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Abstract 

Particle induced X-ray emission (PIXE), X-ray diffraction (XRD), electron microprobe 

analysis (EDS), and scanning electron microscopy (SEM) analytical techniques have been 

used to characterize surface paints in pre- and post fired Aguada Portezuelo decorated 

pottery. Surface paintings in black, white, red, brown, burgundy, and ocher colours were 

analysed. Major, minor, and trace elements were detected by PIXE, whereas XRD and SEM-

EDS gave information on the main mineral phases and the characteristic morphology for each 

analysed pigment. Results obtained indicate that the main colour groups can be easily 

discriminated by PIXE, and they are characterized by only one pigment for each colour, 

hematite (red) and Mn mineral oxides (black),  respectively; whereas white pigments are 

characterized by calcite, ghelenite, and gypsum.  

 

Keywords: PIXE, XRD, SEM-EDS, Aguada Portezuelo, Middle Period, Northwestern 
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INTRODUCTION 

 

Archaeological materials such as ceramics are examples of inhomogeneous systems at the 

micrometric scale. Their surface characteristics depend on their conservation state, which is 

related with the weathering suffered by the pieces. In general, the information related with 

their composition and manufacturing processes are not completely known. In this sense, 

chemical and crystallographic characterization techniques may provide valuable information. 

Nevertheless, the correct characterization of these materials is a challenge since standard 

destructive characterization procedures cannot be usually applied, due to the fact that keeping 

the material unaltered is a priority in cultural heritage samples.     

  

From its beginning in the 70's, ion beam analysis (IBA) techniques have been successfully 

applied to study historical and cultural objects, and since the 90's they have been 

systematically used for material analysis (e.g. Ruvalcaba-Sil and Demortier 1997, Neelmeijer 

et al. 2000, Olsson et al. 2001, Ruvalcaba-Sil 2005, Hall 2006, Rizzuto et al. 2007, Rivero-

Torres et al. 2008, Abd El Aal et al. 2009, Grassi et al. 2009, Popeou et al. 2010, Lima et al. 

2011, Gajić-Kvaščev et al. 2012, Rizzuto et al. 2014, Šmit et al. 2013, Calligaro et al. 2015, 

Pappalardo et al. 2015, 2016, Santos et al. 2015, Dasari et al. 2017). Nowadays, the advances 

in the characterization methodologies are centered in their application to areas with specific 

limitations, such as archaeometry. An excellent review of PIXE applications in 

archaeological ceramics is given by Rizzuto and Tabacniks (2017). Although the chemical 

state and crystallographic structure of compounds cannot be studied by IBA techniques, they 

allow the determination of elemental compositions with detection limits as low as a few ppm. 
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In addition, the thickness and composition of different layers forming the piece, as well as 

depth concentration profiles can be obtained by these techniques (Ruvalcaba-Sil et al. 1999). 

This information, along with mineralogical data provided by x-ray diffraction, allow 

archaeologists to address archaeometric questions regarding the provenance of the pieces, 

raw materials used, and the technology used in their production (De La Fuente et al. 2005, 

Bertolino et al. 2009, Galván Josa et al. 2010, Roumié et al. 2010, De La Fuente and Pérez 

Martínez 2008, 2018). Several limitations have to be taken into account for the proper 

interpretation of results, since many archaeological objects, particularly ceramic pieces, have 

been buried for over 1000 years, suffered weathering and partial removal of the paints, so the 

paint layer thickness is not homogeneous and the surfaces are rough (De La Fuente et al. 

2005, Bertolino et al. 2009, Galván Josa et al. 2009, 2010).  

 

This paper presents the analytical results obtained by combining PIXE, XRD and SEM-EDS 

techniques in the characterization of the archaeological paintings, slips and pastes of Aguada 

Portezuelo pottery belonging to Middle period of Catamarca valley (ca. 600-900 A.D.), 

Province of Catamarca, Northwestern Argentina. PIXE concentrations on major, minor, and 

trace elements for different color groups are further discussed. Chemical and mineralogical 

information is integrated to get a broad picture on the technological processes involved in the 

decoration of these vessels. 

 

AGUADA PORTEZUELO CERAMIC STYLE 

The Aguada Culture is one of the most spectacular of northwestern Argentina because of its 

iconographic complexity (also called the “draconian style”) and high technical skill apparent 

in the pottery. According to different studies, this culture emerged as a consequence of a 
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social and ideological change that occurred in the fourth to twelfth centuries of the Christian 

era in the Ambato Valley, and progressively spread out regionally to other geographical areas 

like Hualfín and Catamarca valleys, and northern La Rioja (González 1998, Baldini et al. 

2002, Laguens 2005, Pantorrila and Regueiro 2006, Peréz Gollán 1991).  

