NILPOTENCY DEGREE OF THE NILRADICAL OF SOLVABLE LIE ALGEBRAS ON TWO GENERATORS

LEANDRO CAGLIERO, FERNANDO LEVSTEIN, AND FERNANDO SZECHTMAN

ABSTRACT. Given a field F of characteristic 0, we consider solvable Lie algebras \mathfrak{g} of block upper triangular matrices on two generators. Imposing mild conditions on these generators, we prove that the nilpotency degree of the nilradicals $\mathfrak{n} = [\mathfrak{g}, \mathfrak{g}]$ is as large as possible, namely the number of diagonal blocks minus one.

As an application when F is algebraically closed, let $\mathcal{N}_{\ell}(V)$ denote the free ℓ -step nilpotent Lie algebra associated to a given F-vector space V. As a consequence of the above degree, we obtain a complete classification of all uniserial representations of the solvable Lie algebra $\mathfrak{g} = \langle x \rangle \ltimes \mathcal{N}_{\ell}(V)$, where x acts on V via an arbitrary invertible Jordan block.

1. INTRODUCTION

We fix throughout a field F of characteristic 0. All Lie algebras and representations considered in this paper are assumed to be finite dimensional over F, unless explicitly stated otherwise.

Given a 5-tuple $(\ell, d, \alpha, \lambda, X)$, where ℓ is a positive integer, $d = (d_1, \ldots, d_{\ell+1})$ is a sequence of $\ell + 1$ positive integers, $\alpha, \lambda \in F$, and $X = (X(1), \ldots, X(\ell))$ is a sequence of ℓ matrices $X(i) \in M_{d_i \times d_{i+1}}$ such that $X(i)_{d_i,1} \neq 0$ for all i, consider the matrices $D, E \in \mathfrak{gl}(d), d = d_1 + \cdots + d_{\ell+1}$, given in block form by

$$D = J^{d_1}(\alpha) \oplus J^{d_2}(\alpha - \lambda) \oplus \cdots \oplus J^{d_{\ell+1}}(\alpha - \ell\lambda),$$

where $J^p(\beta)$ denotes the upper triangular Jordan block of size p and eigenvalue β ,

$$E = \begin{pmatrix} 0 & X(1) & 0 & \dots & 0 \\ 0 & 0 & X(2) & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \ddots & X(\ell) \\ 0 & 0 & \dots & \dots & 0 \end{pmatrix}$$

The Lie subalgebra of $\mathfrak{gl}(d)$ generated by D and E is easily seen to be equal to $\langle D \rangle \ltimes \mathfrak{n}$, where \mathfrak{n} is nilpotent. Theorem ?? proves that, except for a few extraordinary cases, the nilpotency degree of \mathfrak{n} is exactly ℓ .

Suppose F is algebraically closed. Theorem ?? uses the above bound to give a complete classification of all uniserial representations of the solvable Lie algebra $\mathfrak{g} = \mathfrak{g}_{*****,\ell,n} = \langle x \rangle \ltimes \mathcal{N}_{\ell}(V)$, where V is a vector space of dimension $n \geq 1$, $\mathcal{N}_{\ell}(V)$

²⁰¹⁰ Mathematics Subject Classification. 17B10, 17B30.

Key words and phrases. uniserial representation; free ℓ -step nilpotent Lie algebra.

This research was partially supported by grants from CONICET, FONCYT and SeCyT-UNCórdoba).

This research was partially supported by an NSERC grant.

is the free ℓ -step nilpotent Lie algebra associated to V, and x acts on V via a single Jordan block $J_n(\lambda), \lambda \neq 0$.

A representation $R : \mathfrak{g} \to \mathfrak{gl}(U)$ is relatively faithful if $\ker(R) \cap V = 0$ and $\ker(R) \cap \mathfrak{n}^{\ell-1}$ is properly contained in $\mathfrak{n}^{\ell-1}$. It suffices to classify all uniserial representations of \mathfrak{g} that are relatively faithful. Indeed, let $R : \mathfrak{g} \to \mathfrak{gl}(U)$ be a uniserial representation. If $V \subseteq \ker(R)$ then R is determined by a uniserial representations. We may thus assume without loss of generality that V is not contained in $\ker(V)$. If $(0) \neq \ker(R) \cap V \neq V$, then R is determined by a uniserial representation $\overline{R} : \mathfrak{g}_{****,\ell,m} \to \mathfrak{gl}(U)$, where $\mathfrak{g}_{****,\ell,m} = \langle x \rangle \ltimes \mathcal{N}_{\ell}(\overline{V}), \overline{V}$ is a factor of V by an x-invariant subspace, x acts on \overline{V} via an invertible Jordan block $J_m(\lambda)$, $1 \leq m < n$, and $\ker(\overline{R}) \cap \overline{V} = 0$. Hence, we may assume without loss of generality that $\ker(R) \cap V = 0$. Let $1 < s \leq \ell$ be the smallest positive integer such that \mathfrak{n}^s is contained in $\ker(R)$. Then R is determined by a uniserial representation in $\ker(R)$. Then R is determined by a uniserial representation $\overline{R} : \mathfrak{g}_{****,s,n} :\to \mathfrak{gl}(U)$, where $\mathfrak{g}_{****,s,n} = \langle x \rangle \ltimes \overline{\mathfrak{n}}, \ \overline{\mathfrak{n}} = \mathfrak{n}/\mathfrak{n}^s$, and $\ \overline{\mathfrak{n}^{s-1}}$ is not contained in the kernel of \overline{R} . Therefore, we may assume without loss of generality that $\ker(R) \cap V = 0$ and that $\mathfrak{n}^{\ell-1} \not\subset \ker(R)$, that is, that R is relatively faithful.

