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Tissue response to porous high density polyethylene as a three-

dimensional scaffold for bone tissue engineering. An experimental 

study.  

   

High density polyethylene (HDPE) is a synthetic biomaterial used as a three-

dimensional scaffold for bone defect reconstruction. Reports differ with regard to 

its biological response, particularly its osteoconductive capacity. The aim of the 

present work was to histologically and histomorphometrically evaluate tissue 

response to porous HDPE. An in vivo study was conducted in rat tibia to evaluate 

osteogenic capacity, angiogenesis, inflammatory response, and the presence of 

multinucleated giant cells 14 and 60 days post-biomaterial implantation. 

Histological examination 14 days post-implantation showed fibrovascular tissue 

inside pores and on the surface of porous HDPE, acute inflammatory response, 

scant multinucleated giant cells (MNGCs), and lamellar bone in contact with the 

biomaterial. An increase in the proportion of lamellar bone tissue, no 

inflammatory response, and a decrease in the number of MNGCs were observed 

at 60 days. The histomorphometric study showed a significant time-dependent 

increase both in the area of bone tissue formed in contact with the porous HDPE 

(14d: 24.450± 11.623 µm² vs. 60d: 77.104 ± 26.217 µm², p <0.05) and in the 

percentage of bone tissue in contact with the porous HDPE (osseointegration). A 

significant decrease in the number of MNGCs was also observed at 60 days post-

implantation. Porous HDPE showed adequate osteoconductive properties, and 

only caused an initial inflammatory response. Although this biomaterial has 

traditionally been used juxtaosseoulsy, its adequate osteoconductive properties  

broaden the scope of its application to include intraosseous placement. 

Keywords: porous high density polyethylene; biomaterials; bone regeneration; 

three-dimensional scaffolds; osteogenesis. 
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1. Introduction 

The buccomaxillofacial region is highly complex and vulnerable to trauma, alterations 

during embryogenesis, and cystic and neoplastic pathologies [1]. Repair of bone defects 

in this region poses a challenge, and treatment success depends on the size of the defect, 

the quality of the soft tissue available to cover it, and the choice of the reconstruction 

method, among other factors [1-3]. 

Today, autologous bone grafting is considered the gold standard for 

reconstruction. Nevertheless, this therapy involves an additional surgical procedure to 

harvest the bone graft from the donor site, increasing surgery associated morbility and 

potential complications. Bone grafts also undergo a high percentage of bone resorption, 

often causing functional and esthetic problems [4,5]. Hence, a variety of synthetic 

biomaterials have been developed as therapeutic alternatives for bone defect 

rehabilitation. These materials not only aim to serve as skeletal support, but also 

function as three-dimensional scaffolds to achieve tissue regeneration [6]. 

In the mid-1980’s, porous High Density Polyethylene (HDPE) was introduced 

on the market. Initially, this biomaterial was used for reconstruction of post-traumatic 

orbital defects and auricular reconstruction in microtia patients, and was later employed 

as a complement in facial augmentation in orthognatic surgery [7-9]. At present, it is 

indicated for use in both cosmetic and reconstructive surgery [7-14]. Porous HDPE is a 

synthetic polymer made through a sintering process that generates the pores required for 

vascularized connective tissue ingrowth [15,16]. The presence of fibrovascular tissue in 

the pores poses an advantage since it stabilizes the bone substitute. Although porous 

HDPE has been used as a three-dimensional scaffold for bone defect reconstruction, 

clinical and experimental studies have reported diverse biological responses, 

particularly with regard to its osteoconductive capacity [17-23]. 
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Biomaterials used as three-dimensional scaffolds must possess certain 

properties, such as adequate biocompatibility, osteoconduction, and porosity, and 

optimum mechanical properties, among other characteristics [24-31]. In this regard, and 

taking into account the different biological responses reported in the literature [15-23], 

it is essential to objectively analyze tissue response to porous HDPE, evaluating 

bioindicators such as osteogenic capacity, angiogenesis, inflammatory response, and the 

presence of multinucleated giant cells (MNGCs) [32,33]. Such evaluation would allow 

accurately determining the effectiveness of porous HDPE as a three-dimensional 

scaffold for application in bone defects. 

In view of the above, the aim of the present work was to histologically and 

histomorphometrically evaluate tissue response to porous HDPE at different time 

points, using a murine experimental model.   

 

2. Materials and Methods 

2.1. Experimental Animals 

Young male Wistar rats (n=20), weighing ~ 150 g, fed ad libitum were used throughout. 

The animals were housed in metal cages, and kept on 14:10h light-dark cycles.  