The Aguada Portezuelo ceramic style (ca. 600-900 A.D.), typical of the Catamarca valley, 

presents a great variation and complexity in the manufacturing techniques employed by the 

ancient potters, particularly the surface treatments and other decoration applied to the ceramic 

vessels (Kusch 1996-1997, González 1998, De La Fuente et al. 2005, Nazar and De La 

Fuente 2016, De La Fuente and Pérez Martínez 2008, 2018). Ceramic vessels have a complex 

technical elaboration process, involving at least two different firing steps during which 

several pigments were used by ancient potters as chromofores to obtain different coloured 

pre- and postfiring paintings (Nazar and De La Fuente 2016). One of the highlight 

characteristics of these ceramics is their marked polychromy, the motifs are complex use of 

negative and positive space, and the colors used range from purple red, reddish, black and 

yellow, this latter color unique in the archaeological ceramics from Northwestern Argentine 

(González 1998, Nazar and De La Fuente 2016: 167; Fig. 12, De La Fuente and Pérez 

Martínez 2008, 2018: 3; Fig. 1a). Sometimes, the colors have not been very well fixed by the 

firing and they appear as faint and dull, presenting pre- and postfiring paintings (Nazar and 

De La Fuente 2016: 166-172, De La Fuente and Pérez Martínez 2018: 6). Another of the 

technical decorative aspects rarely studied for this ceramic type is the use of resistant 

negative paintings (González 1998). Additionally, a manufacture attribute of particular 

importance is the surface treatment. The internal surface of the vessels is sometimes of an 

intense polished black color and in others it is burnished, perhaps involving a technical 

process of smoking the internal surface of the vessels, also so-called “graffited” (Nazar and 
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De La Fuente 2016: 168-171, De La Fuente and Pérez Martínez 2008, 2018:13). Extensive 

description and classication of Aguada Portezuelo ceramic style is given in Nazar and De La 

Fuente (2016) and De La Fuente and Pérez Martínez (2008, 2018).  

Pre- and post-firing paintings of this pottery have been extensively analysed by Raman 

microspectroscopy, and in less intensively by XRD and SEM-EDS. Results of this previous 

research indicate that red and ocher colors are characterized exclusively by hematite pigment 

(α-Fe2O3), black colour presents a more variable composition, with Mn oxide minerals 

(pirolusite (Mn+4O2) and psilomelane (BaMn+2+Mn8O16 (OH)4) ) predominantly responsible 

for this colour, and magnetite (Fe3O4)(sometimes titane-magnetite) are also present. White 

colour (a prefiring slip) is the most variable compound, resulting from calcite (CO3Ca), 

gypsum (CaSO4.2H2O), and gehlenite (Ca2 [Al2 (SiO2)]) mineral phases, although titanium 

oxide (TiO2) and hydroxyapatite (Ca10 [PO4]6 [OH]2) have also been identified (Cremonte et 

al. 2003, De La Fuente et al. 2005, Bertolino et al. 2009, Galván Josa et al. 2009, 2010, De La 

Fuente and Pérez Martínez 2008, 2018). 

 

 

 

SAMPLING 

 

Pottery sherd samples were chosen from a collection for being representative or unique in 

their technological classes. Different samples were considered, all corresponding to the 

Aguada Portezuelo ceramic style, as described above. They were collected at four different 

sites: Tiro Federal Sur, Portezuelo, La Viñita and R. Recalde, all within the Catamarca valley 

(Fig. 1a).  Sample selection for further analyses followed pigment conservation criteria. 
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A set of 19 pottery sherds were studied (Table 1 and 2). Figure 1b displays some pictures of 

the samples analyzed, in which the colors characterized were white, black, reddish, dark 

brown, light brown, purple red or burgundy and ocher. In order to ensure the PIXE results 

correspond only to the paint thickness, some of these samples were chosen for the 

characterization of the paste: M49, M7, M15, MX3 (fine texture) and M9 (coarse texture). 

All these pieces bear approximate dimensions 1.5cm × 1cm, excepting sample M16 (4cm × 

4cm). Table 1 gives information about the main characteristics of the sherds. 

 

 

ANALYTICAL TECHNIQUES 

 

Chemical and mineralogical characterizations were carried out using PIXE, SEM-EDS and 

XRD. The experimental conditions are detailed below, as well as the methodology followed 

for sample preparation and data processing in each case. 