The degenerate case n = 1 appears as a special case in [?]. The cases $\ell = 1$ and $\ell = 2$ have recently been solved in [?] and [?], respectively. Without resorting to any of these cases, we will obtain the following classification, valid for all ℓ and n.

Let v_0, \ldots, v_{n-1} be a basis of V such that

$$[x, v_0] = \lambda v_0 + v_1, [x, v_1] = \lambda v_1 + v_2, \dots, [x, v_{n-1}] = \lambda v_{n-1}$$

Given a sequence $\vec{d} = (d_1, \ldots, d_{\ell+1})$ of $\ell + 1$ positive integers satisfying

$$\max_{1 \le i \le l} \{ d_i + d_{i+1} \} = n+1,$$

and a scalar $\alpha \in F$, we define a representation $R = R_{d,X,\alpha} : \mathfrak{g} \to \mathfrak{gl}(d)$, where $d = d_1 + \cdots + d_{\ell+1}$, in block form, in the following manner:

$$R(x) = A = J^{d_1}(\alpha) \oplus J^{d_2}(\alpha - \lambda) \oplus \dots \oplus J^{d_{\ell+1}}(\alpha - \ell\lambda),$$

$$R(v_j) = (\mathrm{ad}_{\mathfrak{gl}(d)}A - \lambda \mathbf{1}_{\mathfrak{gl}(d)})^j \begin{pmatrix} 0 & X(1) & 0 & \dots & 0\\ 0 & 0 & X(2) & \dots & 0\\ \vdots & \vdots & \ddots & \ddots & \vdots\\ 0 & 0 & \dots & \ddots & X(\ell)\\ 0 & 0 & \dots & \dots & 0 \end{pmatrix}, \quad 0 \le j \le n-1.$$

This extends uniquely to a representation $\mathfrak{g} \to \mathfrak{gl}(d)$ by the universal property that defines of $\mathcal{N}_{\ell}(V)$.

Conjugating all $R(y), y \in \mathfrak{g}$, by a suitable block diagonal matrix commuting with A, we may normalize R, in the sense that the last row of every X(i) is the first canonical vector of $F^{d_{i+1}}$ and the first column of X(1) is the last canonical vector of F^{d_1} . The representation R is always uniserial. It is also relatively faithful, except for a few extraordinary cases that occur when n > 1. Theorem ?? proves that, when n > 1, every relatively faithful uniserial representation of \mathfrak{g} is isomorphic to one and only one normalized representation $R_{\vec{d},X,\alpha}$ of non-extraordinary type (the degenerate case can be found in Theorem ??).

2. Preliminaries and notation

2.1. The Lie algebras $\mathfrak{g}_{n,\lambda}$ and $\mathfrak{g}_{n,\lambda,\ell}$. If \mathfrak{g} is a Lie algebra, let $\{\mathfrak{g}^i : i \geq 0\}$ be the lower central series, that is $\mathfrak{g}^0 = \mathfrak{g}$ and $\mathfrak{g}^{i+1} = [\mathfrak{g}, \mathfrak{g}^i]$.

Let V be a vector space of dimension $n \ge 2$ and let $\mathcal{L}(V)$ be the free Lie algebra associated to V (or the free Lie algebra on n generators). For $\ell \ge 1$, let

$$\mathcal{N}_{\ell}(V) = \mathcal{L}(V) / \mathcal{L}(V)^{\ell}$$

be the free ℓ -step nilpotent Lie algebra associated to V.

Given an integer $p \geq 1$ and $\alpha \in F$, we write $J_p(\alpha)$ (resp. $J^p(\alpha)$) for the lower (resp. upper) triangular Jordan block of size p and eigenvalue α . Let $x \in \text{End}(V)$ the linear map acting on V via a single Jordan block $J_n(\lambda)$. In particular V has a basis $\{v_0, \ldots, v_{n-1}\}$ such that

(2.1)
$$(\operatorname{ad} x - \lambda)^k v_0 = \begin{cases} v_k, & \text{if } 0 \le k < n; \\ 0, & \text{if } k = n. \end{cases}$$

We extend the action of x on V to $\mathcal{L}(V)$ so that x becomes a Lie algebra derivation. This action preserves $\mathcal{L}(V)^{\ell}$ and thus x also acts by derivations on $\mathcal{N}_{\ell}(V)$. Let

 $\mathfrak{g}_{n,\lambda} = \langle x \rangle \ltimes \mathcal{L}(V) \quad \text{and} \quad \mathfrak{g}_{n,\lambda,\ell} = \langle x \rangle \ltimes \mathcal{N}_{\ell}(V)$

be the corresponding semidirect products.

2.2. Gradings in $\mathfrak{gl}(d)$ and the outer automorphism. If $\vec{d} = (d_1, \ldots, d_{\ell+1})$ is a sequence of $\ell + 1$ positive integers, we define $|\vec{d}| = |\vec{d}|_1 = d_1 + \cdots + d_{\ell+1}$. A sequence \vec{d} provides $\mathfrak{gl}(d)$, $d = |\vec{d}|$, with a block structure and we define

$$p_{i,j}:\mathfrak{gl}(d)\to M_{d_i,d_j}$$

the projection onto the (i, j)-block.