 

2.2. Implants 

Samples of porous HDPE sheets (Medpor®, U.S.A.) in the shape of prisms measuring 3 

x 0.7 x 0.8 mm were used. Pore shape, size and position were assessed by scanning 

electron microcopy (SEM Zeiss Supra model 40, Germany). For this purpose, a set of 

sections was coated with a thin (20-nm) layer of silver in a vacuum evaporator. In 

addition, the chemical composition of a porous HDPE sample was assessed using 

Energy- dispersive X-ray spectroscopy (EDS, Oxford Instruments, UK). 
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2.3. Surgical Procedure 

The animals were anesthetized intraperitoneally with a solution of 8 mg of ketamine 

chlorhydrate (Fort Dodge®, Argentine) and 1.28 mg of Xylazine (Bayer, Germany) 

per 100 mg of body weight. The skin of both tibiae was shaved prior to performing a 

1.5 cm incision along the tibial crest. The subcutaneous tissue, muscles, and 

ligament were dissected to expose the lateral external surface of the diaphyseal 

bone. A hole measuring 1.5 mm in diameter was made in the bone with an end-

cutting bur, using manual rotating movements to avoid overheating and necrosis of 

the bone tissue. Porous HDPE implants were placed in the hematopoietic bone 

marrow compartment of both tibiae (n=40), parallel to their longest axis. A separate-

stitch suture was performed. No antibiotic therapy was administered [34]. The 

animals were euthanized in groups of 10 by an overdose of anesthetic at 14 and 60 

days post-implantation. The tibiae were resected, radiographed and fixed in 10% 

buffered formalin solution.  

All procedures were performed in compliance with the National Institutes of 

Health (NIH) guidelines for the care and use of laboratory animals (NIH Publication - 

Guide for the Care and Use of Laboratory Animals: Eighth Edition, 2011) and the 

guidelines of the School of Dentistry of the University of Buenos Aires (Res. (CD) 

352/02 and Res. (CD) 694/02). Adequate measures were taken to minimize animal pain 

and discomfort. The protocol was approved by the institutional experimentation 

committee (School of Dentistry of the University of Buenos Aires, Resolution Number 

006/2015). 

 

 

 

Acc
ep

te
d 

M
an

us
cr

ipt



2.4. Histologic Processing 

The samples were demineralized in 10% ethylenediaminetetraacetic acid (EDTA, 

Anhedra, Argentina); the acid solution was renewed every 3 days for 20 days. 

Following, the samples were embedded in paraffin, to obtain 10µm thick sections at the 

level of the porous HDPE implant and perpendicular to the longest axis of the tibia. The 

obtained sections were stained with hematoxylin-eosin, and histologic examination was 

performed using a light microscope (Leica, DM 2500, Germany).  

 

2.5. Histomorphometric Evaluation 

Histomorphometric measures were determined on digitized images of histological 

sections obtained 14 and 60 days post- implantation of the porous HDPE into the tibia 

of Wistar rats. The images were obtained using a photomicroscope (Leica, DM 2500, 

Germany) at 5X magnification, and were analyzed histomorphometrically using LAS 

EZ software (Leica Application Suite, Germany). The following histomorphometric 

determinations were performed: 

a) Area of bone tissue formed in contact with the porous HDPE. 

b) Percentage of bone tissue in contact with the porous HDPE (osseointegration).  

In addition, the number of multinucleated giant cells (MNGCs) associated with the 

porous HDPE was determined. 

 

2.6. Statistical Analysis 

The results were compared using Student’s t-test. Values are expressed as mean and 

SD; statistical significance was set at p <0.05.   
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3. Results 

3.1. SEM and EDS Analysis 

The biomaterial displayed pores of different shape and size, ranging from 80 to 770 µm 

(Figure 1A,B). Small projections (~10 µm) (Figure 1C) were observed on the surface of 

the biomaterial.  Microchemical analysis using EDS showed the material contained 

92.48 weight% carbon and 7.18 weight% oxygen (Figure 1D).  

 

3.2. Radiographic study 

The radiographic study of the tibiae at 14 and 60 days post-implantation revealed 

radiopacity consistent with newly formed bone in the sector where the implant was 

placed; the radiopaque area increased with time (Figure 2). 

 

3.3. Histologic Analysis 

Light microcopy examination at 14 days post-implantation showed the presence of 

fibrovascular tissue inside the pores (Figure 3A), with an acute inflammatory response 

and scant MNGCs, some of which were found to contain particulate material (Figure 

3B). In addition, lamellar bone tissue in contact with the biomaterial (osseointegration), 

both inside the pores and on the surface, could be observed (Figure 3C). Sixty-days 

post-implantation, a greater proportion of lamellar bone tissue in contact with the 

porous HDPE was observed (Figure 3A,B). There was no inflammatory response, and 

the number and size of MNGCs decreased. Figure 5 comparatively shows the 

proportion of lamellar bone tissue at 14 and 60 days post-implantation.  