 

PIXE 

Pottery sherds were analyzed using a 2 MeV proton beam in two different tandem 

accelerators:  a NEC 1.7 MV accelerator from Centro Atómico Bariloche (CAB, Argentina) 

and a NEC 3 MV accelerator from the Universidad Federal de Rio Grande do Sul (UFRGS, 

Brazil). The first one has a high-counting rate SDD x-ray detector with an ultrathin polymer 

window, allowing the detection of energies ranging from 0.2 to 20 keV. The second one has a 

Si (Li) conventional detector with a Be window, bearing a better efficiency for high energy 

lines, i.e., from 1 to 26 keV. In order to minimize radiation damage effects, low beam 
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currents were used, around 0.5 nA. In all cases, the beam spot area at the sample surface was 

1 to 9 mm2. 

PIXE spectra were processed with the GUPIX software (GUPIXWIN v.2.2.4 Copyright (C) 

2005. University of Guelph). For the spectra acquired at CAB, the analyses were performed 

as elemental quantifications, including O and C. For the spectra measured at UFRGS, oxygen 

characterization was carried out by stoichiometric association to the visible elements, through 

the most stable oxides; in these cases, it was not possible to quantify the carbon content. A 

statistical package developed at MURR was used for the interpretation of the data. Statistical 

analysis was carried out on base-10 logarithms of the concentrations of all 25 chemical 

elements. The methods used to interpret compositional data obtained from the analysis of 

archaeological materials are discussed in detail elsewhere (e.g. Bishop and Neff 1989; 

Glascock 1992; Neff 2000, 2002) and will not be described in detail here. Cluster and 

principal component analyses were performed for the PIXE data set.  Groups were initially 

defined on the basis of visual separation and further refined using group membership 

probabilities based on Mahalanobis distance projections (Bishop and Neff 1989). 

 

XRD 

X-ray diffraction was used to characterize paints in pieces for which a reasonable amount of 

sample could be scraped from the surface. XRD patterns were recorded with a Philips X'Pert 

PRO PW3040/60 diffractometer, with Cu Kα X-ray radiation, Si monochromator, at 40 kV 

and 30 mA, step scan at 0.3°/min and step size of 0.02° 2θ. In all cases, only a small amount 

(a few milligrams) of material was available, so samples were mounted on a Si holder of low 

background. 
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SEM-EDS 

Scanning electron microscopy and microanalysis was carried out in a JEOL JXA 8230 

equipment at Laboratorio de Microscopía de Rayos X (LAMARX), at National University of 

Córdoba, Argentina. Measurements were done with a electron 15 keV electron beam, and a 

current of 9 nA. Samples were covered with Au in order to avoid charge accumulation effect.      

 

RESULTS AND DISCUSSION  

 

PIXE  

Figure 2 displays an example of the x-ray emission spectra obtained with each of the 

experimental setups described above. As can be seen, these examples show the advantages 

and disadvantages of each detection system. The detector attached to the NEC 1.7 MV 

(ultrathin polymer window) allows to detect light elements as C and O, although its 

efficiency rapidly decays for energies greater than 10 keV, which hinders the appropriate 

detection of elements such as Rb and Sr –although L emission could be registered, the 

detector resolution inhibits the adequate deconvolution from K-lines emitted by other major 

components (Si). On the other hand, the detector attached to the NEC 3 MV (beryllium 

window) is not well suited for the detection of elements with atomic number below 10, but it 

exhibits a high efficiency for detecting characteristic energies above 10 keV. 

 

Table 2 displays the quantification results after processing the spectra. In the reddish paints, 

different tones are present, which might be correlated with hematite (αFe2O3) content 
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(Bertolino et al. 2009, Galvan  Josa et al. 2010). This is observed in the Fe concentration with 

an average of 18,5% in samples M38, MX and M7 (range of 17,3-20,2%), whereas the more 

intense burgundy samples M2, M15 and M18 have a higher Fe content of around 23,8% in 

average, and a range of 13,42-30,44%. Brown paint samples such as M28 also have a high Fe 

content (31,88%), but, unlike the reddish paints, a higher Mn concentration is present 

(8,33%). Light brown regions (M31) were painted over a white base, and present lower 

concentrations for Fe (14,51%) and Mn (3,04%) than sample M28. A careful examination of 

the colored region of this sample showed a deteriorated and non-homogeneous spoiled 

surface; thus, the beam could have also reached the substrate of the colored region (paste), 

which is reflected in the higher Al (8,37%) and Si (15,47%) contents. Regarding the ocher 

paints, the composition obtained was very dissimilar, with variable Fe content ranging from 

3,62% (M24) to 8,21% (M16). Also, it is observed great differences in transition metals like 

Cr, Cu, and Zn. The composition of this paint is similar to that of the paste (mainly high 

concentration of Si associated to glass and quartz), though richer in Ca. 