We consider, in $\mathfrak{gl}(d)$ two 'diagonal' gradings: one associated to the actual diagonals of $\mathfrak{gl}(d)$, that is

(2.2)
$$\mathcal{D}_t = \{A \in \mathfrak{gl}(d) : A_{ij} = 0 \text{ if } j - i \neq t\};$$

and the other one associated to the block-diagonals of $\mathfrak{gl}(d)$, that is

(2.3)
$$\overline{\mathcal{D}}_t = \{A \in \mathfrak{gl}(d) : p_{ij}(A) = 0 \text{ if } j - i \neq t\}.$$

We call the degrees (2.2) and (2.3) diagonal-degree and block-degree respectively. The proof of the following proposition is straightforward. Ojo con las a,b y t sue se usan después $A^t, a_{i,j}, etc$

Proposition 2.1. If $A \in \mathcal{D}_t$ with $(p_{i,j}(A))_{a,b} \neq 0$, (with $1 \leq a \leq d_i$ and $1 \leq b \leq d_i$) then

$$t = d_{j-1} + \dots d_i + (b-a)$$

In particular, if either

$$d_{i+1} - 1 < d_i - d_i + b - a$$
 or $d_i - d_i + b - a < 1 - d_{i+1}$

then $p_{i+1,j+1}(A) = 0$. Similarly, if either

$$d_{i-1} - 1 < b - a$$
 or $b - a < 1 - d_{j-1}$

then $p_{i-1,j-1}(A) = 0$.

Recall that the map $\phi : \mathfrak{gl}(d) \to \mathfrak{gl}(d)$ given by

$$\phi(A)_{i,j} = (-1)^{i-j+1} A_{d+1-j,d+1-i}$$

gives a representative of the unique nontrivial class of outer automorphisms of $\mathfrak{sl}(d)$. In fact, ϕ is in the class of $A \mapsto -A^t$, indeed, if $K = (a_{i,j}) \in \mathfrak{gl}(d)$ is the antidiagonal matrix with $a_{i,d+1-i} = (-1)^{i+1}$ $(a_{i,j} = 0$ if $i+j \neq d+1$, then $\phi(A) = -KA^tK^{-1}$. It is clear that

(2.4)
$$\phi|_{\mathcal{D}_t} = (-1)^{t+1}$$

2.3. The Lie algebra $\mathfrak{h}(\alpha, \lambda, S)$. Given a 5-tuple $(\ell, \vec{d}, \alpha, \lambda, S)$, where

• $\vec{d} = (d_1, \dots, d_{\ell+1})$ is a sequence of $\ell + 1$ positive integers, $\ell \ge 1$,

• $\alpha, \lambda \in F$ are scalars,

• $S = (S(1), \ldots, S(\ell))$ is a sequence of ℓ matrices satisfying

(2.5)
$$S(i) \in M_{d_i \times d_{i+1}} \text{ and } S(i)_{d_i,1} \neq 0 \text{ for all } i;$$

we consider the matrices $D(\alpha, \lambda), E(S) \in \mathfrak{gl}(d), d = |\vec{d}|$, given in block form by

$$D(\alpha,\lambda) = J^{d_1}(\alpha) \oplus J^{d_2}(\alpha-\lambda) \oplus \cdots \oplus J^{d_{\ell+1}}(\alpha-\ell\lambda),$$

and

$$E(S) = \begin{pmatrix} 0 & S(1) & 0 & \dots & 0 \\ 0 & 0 & S(2) & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \ddots & S(\ell) \\ 0 & 0 & \dots & \dots & 0 \end{pmatrix}$$

Let $\mathfrak{h}(\alpha, \lambda, S)$ be the Lie subalgebra of $\mathfrak{gl}(d)$ generated by $D(\alpha, \lambda)$ and E(S).

Definition 2.2. Given $\vec{d} = (d_1, \ldots, d_{\ell+1})$, let

$$C(i) = \begin{pmatrix} 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \end{pmatrix} \in M_{d_i \times d_{i+1}}.$$

and set $C = (C(1), \ldots, C(\ell))$; we say that C is the *canonical* sequence. Also, given a sequence $S = (S(1), \ldots, S(\ell))$ as in (2.5), we say that S is normalized if all the following conditions are satisfied:

- (1) $S(i)_{d_i,1} = 1$ for all $1 \le i \le \ell$;
- (2) $S(i)_{d_{i,j}} = S(i+1)_{d_{i+1}+1-j,1}$ for $1 \le j \le d_{i+1}$ and $1 \le i \le \ell$; (3) $S(1)_{j,1} = 0$ for $1 \le j < d_1$, and $S(\ell)_{d_{\ell},j} = 0$ for $1 < j \le d_{\ell+1}$.

We say that S is weakly normalized if conditions (1) and (2) are satisfied (this last concept will be used only in \S ??).

Example 2.3. It is clear that the canonical sequence C is normalized. Also, if $\vec{d} = (3, 5, 3, 4)$ and S = (S(1), S(2), S(3)) is a normalized sequence, then E(S)

4

looks like as follows (the * might be any scalar)

	1	0	0	0	0	*	*	*	*	0	0	0	0	0	0	0 \
E(S) =	1	0	0	0	0	*	*	*	*	0	0	0	0	0	0	0
		0	0	0	1	a_2	a_3	a_4	a_5	0	0	0	0	0	0	0
	-	0	0	0	0	0	0	0	0	a_5	*	*	0	0	0	0
		0	0	0	0	0	0	0	0	a_4	*	*	0	0	0	0
		0	0	0	0	0	0	0	0	a_3	*	*	0	0	0	0
		0	0	0	0	0	0	0	0	a_2	*	*	0	0	0	0
		0	0	0	0	0	0	0	0	1	b_2	b_3	0	0	0	0
	-	0	0	0	0	0	0	0	0	0	0	0	b_3	*	*	*
		0	0	0	0	0	0	0	0	0	0	0	b_2	*	*	*
		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	l	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	/	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 /

The following proposition is not difficult to prove.

Proposition 2.4. Let $\vec{d} = (d_1, \ldots, d_{\ell+1})$ and let $G(\vec{d})$ be the subgroup of GL(d), $d = |\vec{d}|$, consisting of invertible matrices $P = P_1 \oplus \cdots \oplus P_{\ell+1} \in GL(d)$, with P_i a polynomial (with non-zero constant term) in $J^{d_i}(0)$. Given a sequence $S = (S(1), \ldots, S(\ell))$ as in (2.5), there is an unique invertible matrix $P \in G(\vec{d})$ such that $PE(S)P^{-1}$ is equal to E(S') for a normalized sequence S'.

