtained with
the MFCC system leads to very similar results (results not
shown), indicating that matching the i-vectors used for metric
computation to those used in the speaker recognition system
does not appear to be essential. This may also mean that the
CPLDA metric could be used even with speaker recognition
systems not based on i-vectors, though this is a hypothesis that
will have to be tested empirically in the future.

VII. PRACTICAL CONSIDERATIONS

In this section, we provide general information on how to
construct a reasonable CPLDA training list and calibration
set for TBC, keeping in mind that the there is still a lot to
be discovered in terms of how different parts of the TBC
mechanism interact and the following information should be
taken as suggestions rather than a hardened and definite recipe.

In general, there are two different pools of data in the
system; data for training the system models (UBM, i-vector
extractor, PLDA, CPLDA, etc.) and data for calibration. It
is recommended that no overlap exist between these two
sets. It was heuristically found that including partial overlap
between these datasets resulted in a degradation in calibration
performance, both for global calibration and for TBC. Hence,
the calibration speakers should be, ideally, completely unseen
during training of any of the other system components.

The conditions of the data used for calibration should,
ideally, cover the expected range of conditions in normal
use of the system. If possible, one should aim to include
a few dozen speakers for each condition, as well as several
conditions per speaker to allow for cross-condition calibration
trials. If a relatively large amount of matched data is available,
one might wish to use some of that data for system training,
holding out only part of it for calibration. This might improve
the discrimination power of the system on the test data
without significantly hurting calibration performance. In our
experiments, to simplify the analysis, we keep the system
training data fixed and only change the calibration data. We
expect that the effect of adding a relatively small number of
files (in the order of hundreds or few thousands) would only
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Fig. 10. Same as Figure 9 but using the hybrid speaker recognition system. Conditions are ordered in the same way as in Figure 9.

have a negligible effect given the large amount of data already
used to train the system. Further, it is not our intention to
adapt fully to a certain test condition (e.g., by fully retraining
the PLDA model on data matched to the test data in our
experiments), since we aim to design a general purpose system
that performs well across a wide range of conditions.

The data for training CPLDA is also an important factor in
the performance of the TBC approach. We have found that
this data should not overlap with the calibration data or, to a

lesser extent, with the data used to train the i-vector extractor.
Ideally, the data used to train this model should include a
large variety of conditions and speakers to allow the model to
learn how these conditions affect the i-vectors independently
of the speaker present in the signal. Nevertheless, if test data
is restricted to a certain known set of conditions, then it might
be preferable to restrict the CPLDA training data to only these
known conditions.
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VIII. CONCLUSION

We presented a method for calibrating speaker recognition
scores when the test conditions are unknown and potentially
heterogeneous. The approach consists of training a separate
calibration model for each test trial using a subset of the
available training data that is similar to the trial’s conditions.
We compare three ways of measuring this similarity, showing
that a metric based on a condition PLDA model significantly
outperforms the other two metrics based on cosine similarity
between i-vectors and on Gaussian condition classifiers.
Further, we propose using regularization to train each
individual calibration model. This enables us to select fewer
samples for training the models, which, in turn, allows for a
better match between the selected data and the trial, which is
particularly useful when limited matched data is available for
each condition.

Our goal is to design a calibration approach that guarantees
that no trial is ever calibrated using mismatched calibration
data, which would result in a likelihood ratio that does not
reflect the score distributions for the conditions in the trial.
To prevent such cases, we introduce an option to reject a trial
when the system does not find enough similar data to train a
calibration model for that trial.

We measure calibration performance using calibration loss
(Closs) defined as the relative difference between the Cllr for
a matched calibration model and the method under evaluation.
We compare the Closs of our proposed methods with the one
obtained using a single calibration model trained with all the
available calibration data.

When matched data for all test trials is available for
selection within the calibration set, the weighted average Closs
over conditions (with weights given by the fraction of trials
being calibrated) is reduced from 32% to less than 2% in
our development set composed of several conditions including
noise, reverberation and transcoded data. For the held-out FBI
data, which includes same- and cross-channel and same- and
cross-language trials from several different collections, the
average weighted Closs is reduced from 92% to 11% or less
when held-out data pooled from all FBI conditions is used for
calibration.

Finally, when the calibration set is mismatched to the test
data, our proposed method succeeds in rejecting over 82%
of the development trials. For the FBI data, we use a partially

mismatched calibration set composed of a large variety of data
from different collections excluding the ones used in the FBI
set. When this set is used for calibration, we reject 29% of
the trials, while significantly reducing Closs on the trials that
are calibrated.

The results above were obtained using a standard MFCC-
based i-vector/PLDA speaker recognition system. Similar
results were obtained without parameter retuning using a
DNN-based system that is significantly better than the standard
system in terms of discrimination performance.

For most development and evaluation conditions in
our datasets the proposed algorithms behave as desired,
significantly reducing Closs when matched data is available
or rejecting most trials when that is not the case. Yet, for a
small subset of the conditions the algorithms fail, calibrating
a significant fraction of the trials with Closs values over 50%.
In particular, this happens when data conditions are extremely
clean and matched between test and enrollment sides. This
indicates that the similarity metric is not yet considering all
possible sources of mismatch that cause mis-calibration. In
future work, we will focus on different ways of defining the
training conditions for the condition PLDA model, which we
believe might be the key for getting a more robust similarity
metric.

The proposed methods are a first attempt at designing
a calibration system that guarantees that no trial is ever
calibrated poorly by training an optimal calibration model
for each trial when possible, and rejecting a trial when not
possible. The ultimate goal of this work is to prevent speaker
recognition systems from outputting poorly calibrated scores.
We believe we have made significant progress toward this
goal, though more work is needed to be able to fully rely on
these systems for important applications like forensic speaker
recognition.
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