Concerning the trace elements, it is important to observe that Ba was detected in four out of 

five black postfiring paintings analyzed. Additionally, it seems that the amount of barium is 

positively correlated with the Mn concentration. This suggests that the black colour precursor 

might be psilomelane mineral group (BaMn2+(Mn4+)8O16(OH)4), a hydrous manganese oxide 

with variable amounts of barium and potassium. Psilomelane group includes hollandite and 

romanechite minerals. Psilomelane sometimes is present with vanadinite intergrowth crystals, 

which perhaps could explain the V/Ba positive correlation observed in the PIXE results. 

Vanadinite also occurs associated with barite, a barium sulfate (BaSO4), although the lack of 

Pb in these samples makes difficult to explain this correlation. In previous analytical research 

done on Aguada Portezuelo paints it was determined that the main identified mineral for this 
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colour was pyrolusite (MnO2), since Ba lines were not detected by EDS (De La Fuente et al. 

2005).  

 

Results obtained by PCA for major, minor, and trace elements indicate that black,  white, and 

reddish-burgundy paintings might be divided in three groups, according to the Fe/Mn ratio, 

Ca content, and the different Fe concentrations, respectively (Fig. 3a, and 3b). Figure 3a 

displays the PC1 and PC2 plot with the elements projections and the three groups defined by 

Mahlanobis distance; whereas Fig. 3b shows the loading for the elements influencing each of 

the component. The first 4 PC´s explain 73,4% of the variance. Table 3 gives the chemical 

information for each defined group. 

Group 1, the black paintings, presents variable concentrations of Fe and Mn, and in some 

cases they positively correlate (Fig. 3a). They can be divided in three subgroups according to 

the Fe/Mn ratio: subgroup A, Fe/Mn: 0,515 (M18, M24) with 19,12% Mn and 9.09% Fe 

average, subgroup B, Fe/Mn: 0,47 (M50, M28) with 10,52% Mn and 20,85% Fe average,  

and subgroup C, Fe/Mn: 0,32 (M1) with 27,69% Mn and 8,96% Fe (Fig. 3c, Table 2). One 

sample, M15 is definitely an outlier, with a Fe/Mn: 1,78 (16,35% Mn and 29,14% Fe). This 

variation in the ratio of Fe/Mn is also expressed in Raman analysis with the alternative 

presence of Mn oxide minerals and hematite compounds (De La Fuente and Pérez Martínez 

2008, 2018).  

Group 2 shows the white paintings. Here, three subgroups were found: subgroup A (M57, 

M28) with an average of 25,22% Ca; subgroup B (M47, M45, M24, M16) with an average of 

27,22% Ca, and subgroup C (M52) with a Ca concentration of 15,78% (Fig. 3c).  Sample 

M13 is an outlier with 14,12% Ca concentration. Some white paintings (subgroup B) exhibit 

different Pb (lead) in trace concentrations (ppt). In translucent media, like quartz, Pb might be 
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the precursor of white colour (Bertolino et al. 2009, Galvan Josa et al. 2010). Also, the 

presence of Pb in low concentrations in prefiring paintings sometimes is indicative of the use 

as a fluxing agent to achieve an initial glazed-type ceramics (Van Keuren et al. 2013, 

Ferguson et al. 2017).    Additionally, it is interesting to observe that one sample, M52, has an 

unusual amount of P (6852 ppm), which could be indicative of hydroxyapatite presence 

(Table 2) (see Cremonte et al. 2003).  

On the other hand, PCA also clearly differentiates another group (Group 3) involving mostly 

reddish and burgundy colour samples (Fig. 3a). As contrarily thought, samples are 

discriminated in this group more as a function of the relative concentrations of transition 

metals (Cr, Ni, Cu, Zn) than following the Fe concentrations: subgroup A, samples M7 and 

M15 with an average of 23,84% Fe; subgroup B, samples M38 and M18 with an average of 

23,93% Fe; and subgroup C, sample M2 with 13,42% Fe. A subgroug D, after projected 

samples for membership probabilities, is formed by samples MX, MX3 (paste), M7 (paste), 

and M9 (paste) with 7,64% Fe. One ocher sample, M16, is also plotted in the margin of this 

group (Fig. 3c).  Burgundy samples also present an unusual amount of Cu, Ni and Zn (ppm) 

in all the samples analysed, whereas ocher samples show higher Ca concentrations (Table 2). 