SEM-EDS analysis was performed to evaluate the chemical composition of the 

particulate material observed in the cytoplasm of MNGCs. The study showed the 

particulate material contained carbon and oxygen in different weight percentages 
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compared with the porous HDPE sample (Particles:  C:79.42 weight% and O: 11.43  

weight% vs. Porous HDPE:  C: 92.48 weight%  and O: 7.18 weight%). Taking into 

account that C and O are tissue components, intracellular determinations in regions of 

the cytoplasm distant from the particles, and extracellular determinations in the 

fibrovascular tissue were performed in order to determine the difference in the 

percentage of C and O inside and outside cells. The C and O weight percentages 

observed inside and outside cells also differed from those observed in the particulate 

material and in the porous HDPE sample (Figure 6). Thus, EDS analysis was not 

sufficient to ascertain that the particles observed inside the MNGCs were porous HDPE 

particles. However, examination under polarized light showed that the particulate 

material inside the MNGCs had the same birefringence as the remnants of porous 

HDPE observed in the histological samples after processing.  

 

3.4. Histomorphometric Analysis 

The area of bone tissue formed in contact with the porous HDPE differed significantly 

between the studied time points (Figure 7A) (14d: 24.450±11.623 µm² vs. 60d: 77.104 

± 26.217 µm², (p <0.05). The percentage of bone tissue in contact with the porous 

HDPE (osseointegration) (Figure 7B) differed significantly between both groups (14d: 

32.6±6% vs. 60d: 74.3±10%, p <0.05).  

A significant time-dependent decrease in the number of MNGCs was observed 

(14d: 7.2±1.9 vs. 60d: 1.5±0.5, p <0.05, (Figure 7C). 

 

4. Discussion 

Alloplastic biomaterials are increasingly considered as alternative materials for use as 

three-dimensional scaffolds in regenerative bone medicine today [17,19,23,28]. Porous 

Acc
ep

te
d 

M
an

us
cr

ipt



high density polyethylene has been used for decades in the maxillofacial region to 

reestablish the facial contour and attain adequate volume in bone defect areas not 

requiring subsequent dental implant rehabilitation [7-11]. Nevertheless, their use as a 

three-dimensional scaffold has only been investigated more recently [18-24].  

Clinical and experimental reports published in the literature evaluated tissue 

response to porous HDPE. The reported experimental studies were conducted in dogs, 

monkeys, rabbits, and rats [20-23]. Studies by Spector et al. [15] and Klawitter et al. 

[16] in dog femur, reported bone ingrowth in pores as small as 40µm, and found 

optimum pore size to be 100 to 135 µm. However, other in vivo studies in experimental 

animals reported bone growth far from the biomaterial. Such is the case of a study by 

Sabini et al. in which bone ingrowth was not found to occur around porous HDPE discs 

implanted in Sprague-Dawley rats in a subperiosteal location [22].  

As to the clinical reports, Tark et al. histologically evaluated porous HDPE 

implants placed in children with craniosynostosis, and removed immediately after the 

distraction and consolidation period. The authors found no evidence of osteogenesis 

[19].    

In view of the above, the histological finding of bone tissue inside the pores and 

on the surface of porous HDPE implants, and the integration of the material with the 

host bone remain a matter of discussion [19-23].   

Hence the need to quantitatively evaluate the osteoconductive capacity of porous 

HDPE, using histological and histomorphometric studies. In this regard, the present 

study assessed porous HDPE osteoconductivity in osteogenic hematopoietic bone 

marrow of rat tibia, using an experimental model developed by our research group
34

. 

The model poses the advantage that it provides a microenvironment that is isolated from 

microbial colonization and mechanical forces, and allows quantitating tissue response, 
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ruling out confounding variables. In the present work, bone tissue response was 

assessed using histomorphometric studies, which were not performed in most of the 

clinical and experimental works reported in the literature.  

One of the key factors to achieving adequate osseointegration is immobilization 

and/or fixation of the biomaterial to the bone surface. In the studies conducted by Sabini 

et al. [22], Spector et al. [15] and Klawitter et al. [16],  the implants were placed in 

contact with the surface of the host bone but were not fixed, which could have affected 

bone tissue response to the biomaterial. This variable was controlled in the experimental 

model used here, since the implant was placed inside the medullary compartment where 

it was not subjected to forces and did not move. 