Let us denote

$$E^{(l)} = \mathrm{ad}(D(0,0))^l (E(S)), \quad \text{for } l \ge 0.$$

Since char $\mathbb{F} = 0$, a straightforward computation (or the representation theory of $\mathfrak{sl}(2)$) shows that the set $\{E^{(l)}\}_{l=0}^{\rho}$, with $\rho = \max\{d_i + d_{i+1} - 2 : i = 1, \ldots, \ell\}$, is linearly independent. Let $\mathfrak{n}(S)$ be the Lie algebra generated by $\{E^{(l)}\}_{l=0}^{\rho}$, that is

$$\mathfrak{n}(S) = \operatorname{span}_{\mathbb{F}}[[[E^{(l_1)}, E^{(l_2)}], E^{(l_3)}], \dots, E^{(l_q)}].$$

The following proposition shows that this nilpotent Lie algebra, which is independent of α and λ , is the nilradical of $\mathfrak{h}(\alpha, \lambda, S)$.

Proposition 2.5. The Lie algebra $\mathfrak{h}(\alpha, \lambda, S)$ is a solvable Lie subalgebra of $\mathfrak{gl}(d)$. Additionally

- (1) $\mathfrak{h}(\alpha, \lambda, S)$ is the semidirect product $\mathfrak{h}(\alpha, \lambda, S) = \mathbb{F}D(\alpha, \lambda) \ltimes \mathfrak{n}(S)$.
- (2) $\mathfrak{n}(S)$ is graded by the block-degree and filtered by the diagonal-degree.
- (3) n(C) is graded by both the block-degree and the diagonal-degree. Moreover, n(C) is isomorphic to the associated graded Lie algebra gr(n(S)) corresponding to the filtration given by the diagonal-degree.

Proof. (1) It is not difficult to see that, for $l \ge 1$,

$$\left(\operatorname{ad}_{\mathfrak{gl}(d)} D(\alpha, \lambda) - \lambda\right)^{l} (E(S)) = E^{(l)}$$

and thus, the Lie subalgebra of $\mathfrak{h}(\alpha, \lambda, S)$ generated by

$$\{\mathrm{ad}_{\mathfrak{gl}(d)}(D(\alpha,\lambda))^{l}(E(S)): l \ge 0\},\$$

which is invariant under the action of $\operatorname{ad}(D(\alpha, \lambda))$, coincides with $\mathfrak{n}(S)$. Finally, since $\mathbb{F}D(\alpha, \lambda) \oplus \mathfrak{n}(S)$ is a Lie subalgebra of $\mathfrak{h}(\alpha, \lambda, S)$ containing $D(\alpha, \lambda)$ and E(S), it follows that $\mathfrak{h}(\alpha, \lambda, S) = \mathbb{F}D(\alpha, \lambda) \ltimes \mathfrak{n}(S)$.

(2) and (3) These are straightforward.

2.4. The uniserial representations $R_{\vec{d},\alpha,S}$. Recall that given a vector space V of dimension n, $\mathfrak{g}_{n,\lambda} = \langle x \rangle \ltimes \mathcal{L}(V)$ and $\mathfrak{g}_{n,\lambda,\ell} = \langle x \rangle \ltimes \mathcal{N}_{\ell}(V)$ (see §2.1).

Given a scalar $\alpha \in F$, a sequence of positive integers $\vec{d} = (d_1, \ldots, d_{\ell+1})$ satisfying

$$(2.6) d_i + d_{i+1} \le n+1 \text{ for all } i \text{ and}$$

(2.7)
$$d_i + d_{i+1} = n+1 \text{ for at least one } i$$

and a sequence $S = (S(1), \ldots, S(\ell))$ as in (2.5), we use (2.1), (2.6) and the universal property of $\mathcal{L}(V)$ to define a representation

$$R_{\vec{d},\alpha,S}:\mathfrak{g}_{n,\lambda}\to\mathfrak{gl}(d),\quad d=|d|,$$

by setting

$$R_{\vec{d},\alpha,S}(x) = D(\alpha,\lambda),$$

$$R_{\vec{d},\alpha,S}(v_j) = \left(\operatorname{ad}_{\mathfrak{gl}(d)} D(\alpha,\lambda) - \lambda\right)^j (E(S)), \quad 0 \le j \le n-1.$$

It follows from (2.7) that $V \cap \ker R_{\vec{d},\alpha,S} = 0$ and we also have

$$R_{\vec{d},\alpha,S}(\mathfrak{g}_{n,\lambda}) = \mathfrak{h}(\alpha,\lambda,S),$$
$$\mathcal{L}(V)^{\ell} \subset \ker R_{\vec{d},\alpha,S}.$$

In particular, we also obtain a representation of the truncated Lie algebra

$$\bar{R}_{\vec{d},\alpha,S}:\mathfrak{g}_{n,\lambda,\ell}\to\mathfrak{gl}(d).$$

Since, for all i = 1, ..., d-1, either $R(x)_{i,i+1} \neq 0$ or $R(v_0)_{i,i+1} \neq 0$, it follows that $R_{\vec{d},\alpha,S}$ and $\bar{R}_{\vec{d},\alpha,S}$ are uniserial representations of $\mathcal{L}(V)$ and $\mathcal{N}_{\ell}(V)$ respectively.

Definition 2.6. If the sequence S is normalized, we say that $R_{\vec{d},\alpha,S}$ and $\bar{R}_{\vec{d},\alpha,S}$ are *normalized*.