Therefore, it can be observed that different tonalities do not match with exact different 

chemical compositions, mainly of Fe concentration. The presence of Fe as different iron 

oxides (like hematite) gives the red colour for these paintings (mostly postfiring), although 

the chemical variations observed are due mainly to the presence of different concentrations of 

trace elements like Cu, Zn, Ba, and Zr. Different tonalities in postfiring paintings are due to 

different recipes used by ancient potters involving different mixed minerals as colorants. The 

subgroups observed for the red iron based paintings are related with the origin of raw 

materials used by potters.  
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A further exploration using only minor and trace elements was carried out by cluster analysis 

(Fig. 3d). Results show higher variations between samples of the same colour (e.g. white and 

black), although for burgundy/reddish/ocher/brown samples the plot shows a good 

discrimination based on the Euclidean distances. Trace elements responsible for this 

discrimination are Cr, Cu, Zn, and Zr. These preliminary results could indicate that several 

geochemically different sources of raw materials were introduced to produce these red iron 

based pigments, mainly reddish, burgundy, brown, and ocher. 

 

 

XRD  

XRD was applied to white prefiring slips, and ocher and reddish post-firing paints (Fig. 4a). 

Also, some paste analyses were carried out.  In all cases, the extracted materials also 

contained some grains from the underlying pastes, which is reflected in the bulk mineralogy 

by presence of quartz, feldspars, micas, amphibole, and hematite. As shown in Fig. 4a, white 

paints are characterized by Ca-bearing minerals like ghelenite, calcite, and gypsum (cf. De La 

Fuente and Pérez Martínez 2008, 2018). In some cases, both the low intensity of reflections 

of micas and feldspars, and the presence of new higher temperature mineral phases (hematite 

and ghelenite) were observed. Ghelenite is an aluminosilicate that forms from mixtures of 

calcite with clay minerals (paste) at temperatures between 850 ºC - 900 ºC and 1050ºC, and 

beyond that temperature it forms anorthite. This indicates that the firing temperature may 

have reached or exceeded 900 ºC – 1000 ºC, as previously reported by Bertolino et al. (2009). 

Ghelenite and CaO in ceramic pastes could be an indication of the presence of calcite in the 

original raw material, and it could act as a flux to decrease the required firing temperature, 

also contributing to the vitrification and the formation of vesicules to liberate CO2. As 
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pointed out by Bertolino et al. (2009: 97, Fig. 4) if dissociation of calcite was not completed 

(~ 750 ºC – 850ºC), the sequence of gehelenite, calcite, and CaO may coexist in the range of 

700 ºC – 900 ºC.  The absence of gehelenite might be an indication of lower firing 

temperatures around 900 ºC (Bertolino et al. 2009:98). Gypsum has been reported at least by 

three researchers as used as a decorative white pigment (Palamarczuk et al. 2007, Centeno et 

al. 2012, Freire et al. 2018). The presence of gypsum as prefiring white paint in one sample 

(M16) is difficult to explain (Fig. 1 and Fig. 4a). This sample has the highest Ca (42.3 wt%) 

and S (4309 ppm) concentrations among the white samples (Table 2). Gypsum is a calcium 

sulfate dehydrate mineral (CaSO4.2H2O) and, it is both, available in nature from chemical 

sedimentary rock formations, or generally culturally produced through a calcining technology 

using limestone rocks (aljez) (Harrell 2014, 2017). The impure form of gypsum is called 

gypsite, and it is present in some natural soil formations. Bassanite (CaSO4.1/2H2O, calcium 

sulfate hemihydrate) and anhydrite (CaSO4, anhydrous calcium sulfate) are other forms of 

calcium sulfates, and they are subsequently obtained by dehydration of original gypsum 

through heating (Harrell 2017:537). The presence of gypsum as a slip in the vessels (perhaps 

mixed with clay) implies that its application on the ceramic surface by potters was in a 

postfiring context, since its physical and chemical properties change through subsequent 

higher temperatures giving different forms of anhydrite –or “dead gypsum”-(Villanueva 

Dominguéz and García Santos 2001). It is not clear yet if the gypsum was obtained by 

heating the aljez or from gypsite deposits, although the evidence of use of gypsum in rock art 

in the area, and the discovering of a natural gypsum source points out to the use of this source 

in prehispanic times (De La Fuente and Nazar 2016). Finally, ocher and reddish postfiring 

paintings analysed in this work are characterized by hematite (Fig. 4a) (De La Fuente and 

Pérez Martínez 2008, 2018, Bertolino et al. 2009). 
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SEM –EDS  

The paste analysis by SEM allows the observation and identification of materials almost 

completely melted, characterized by vitreous textures with an important bubble and tubule 

abundance created by escaping gases during the paste melting process (Fig. 4b). Within 

pores, very fine grained materials can be distinguished, composed of Ca, Fe or Si (Fig. 4c). 

These can be interpreted as new phases produced by the reaction of mineral components at 

high temperatures (Bertolino et al. 2009, Galvan Josa et al. 2010). 