Infection of the biomaterial is one of the major causes of porous HDPE failure in 

the clinical setting [7]. This variable was also controlled in our experimental model, 

since the biomaterial was isolated from the external milieu. 

The histological results obtained here confirm that porous HDPE has adequate 

osteoconductive properties, serving as a scaffold for osteogenesis inside the pores and 

on the surface of the biomaterial. In addition, the histomorphometric studies provided 

quantitative results that showed a significant time-dependent increase in both the area 

and the percentage of newly formed bone in contact with the biomaterial 

(osseointegration). 

Another important factor that must be taken into account is that most of the 

published reports used a small number of animals [15,16,20-23]. In the present study, 

the number of animals was the minimum number required to guarantee a uniform 

biological response and to obtain reliable statistical results. 

A biomaterial that can be used as a three-dimensional scaffold in the 

maxillofacial region should favor biological integration with the bone tissue. In the case 
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of porous biomaterials, like porous HDPE, the newly formed tissue inside the pores is 

responsible for providing a biological anchor, generating physical and biological 

integration, enhancing implant stability, thus optimizing long-term outcomes, which are 

the ultimate goals when esthetic results are required. The size and position of the pores 

are also critical factors for vascularization, fibrovascular tissue ingrowth, and formation 

of bone tissue inside a biomaterial [17,25,26,29,30,35,36]. The combination of pore 

size, porosity volume fraction, pore inter-connections, and permeability, would be 

determining factors to biomaterial-host integration [36].
 
According to Karageorgiou et 

al [17], high porosity materials with an average pore size >300 µm are recommended 

for successful osteogenesis in vivo. However, the first experimental studies reported 

osteogenesis in 40 µm pores [15,16]. The characterization of porous HDPE performed 

in the present study showed interconnected pores ranging in size from 80 to 770 µm, 

which would favor tissue ingrowth. The latter was observed histologically as formation 

of fibrovascular tissue and bone tissue inside and on the surface of the biomaterial at 

both 14 and 60 days post-implantation. 

Another essential prerequisite for porous HDPE-host tissue integration is rapid 

vascularization of the scaffold. Early vascularization can reduce the window during 

which an implant is susceptible to extrusion, migration and infection [30]. The 

histological results of the present study (fibrovascular growth and subsequent lamellar 

bone formation) are an indication of good angiogenic response.  

As shown by the biocompatibility analysis performed here, porous HDPE 

induced an acute inflammatory response at the early stage post-implantation. Our 

observations are in line with previous reports by Klawitter et al. [16], Niechajev et al. 

[17], and Gosau et al. [31]. Furthermore, the present histological results showed the 

presence of MNGCs close to the biomaterial. Some authors have termed these cells 
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biomaterial-associated multinucleated giant cells (BMGCs), though their involvement in 

the inflammatory and healing events of the foreign body response remains unclear 

[32,33,37].
 
These BMGCs have most often been associated with the cell type of the 

foreign body giant cell. They form by the fusion of monocytes and macrophages 

through a process termed “frustrated phagocytosis”, which is usually associated with the 

degradation of the biomaterial. For a long time, these cells were considered pro-

inflammatory cells per se [32,33].  However, in vitro and in vivo studies have shown 

that BMGCs have different phenotype profiles, depending on the physical-chemical 

characteristics of the biomaterials that induce their formation with pro- and anti-

inflammatory cytokine expression [32,38-40]. 

In the past, MNGCs were thought to have a negative effect on the healing 

process. However, it is well documented today that these cells can secrete growth 

factors favoring repair, and that the presence of BMGCs does not necessarily imply an 

adverse host response to the biomaterial. Furthermore, the presence of BMNGs can 

have a positive effect, since these cells can release different chemical mediators such as 

vascular endothelial growth factor (VEGF), which promotes vasculogenesis and 

angiogenesis and thus benefits healing [37-39]. Barbeck et al. showed that labeling with 

molecules like hydrolytic enzyme tartrate-resistant acid phosphatase (TRAP) allows 

distinguishing pro- and anti-inflammatory subforms of MNGCs. However, the 

application of marker molecules such as TRAP and its role in the inflammatory tissue 

reaction to biomaterials need to be examined in greater depth [33].  

In addition, it is of note that the quantitative results obtained here showed a 

decrease in the number of MNGCs from day 14 to day 60 post-implantation. This time-

dependent decrease is in line with a study by Barbeck et al. on biological response to 

small Bio-OssTM granules, which showed the presence of multinucleated giant cells 
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10-15 days post implantation, a decrease in MNGCs number at 30 days, and very few 

MNGCs 60 days post-implantation [32]. 
 