Proposition 2.7. Assume $\lambda \neq 0$. The normalized representations $R_{\vec{d},\alpha,S}$ (resp. $\bar{R}_{\vec{d},\alpha,S}$) of $\mathfrak{g}_{n,\lambda}$ (resp. $\mathfrak{g}_{n,\lambda,\ell}$) are non-isomorphic to each other.

Proof. It is enough to consider the case for the representations of $\mathfrak{g}_{n,\lambda}$. Considering the eigenvalues of the image of x as well as their multiplicities, the only possible isomorphisms are easily seen to be between $R_{\vec{d},\alpha,S}$ and $R_{\vec{d},\alpha,S'}$. Assume that $R_{\vec{d},\alpha,S}$ is isomorphic to $R_{\vec{d},\alpha,S'}$. Then there is $P \in \mathrm{GL}(|\vec{d}|)$ satisfying

(2.8)
$$PR_{\vec{d},\alpha,S}(y)P^{-1} = R_{\vec{d},\alpha,S'}(y), \text{ for all } y \in \mathfrak{g}_{n,\lambda}$$

Considering y = x in (2.8) we obtain that P must commute with $D(\alpha, \lambda)$, and hence $P \in G(\vec{d})$ (see Proposition 2.4). Finally, considering $y = v_0$ in (2.8), it follows from Proposition 2.4 that S = S'.

3. Classification of all uniserial $\mathfrak{g}_{n,\lambda}$ -modules

In this section we classify all uniserial (finite dimensional) representations of $\mathfrak{g}_{n,\lambda} = \langle x \rangle \ltimes \mathcal{L}(V)$, where V is a vector space of dimension n over an algebraically closed filed \mathbb{F} of characteristic 0 on which x acts via a single Jordan block $J_n(\lambda)$. First we prove a proposition that provides information about the structure of a uniserial representation of certain class of Lie algebras.

Proposition 3.1. Let \mathfrak{n} be a solvable Lie algebra and let x be a derivation of \mathfrak{n} such that $[\mathfrak{n},\mathfrak{n}]$ has an x-invariant complement, say \mathfrak{p} , in \mathfrak{n} , and x acts on \mathfrak{p} via a single Jordan block $J_n(\lambda)$, $\lambda \neq 0$. Let v_0, \ldots, v_{n-1} be a basis \mathfrak{p} such that

(3.1)
$$x(v_0) = \lambda v_0 + v_1, x(v_1) = \lambda v_1 + v_2, \dots, x(v_{n-1}) = \lambda v_{n-1}$$

Set $\mathfrak{g} = \langle x \rangle \ltimes \mathfrak{n}$ and let $T : \mathfrak{g} \to \mathfrak{gl}(U)$ be a uniserial representation of dimension d such that

$$\ker(T) \cap \mathfrak{p} = 0.$$

Then there is a basis \mathcal{B} of U, a unique scalar $\alpha \in \mathbb{F}$, a unique sequence of positive integers $\vec{d} = (d_1, \ldots, d_{\ell+1}), \ \ell \geq 1$, satisfying $|\vec{d}| = d$ and

$$\begin{aligned} &d_i + d_{i+1} \leq n+1 \text{ for all } i, \\ &d_i + d_{i+1} = n+1 \text{ for at least one } i; \end{aligned}$$

and a unique normalized sequence $S = (S(1), \ldots, S(\ell))$ of matrices such that the matrix representation $R : \mathfrak{g} \to \mathfrak{gl}(d)$ associated to \mathcal{B} satisfies:

(3.2)
$$R(x) = J^{d_1}(\alpha) \oplus J^{d_2}(\alpha - \lambda) \oplus \dots \oplus J^{d_{\ell+1}}(\alpha - \ell\lambda),$$
$$\begin{pmatrix} 0 & S(1) & 0 & \dots & 0 \\ 0 & G(\alpha) & 0 & 0 \end{pmatrix}$$

(3.3)
$$R(v_0) = \begin{pmatrix} 0 & 0 & S(2) & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \ddots & S(\ell) \\ 0 & 0 & \dots & \dots & 0 \end{pmatrix}$$

and every R(y), $y \in \mathfrak{n}$, is block strictly upper triangular relative to \vec{d} . Moreover, if \mathfrak{n}^{k-1} is not contained in ker(T), then $\ell \geq k$.

Proof. This proof follows the lines of the proof of [?, Theorem 3.2]. It follows from Lie's theorem that there is a basis $\mathcal{B} = \{u_1, \ldots, u_d\}$ of U such that the corresponding matrix representation $R : \mathfrak{g} \to \mathfrak{gl}(d)$ consists of upper triangular matrices. Set

D = R(x) and $E_k = R(v_k), \ 0 \le k \le n - 1.$

Conjugating by an upper triangular matrix (see [?, Lemma 2.2] for the details) we may assume that
$$D$$
 satisfies:

$$(3.4) D_{i,j} = 0 ext{ whenever } D_{i,i} \neq D_{j,j}.$$

Since $\lambda \neq 0$ we have that the action of x on \mathfrak{p} is invertible and hence $\mathfrak{p} \subset [\mathfrak{g}, \mathfrak{g}]$. This implies that

(3.5)
$$E_k \text{ is strictly upper triangular for all } 0 \le k \le n-1,$$

and hence
$$R(v)_{i,i+1} = 0$$
 for all $1 \le i < d$ and $v \in [\mathfrak{n}, \mathfrak{n}]$.

On the other hand we know, from [?, Lemma 2.1], that for every $1 \le i \le d$ there is some $y \in \mathfrak{g}$ such that

(3.6)
$$R(y)_{i,i+1} \neq 0.$$

This, combined with (3.5) and (3.4), imply that

Step 1. If $D_{i,i} \neq D_{i+1,i+1}$ then $D_{i,i} - D_{i+1,i+1} = \lambda$ and $(E_0)_{i,i+1} \neq 0$.