Irregular and very fine particle aggregates, eventually less than 200nm in the vesicule walls 

or forming part of the matrix, have been observed (Fig. 4c). They have a highly variable 

composition, but always bearing high O concentration (probably oxides), contrasting with the 

paste compositions. EDS analyses on white, black and ocher paintings show very similar 

results to those obtained by PIXE (Fig. 4d; Table 2). In all the samples, white paint has high 

Ca content, the black one, Fe and Mn plus minor Ca (Fig. 4d). Ocher paint shows medium to 

high Fe concentrations, and also Ca from the substratum. All the paints do have an alumino-

silicate composition (Al + Si) evidencing the existence of a clayish vehicle to transport the 

colourant pigment (Fig. 4d) in accordance with previous SEM-EDS research done on this 

pottery (De La Fuente et al. 2005, also see De La Fuente and Pérez Martínez 2008: 181, Fig. 

10). It is unknown if a flux or binder has been added to the Al + Si + pigment system, before 

(for the white slip) and/or after (for reddish, burgundy, ocher, and black paintings) the firing, 

although the examination of hundreds of sherds of Aguada Portezuelo pottery shows for the 

postfiring colours an unusual amount of pigment applied on the surface of the vessels 
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suggesting the possibility of some kind of binder applied to fix the pigment into the porous 

ceramic surface.   

 

 

CONCLUSIONS 

 

Multielemental PIXE chemical results, in combination with a robust PCA statistical treatment 

of data allowed the examination of the compositional ranges of various pre- and postfiring 

paintings on Aguada Portezuelo pottery. Nowadays, the main advantage of PIXE is its almost 

non destructive nature, and the possibility to obtain concentrations of ppm and even ppt for 

certain specific elements. In the present study, different painting colour groups (black, white, 

and burgundy/reddish) could be rapidly discriminated by PIXE. Particularly in black 

paintings, the presence of different Fe/Mn ratios with the presence of barium suggests the use 

of psilomelane group mineral as an inorganic mineral precursor for the postfiring black 

paintings. Manganese oxide based minerals are often chemically complex. Psilomelane group 

involves at least two oxides, hollandite and romanchite, and it has an amorphous nature 

containing admixed impurities such as iron hydroxides. Thus, it is easily processed by potters 

as a pigment. White prefiring slips are chemically characterized by calcium expressed in 

different concentrations, although through XRD different Ca-bearing metastable mineral 

phases like calcite, gehlenite, and gypsum were identified. Interestingly, one white sample 

determined by PIXE showed an unusual P concentration, suggesting the possibility of 

hydroxyapatite presence in the prefiring slip.  Burgundy, reddish, and ocher postfiring 

paintings are clearly characterized by iron (Fe), where α hematite was the main pigment used 

by ancient potters. Trace element analysis did not produce direct correlations between paint 
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color and chemical compositions, probably mainly due to the different recipes applied by 

potters. However, trace elements discriminated fairly well these tonalities suggesting the use 

of different geochemical sources of raw materials for the pigments. Definitely, PIXE studies 

have much to do in the future in the identification of different iron oxides pigment sources 

used by ancient potters, especially by using minor and trace elements (see David et al. 1991, 

Erlandson et al. 1999, Lebon et al. 2018). Comparatively with vibrational techniques like 

Raman microspectroscopy, PIXE allows to explore the compositional chemical 

concentrations of the main pigments involved in the decoration of the vessels, thus 

complementing the information achieved through other analytical techniques. Finally, SEM-

EDS studies contributed to a better understanding of the changes overcome, through different 

firing temperatures, in the physical and chemical structure of the ceramic matrixes.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

This article is protected by copyright. All rights reserved. 

 

ACKNOWLEDGMENTS 

This research was fully funded by National Research Scientific Council (CONICET), 

Argentina. V. G. and S. L. acknowledge CONICET for partial funding through different 

postdoctoral fellowships to develop the PIXE analyses. The Direction of Anthropology, 

Government of Province of Catamarca, provided permission to analyze the samples under the 

project “Cadenas Operativas y Elecciones Tecnológicas en la Producción de Alfarería 

Arqueológica y Pinturas Rupestres durante el Período Agroalfarero Medio (ca. AD 600 – AD 

900) en la Cuenca Ipizca-Icaño (Dptos. Ancasti y La Paz, Catamarca, Argentina): Una 

Aproximación Arqueométrica”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

This article is protected by copyright. All rights reserved. 

 

REFERENCES  

 

Abd El Aal, S., Korman, A., Stonert, A., Munnik, F., Turos, A., 2009, Ion beam analysis of 

ancient Egyptian wall paintings. Vacuum 83, S4-S8. 