In the present study, very few samples 

exhibited MNGCs containing material, which would indicate phagocytic clearance of 

the biomaterial, likely in response to the projections (~10 µm) observed on the surface 

of the biomaterial. Because the weight% of C and O as determined by EDS differed 

among all intra- and extracelular measurements, it cannot be affirmed that the material 

observed inside MNGCs corresponded to the porours HDPE derived particles. 

Evaluation by EDS is not an adequate quantitative measure to discern the origin of the 

intracellular particles, given that C and O are constituents of tissue. Nevertheless, the 

particulate material inside the MNGCs had the same birefringence as the remnants of 

porous HDPE observed in the histological samples after histological processing. This 

observation lends strong support to the conclusion that the particles observed inside the 

MNGCs were porous HDPE particles.  

The results obtained with the experimental model used here showed that porous 

HDPE has adequate osteoconductive properties, though it initially causes an 

inflammatory reaction. The HDPP showed adequately sized inter-connected pores, 

which favor tissue ingrowth. Although this biomaterial has traditionally been used 

juxtaosseoulsy to restore bone volume in regions not requiring subsequent dental 

implant rehabilitation, its adequate osteoconductive properties broaden the scope of its 

application to include intraosseous placement. The present results lend support to its 

potential use in skeletal reconstruction, such as fractures with bone loss not involving 

the alveolar ridge, and maxillary sinus augmentation and/or labial alveolar palatal 

fissures. 
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Figure Legends 

 

Figure 1. Characterization of porous HDPE (SEM and EDS). A)  note pore location and 

different pore size and shape. B) the dimension of one of the pores is shown as an 

example. C) pore inter-connection (*) as well as small projections on the surface of the 

biomaterial (→) can be observed. D) spectrum corresponding to carbon and oxygen, as 

shown by EDS. 
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Figure 2. Radiographic study of the tibia 14 and 60 days post-implantation of the 

biomaterial. Radiopacity (→) in the implantation sector can be seen to increase with 

time.  
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Figure 3. Histological study 14 days post-implantation of porous HDPE. 

Microphotograph A shows fibrovascular tissue growth (→) into one of the pores. 

Remnants of porous HDPE can be seen after histological processing (*). At higher 

magnification (B), MNGCs containing particulate material (→) in their cytoplasm can 

be observed. Microphotograph C shows lamellar bone tissue (→) inside a pore and on 
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the surface of the negative spaces (*) corresponding to the biomaterial. (BM) Bone 

marrow; (CB) cortical bone. A,C: Orig. Mag. X50. B: Orig. Mag. X1000. 

Demineralized sections; H-E stain.   

 

Figure 4. Histological study 60 days post-implantation of porous HDPE. (A) Cross-

section of the tibia showing the cortical bone (CB),the endosteal (●) and periosteal (→) 

sides, and newly formed tissue in contact with the biomaterial(◄).(B) At higher 

magnification, lamellar bone tissue in contact with the porous HDPE can be observed. 

Note the presence of lamellar bone tissue inside the pores (◄). C) Figure A at higher 

magnification, a lamellar bone trabecula can be seen in detail. Demineralized section. 

A) Orig. Mag. X 25. B) Orig. Mag. X50. C) Orig. Mag X 400. H-E Stain. (*) Negative 

space corresponds to the biomaterial after histological processing. 

 

Figure 5. Comparative histological study 14 vs. 60 days post-implantation. Note the 

increasing proportion of lamellar bone tissue in contact with the biomaterial, with time. 

Orig. Mag. X50. Demineralized sections. H-E Stain. (*) Negative space corresponds to 

the biomaterial after histological processing.  
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Figure 6. SEM-EDS analysis. Microphotograph A shows a MNGC containing porous 

HDPE particles (→), as seen by light microscopy. Figure B is a microphotograph 

obtained by SEM showing the area marked in Figure A in greater detail. C) the EDS 

spectrum show carbon and oxygen in the biomaterial inside the MNGC (spectrum 1). 

Figure D shows weight% determinations of C and O inside and outside cells (spectrums 

1,2 and 3).  A) demineralized section. H-E. Orig. Mag. X1000.   

Regions analyzed by EDS: Spectrum1: porous HDPE particles inside the MNGCs; 

Spectrum 2: MNGCs cytoplasm; Spectrum 3: Fibrovascular tissue. 
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Figure 7. Comparative histomorphometric study of the biomaterial 14 vs. 60 days post-

implantation. A) area of bone tissue in contact with the biomaterial; B) percentage of 

bone tissue in contact with the porous HDPE (osseointegration); C) number of MNGCs. 

The histograms show the mean ± SD, *P < 0.05 compared to the 14 day post-

implantation group. 
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