Indeed, since T is a representation, it follows from (3.1) that, for $1 \le i < d$,

(3.8)
$$(\operatorname{ad}_{\mathfrak{gl}(d)}D - \lambda)^k E_0 = \begin{cases} E_k, & \text{if } 0 \le k < n; \\ 0, & \text{if } k = n. \end{cases}$$

Since D is upper triangular and E_0 is strictly upper triangular, this implies that, for $1 \leq i < d$,

(3.9)
$$(D_{i,i} - D_{i+1,i+1} - \lambda)^k (E_0)_{i,i+1} = \begin{cases} (E_k)_{i,i+1}, & \text{if } 0 \le k < n; \\ 0, & \text{if } k = n. \end{cases}$$

Now, if $D_{i,i} \neq D_{i+1,i+1}$ then it follows from (3.7) and (3.9) that $(E_0)_{i,i+1} \neq 0$ and case k = n in (3.9) implies $D_{i,i} - D_{i+1,i+1} = \lambda$.

Step 2. For some integer $\ell \geq 0$, there is a unique sequence $\vec{d} = (d_1, \ldots, d_{\ell+1})$ of positive integers, with $d = |\vec{d}|$, such that

$$D = D_1 \oplus \cdots \oplus D_{\ell+1}, \quad D_i \in \mathfrak{gl}(d_i),$$

where each D_i has scalar diagonal of scalar $\alpha_i = \alpha - (i-1)\lambda$ for some $\alpha \in \mathbb{F}$.

This follows at once from (3.4) and Step 1, uniqueness is a consequence of the arrangement of the eigenvalues of D.

Step 3. According to the block structure of $\mathfrak{gl}(d)$ given by \vec{d} , $p_{r,r}(E_k) = 0$ for all $1 \leq r \leq \ell + 1$ and $0 \leq k \leq n - 1$.

Indeed, setting $U^j = \operatorname{span}\{u_1, \ldots, u_j\}$ (each U^j is a \mathfrak{g} -submodule of U), we have to show that the endomorphism induced by E_k , say \overline{E}_k , in

$$\bar{U}^r = U^{d_1 + \dots + d_r} / U^{d_1 + \dots + d_{r-1}}$$

is zero. On the one hand, the endomorphism induced by $\operatorname{ad}_{\mathfrak{gl}(d)}D$ in $\mathfrak{gl}(\overline{U}^r)$ is nilpotent. On the other hand, it follows from (3.8) that \overline{E}_k is a generalized eigenvector of eigenvalue λ of the endomorphism induced by $\operatorname{ad}_{\mathfrak{gl}(d)}D$. Since $\lambda \neq 0$ this is a contradiction.

Step 4. According to the block structure of $\mathfrak{gl}(d)$ given by \vec{d} , if $1 \leq i < j \leq \ell + 1$ and $j \neq i + 1$, then $p_{i,j}(E_k) = 0$ for all $0 \leq k \leq n - 1$.

The proof of this uses the same argument used in the proof of Step 3. The point is that $p_{i,j}(E_k)$ corresponds to an eigenvector of eigenvalue $(j-i)\lambda$ of $\operatorname{ad}_{\mathfrak{gl}(d)}D$ and, if $j-i \neq 1$, (3.8) implies that $p_{i,j}(E_k)$ must be zero.

Step 5. Let α as in Step 2. We may assume that D is in Jordan form

$$D = J^{d_1}(\alpha) \oplus J^{d_2}(\alpha - \lambda) \oplus \cdots \oplus J^{d_{\ell+1}}(\alpha - \ell\lambda).$$

Moreover, $\ell \geq 1$ and if \mathfrak{n}^{k-1} is not contained in ker(T), then $\ell \geq k$.

Indeed, by (3.6) and Step 3, the first superdiagonal of every D_i consists entirely of non-zero entries. Thus, for each $1 \le i \le \ell + 1$, there is $P_i \in GL(d_i)$ such that

$$P_i D_i P_i^{-1} = J^{d_i} (\alpha - (i-1)\lambda).$$

Set $P = P_1 \oplus \cdots \oplus P_{\ell+1} \in GL(d)$, then PDP^{-1} is as stated and and PE_kP^{-1} is still strictly block upper triangular with $p_{i,j}(PE_kP^{-1}) = 0$ if $1 \le i \le j \le \ell+1$ and $j - i \ne 1$. Since \mathfrak{n}^{k-1} is obtained by bracketing elements of \mathfrak{p} , it follows from Step 3 that, if $\ell < k$, then $\mathfrak{n}^{k-1} \subset \ker(T)$. In particular, since $\ker(T) \cap \mathfrak{p} = 0$, we have $\ell \ge 1$.

Step 6. For all $1 \le i \le \ell$, $d_i + d_{i+1} \le n+1$ and the equality holds for some *i*.

Indeed, from Step 1 we know that $(E_0)_{d_i,d_i+1} \neq 0$ for all *i*. If $d_i+d_{i+1} > n+1$, for some *i*, it follows from the Clebsh-Gordan decomposition of the tensor product of irreducible representations of $\mathfrak{sl}(2)$ that $(\mathrm{ad}_{\mathfrak{gl}(d)}D - \lambda)^n E_0 \neq 0$, contradicting (3.8) (for the details, see [?, Proposition 2.2]). On the other hand, if $d_i + d_{i+1} < n+1$ for all *i* then Clebsh-Gordan implies that $E_n = (\mathrm{ad}_{\mathfrak{gl}(d)}D - \lambda)^{n-1}E_0 = 0$, which is impossible since ker $(T) \cap \mathfrak{p} = 0$.