 

Baldini, M., Carbonari, J., Cieza, G., de Feo, M., del Castillo, M., Figini, A., Rex González, 

A., Huarte, R., Togo, J., 2002, Primer análisis de la cronologıá obtenida en el sitio 
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Table 1. M ain characteristics of the Aguada Portezuelo sherds 
 

Sample 

Number 
Site Ceramic 

Form  

Vessel 

Form 
Internal colour External colour 

Core 

colour 
Texture Firing 

Surface 

treatment 
Decoration 

                      

M1 TSF globular  lip/neck 4/N black 
2.5YR 5/6 red - 10YR 3/1 black - 

2.5Y 8/2 white 
6/N gray fine reduced 

smoothed-
polished  
internal 
/external 

surface 

postfiring painting 
external surface 

M2 TFS bowl body 4/N black 
2.5Y 5/6 red - 7.5YR 6/6 

brownish 
6/N gray fine oxidized 

smoothed-
polished  
internal 
/external 
surface 

prefiring painting 
external surface 

graffited internal 
surface 

M7 TFS globular vessel body 4/N black 2.5Y 8/1 white - 2.5YR 5/6 red 6/N gray fine reduced 

smoothed-
polished  

internal 
/external 
surface 

postfiring painting 
external surface 

polished - graffited 
internal surface 

M9 TFS globular vessel body 7.5YR 5/4 brownish 2.5Y 8/1 white 
7.5YR 5/4 
brownish  

coarse oxidized 

smoothed  
internal 
/external 
surface 

postfiring painting 
external surface  

M13 Port vessel  body 3/N black 
2.5Y 3/1 black - 10R 4/3 red - 
7.5YR 5/4 brownish - 2.5Y 8/1 

white 
4/N black fine reduced 

smoothed-

polished  
internal 
/external 
surface 

pre- and postfiring 
painting internal / 
external surface 

M15 Port vessel body 

2.5Y 3/1 black - 
7.5YR 5/4 brownish 

 

 

7.5YR 5/4 brownish - 10R 4/3red 
7.5YR 5/4 
brownish  

fine oxidized 

smoothed-
polished  
internal 
/external 
surface 

pre- and postfiring 
painting internal / 
external surface 

M16 Port globular vessel body 4/N black 2.5Y 3/1 black - 2.5Y 8/1 white - 6/N gray fine reduced smoothed- postfiring painting 
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7.5YR 6/6 yellow polished  
internal 
/external 
surface 

external surface / 
graffited internal 

surface 

M18 Port globular vessel body 4/N black 
10R 4/3 red - 2.5YR 3/1 black - 

2.5Y 8/1 white 
6/N gray fine reduced 

smoothed-

polished  
internal 
/external 
surface 

postfiring painting 
external surface 

graffited internal 

M24  TFS globular vessel body 4/N black 
2.5Y 8/1 white - 7.5YR5/4 
brownish - 2.5Y 3/1 black 

6/N gray fine reduced 

smoothed-
polished  
internal 
/external 

surface 

postfiring painting 
external surface 

graffited internal 

M28 LV vessel body 4/N black 
2.5Y 3/1 black - 2.5Y 8/1 white- 

7.5YR 5/4 brownish 
6/N gray fine reduced 

smoothed-
polished  
internal 
/external 
surface 

postfiring painting 

external surface 
graffited internal 

surface 

M31 RR globular vessel body 4/N black 
7.5 YR 5/4 brownish - 2.5Y 8/1 

white 
6/N gray fine reduced 

smoothed-
polished  

internal 
/external 
surface 

postfiring painting 
external surface 

graffited internal 

surface 

M37 TFS globular vessel body 7.5YR 5/4 brownish 
2.5YR 5/6 red - 7.5YR 5/4 

brownish 
7.5YR 5/4 
brownish  

fine oxidized 

smoothed-
polished  
internal 
/external 
surface 

prefiring painting 
external / internal 

surface 

M45 Port globular vessel body 4/N black 2.5Y 3/1 black - 2.5Y 8/1 white 5/N gray fine reduced 

smoothed-
polished  
internal 
/external 
surface 

postfiring painting 
external surface 

graffited internal 

surface 

M47 Port globular vessel body 4/N black 2.5Y 8/1 white 6/N gray fine reduced 

smoothed-
polished  
internal 
/external 

surface 

postfiring painting 
external surface 

graffited internal 

surface 
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M49 Port globular vessel body 7.5YR 5/4 brownish 7.5YR 5/4 brownish 
7.5YR 5/4 
brownish 