Final Step. We may assume
$$E_0 = \begin{pmatrix} 0 & S(1) & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & & \ddots & S(\ell) \\ 0 & 0 & \dots & 0 \end{pmatrix}$$
, for a unique normalized

sequence $S = (S(1), ..., S(\ell)).$

Indeed, it follows from Step 3 and 4 that $E_0 = E(S)$ for some sequence as in (2.5). It follows from Proposition 2.4 that there is a unique normalized sequence $S = (S(1), \ldots, S(\ell))$ and an invertible matrix $P = P_1 \oplus \cdots \oplus P_{\ell+1} \in GL(d)$, with P_i a polynomial in $J^{d_i}(0)$ (and thus commuting with D), such that $PE_0P^{-1} = E(S)$.

Theorem 3.2. Let $\lambda \neq 0$. Every finite dimensional uniserial representation T: $\mathfrak{g}_{n,\lambda} \to \mathfrak{gl}(U)$ satisfying ker $(T) \cap V = 0$ is isomorphic to one and only one normalized representation $R_{\vec{d},\alpha,S}$ with \vec{d} satisfying $|\vec{d}| = \dim U$ and

$$\begin{aligned} d_i + d_{i+1} &\leq n+1 \text{ for all } i, \\ d_i + d_{i+1} &= n+1 \text{ for at least one } i. \end{aligned}$$

Proof. This is a consequence of Propositions 2.7 and 3.1

4. The nilpotency degree of the nilradical
$$\mathfrak{n}(S)$$

The goal of this section is to compute the nilpotency degree of the nilradical $\mathfrak{n}(S)$ of $\mathfrak{h}(\alpha, \lambda, S)$. We will see that, for generic \vec{d} and S, the nilpotency degree of $\mathfrak{n}(S)$ is ℓ . The only exceptions will occur when \vec{d} are *odd-symmetric* (as defined below) with $d_1 = d_{\ell+1} = 1$ and $\phi(E(S)) = E(S)$ (see §2.2).

From now on, set $k = \ell + 1$.

Definition 4.1. Given $\vec{d} = (d_1, \ldots, d_k)$, we say that \vec{d} is symmetric if $d_i = d_{k+1-i}$ for all $i = 1, \ldots, k$. We say that \vec{d} is odd-symmetric if, in addition, k is odd and $d_{(k+1)/2}$ is odd. Also, if $S = (S(1), \ldots, S(k-1))$ is a sequence satisfying (2.5), we say that S is ϕ -invariant if E(S) is invariant by the automorphism ϕ . We notice that it follows from (2.4) that the canonical sequence (see Definition 2.2) is invariant.

Proposition 4.2. Let $\vec{d} = (d_1, \ldots, d_k)$ be odd-symmetric, set $d = |\vec{d}|$, and let $S = (S(1), \ldots, S(k-1))$ be a ϕ -invariant sequence satisfying (2.5). Then

$$A_{i,d+1-i} = 0, \qquad i = 1, \dots, \frac{d+1}{2},$$

for all $A \in \mathfrak{h}(\alpha, \lambda, S)$. In particular, if in addition $d_1 = 1$ then $p_{1,k}(\mathfrak{h}(\alpha, \lambda, S)) = 0$. *Proof.* It follows from Proposition 2.5 that it is enough to prove the result for $\alpha = \lambda = 0$. The hypothesis on \vec{d} implies that $\phi(D(0,0)) = D(0,0)$ and the hypothesis on S says that $\phi(E(S)) = E(S)$ and since it follows that $\phi(A) = A$ for all $A \in \mathfrak{h}(0,0,S)$. Therefore, since \vec{d} is odd-symmetric (and hence d is odd), the definition of ϕ implies

4.1. The nilradical corresponding to the canonical sequence S = C. In this subsection we will consider the case $(\alpha, \lambda, S) = (0, 0, C)$. In order to simplify the notation, let $\mathfrak{h} = \mathfrak{h}(0, 0, C)$ and E = E(C).

Associated to the Lie algebra \mathfrak{h} we define, for $1 \leq i < j \leq k$, the numbers

$$r_{i,j} = \begin{cases} 0, & \text{if } p_{i,j}(X) = 0 \text{ for all } X \in \mathfrak{h};\\ \min\{\operatorname{rk}(p_{i,j}(X)) : 0 \neq X \in \mathfrak{h}\}, & \text{otherwise.} \end{cases}$$

Proposition 4.3. $r_{i,j} \in \{0, 1, 2\}.$

Proof. It follows from the definition of E that $r_{i,i+1} = 1$, for $1 \le i \le k-1$. For $l \ge 1$, $r_{i,i+l+1} \le 2$ is a consequence of the following two facts. First, if X is any element of block-degree l, then $\operatorname{rk}(p_{i,i+l+1}([E, X])) \le 2$, since all the elements of $p_{i,i+l+1}([E, X])$ are zero, with the possible exception of those in the first column and the last row.

On the other hand, set j = i + l + 1, we will prove that if $p_{i,j}([E, X]) = 0$ for all $X \in \mathfrak{h}$, then $r_{i,j} = 0$. By induction we will show that

$$p_{i,j}([\mathrm{ad}(D)^r E, X]) = 0, \qquad r \ge 0; \ X \in \mathfrak{h}.$$

The case r = 0 is given. Moreover, given the case r,

$$p_{i,j}([\mathrm{ad}(D)^{r+1}E, X]) = p_{i,j}([D, \mathrm{ad}(D)^r E], X])$$

= $-p_{i,j}([\mathrm{ad}(D)^r E, [D, X]]) + p_{i,j}([D, [\mathrm{ad}(D)^r E, X]])$
= $p_{i,i}(D)p_{i,j}([\mathrm{ad}(D)^r E, X]) - p_{i,j}([\mathrm{ad}(D)^r E, X])p_{j,j}(D)$
= 0.