fine oxidized 

smoothed 
internal 
/external 
surface 

prefiring painting 
external / internal 

surface 

M50 Port bowl body 4/N black 
2.5Y 3/1 black - 7.5YR 5/4 

brownish 
6/N gray fine reduced 

smoothed-

polished  
internal 
/external 
surface 

postfiring  painting 
external surface 

graffited internal 

surface 

M52 Port vessel  body 4/N black 2.5Y 8/1 whtie 6/N gray fine reduced 

smoothed-
polished  
internal 
/external 

surface 

postfiring  painting 
external surface 

graffited internal 

surface 

M57 Port globular vessel body 4/N black 2.5Y 8/1 white 6/N gray fine reduced 

smoothed-
polished  
internal 
/external 
surface 

postfiring  painting 

external surface 
graffited internal 

surface 

MX Port globular vessel body 4/N black 10R 4/3 red - 2.5Y 8/1 white 6/N gray fine reduced 

smoothed-
polished  

internal 
/external 
surface 

postfiring  painting 
external surface 

graffited internal 

surface 

MX3 Port vessel body 7.5YR 5/4 brownish 7.5YR 5/4 brownish 
7.5YR 5/4 
brownish 

fine oxidized 

smoothed-
polished  
internal 
/external 
surface 

postfiring  painting 
external surface 

graffited internal 

surface 
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Table 2. PIXE concentrations for major, minor, and trace elements (n=28) 
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Table 3. Element concentration and standard deviations (mean +SD) for the paintings compositional 

groups. 

  

Group 1              (n= 5) Group 2         (n=7) Group 3               (n=9)      
Element 

  

  

        

C (%)  2.73 ±0.39 3.06±1.52 2.70±0.44 

O  (%) 36.10±2.47 39.25±2.55 40.62±2.31 

Na   6598.6±4779 8117.42±6237 11753.44±9897 

Mg  (%) 1.15±0.33 1.55±0.61 1.07±0.36 

Al (%) 4.3±1.02 6.79±2.06 7.57±2.41 

Si  (%) 13.15±3.71 15.57±3.97 19.71±4.64 

P   1841.81±909 3229.71±1652 1036.57±465.22 

S   984.29±765 1521.42±1504 841.56±535 

Cl   2106.6±2545 1860.28±793 2645±4963 

K  (%) 3.27±1.85 2.80±1.20 7,36±1.71 

Ca  (%) 7.90±1.85 25.19±9.08 3.57±1.46 

Sc   324.84±54.11 480.60±319 231.62±76.50 

Ti  (%) 0.53±0.24 0.77±0.23 1.03±0.41 

V   845.18±397 384.29±153 376.02±122.33 

Cr   127.80±41.18 154.34±107.46 133.11±42.84 

Mn  (%) 17.39±7.46 0.45±0.51 0.21±0.09 

Fe  (%) 13.77±10.13 4.77±2.01 16.43±8.83 

Ni   94.29±30.65 111.28±34.47 121.89±43.43 

Cu   294.8±154 191±159.25 716.89±1596.83 

Zn   423.36±370 423.78±311 372.67±208.72 

Rb   199.91±60.93 182.30±50.49 232.45±177.16 

Sr   762.6±193.66 580.49±196 309.86±89.28 

Zr   324.56±86.41 418.51±131.35 298.45±135.16 

Ba   5637.50±2267 4351.50±993 4935.55±607.56 

Pb   174.65±120 235.26±148.13 198.06±67.89 
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Figure 1. (a) Map of Catamarca valley showing the archaeological sites; (b) Some 

representative decorated sherds chosen for the present analysis: M15, M24, M1, M50 (black); 

M7, M38 (reddish); M28, M47, M16, M57, M45, M24, M52 (white); M16, M24 (ocher); 

M9, M49, M15, M7 (paste) . 
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Figure 2. PIXE spectra for 2 MeV for some of the white, black, reddish, ocher and brown 

paints. Measurements acquired in the NEC 3MV, UFRGS (left), and at Tandem 1.7MeV, 

CAB (right). Elements determined are shown in the figures. 
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Figure 3. (a) PCA of major, minor and trace elements showing the discriminated colour 

groups (G1:black, G2:white, and G3:burgundy/reddish). UNAS: unassigned samples. 

Projected elements are also shown (ellipses represent 95% confidence); (b) Loadings for the 

first 4 PC´s (n=28); (c) PC1 and PC2 showing Groups 1, 2 and 3, defined by Mahlanobis 

distances (ellipses represent 95% confidence); (c) Cluster analysis of minor and trace 

elements, showing the discrimination of the red iron oxides based pigments. 
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Figure 4. (a) XRD spectra for white prefiring slip, ocher and reddish postfiring paints. Also, 

some paste samples are shown; (b) SEM secondary electron images for M15 sample showing 

(a) vitrified textures; (c) neoformation mineral phases; (d) EPMA spectra for M15 (black), 

M24 (white), M24 (ocher), and M15 (paste). 