Since we know, from Proposition 2.5, that the elements $\operatorname{ad}(D)^r E$, $r \ge 0$, generates \mathfrak{n} , it follows that $r_{i,j} = 0$.

Proposition 4.4. If $A \in \mathfrak{gl}(d)$ has the property

$$\left(p_{i,j}(A)\right)_{a,b} = \begin{cases} 1, & \text{if } a, b = a_0, b_0; \\ 0, & \text{otherwise;} \end{cases}$$

then the entries of $p_{i,j}(\mathrm{ad}(D)^k(A))$ are zero except those contained in the diagonal $b-a=b_0-a_0+k$, in which case:

$$(p_{i,j}(\mathrm{ad}(D)^k(A)))_{a_0-i,b_0+k-i} = (-1)^{k-i} \binom{k}{i}$$

In particular, $(p_{i,j}(A))_{d_i,1} = 1$ then all the entries of $p_{i,j}(\mathrm{ad}(D)^{d_i+d_j-1}(A))$ are zero except

$$(p_{i,j}(\mathrm{ad}(D)^{d_i+d_j-2}(A)))_{1,d_j} = (-1)^{d_j-1} \binom{d_i+d_j-2}{d_i-1}.$$

Proof. This is an straightforward computation.

Proposition 4.5. If there is $X \in \mathfrak{h}$ such that $(p_{i,j}(X))_{d_{i,1}} \neq 0$, then $r_{i,j} = 1$.

Proof. This is consequence of Proposition 4.4.

Proposition 4.6. If $r_{i,j} = 1$ then there exists $X \in \mathfrak{h}$ such that

(4.1)
$$p_{i,j}(X) = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{pmatrix}$$

and if $r_{i,j} = 2$ then there exists $X \in \mathfrak{h}$ such that

(4.2)
$$p_{i,j}(X) = \begin{pmatrix} 0 & \dots & 1 & * \\ 0 & \dots & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{pmatrix}.$$

Moreover, for any $X \in \mathfrak{h}$ satisfying $p_{i,j}(X) \neq 0$ then there exists k_0 such that $p_{i,j}(\mathrm{ad}(D)^{k_0}(X))$ is either as (4.1) or as (4.2).

Proof. Let
$$X \in \mathfrak{h}$$
 be such that $\operatorname{rk}(p_{i,j}(X)) = r_{i,j}$, and let
 $t_0 = \min\{t = b - a : (p_{i,j}(X))_{a,b} \neq 0\},$

$$T_0 = \{(a,b) : b - a = t_0 \text{ and } (p_{i,j}(X))_{a,b} \neq 0\}$$

If $r_{i,j} = 1$ then there is only one pair $(a_0, b_0) \in T_0$. If $k_0 = d_j - 1 - t_0$ then it follows from Proposition 4.4 that $ad(D)^{k_0}(X)$ is, up to a non-zero scalar, as stated.

If $r_{i,j} = 2$ then there are at most two possible pairs $(a, b) \in T_0$. It follows from Proposition 4.4 that, if $k_0 = d_j - 2 - t_0$, then the only possible non-zero entries of $p_{i,j}(\mathrm{ad}(D)^{k_0}(X))$ are

$$(p_{i,j}(X))_{1,d_j-1}$$
 $(p_{i,j}(X))_{1,d_j}$
 $(p_{i,j}(X))_{2,d_j}$.

Moreover, the pair

(4.3)
$$\left(\left(p_{i,j}(X) \right)_{1,d_j-1}, \left(p_{i,j}(X) \right)_{2,d_j} \right)$$

is a linear combination of two pairs of two consecutive binomial numbers $\binom{k_0}{l}$, $0 \leq l \leq k$, that is

$$\left(\left(p_{i,j}(X)\right)_{1,d_j-1}, \ \left(p_{i,j}(X)\right)_{2,d_j}\right) = x_1\left(\binom{k_0}{l_1}, \ \binom{k_0}{l_1+1}\right) + x_2\left(\binom{k_0}{l_2}, \ \binom{k_0}{l_2+1}\right)$$

with $0 \leq l_1 \neq l_2 \leq k_0$ for some $(x_1, x_2) \neq (0, 0)$. Since $\binom{k_0}{l_1}$, $\binom{k_0}{l_1+1}$ and $\binom{k_0}{l_2}$, $\binom{k_0}{l_2+1}$ are linearly independent, it follows that the pair (4.3) is non-zero. Finally, we conclude that $\operatorname{ad}(D)^{k_0}(X)$ is, up to a non-zero scalar, as stated because otherwise we would have $r_{i,j} = 1$.

Proposition 4.7. If there exists $X \in \mathfrak{h}$ such that either

$$p_{i,j}(X) = 0$$
 and $p_{i+1,j+1}(X) \neq 0$

or

 $p_{i,j}(X) \neq 0$ and $p_{i+1,j+1}(X) = 0$

then $r_{i,j+1} = 1$. Moreover, any of the following: (a1) $r_{i,j} = 0$ and $r_{i+1,j+1} \neq 0$, (a2) $r_{i,j} \neq 0$ and $r_{i+1,j+1} = 0$, (b) $r_{i,j} = r_{i+1,j+1} = 1$ and $d_i \neq d_{j+1}$, (c1) $r_{i,j} = 1$, $r_{i+1,j+1} = 2$ and $d_i + 1 \neq d_{j+1}$, (c2) $r_{i,j} = 2$, $r_{i+1,j+1} = 1$ and $d_i \neq d_{j+1} + 1$. implies the existence of such an X and thus $r_{i,j+1} = 1$.

Proof. First, if there exists $X \in \mathfrak{h}$ such that $p_{i,j}(X) = 0$ and $p_{i+1,j+1}(X) \neq 0$, then, by Proposition 4.6, we may assume that X is either as (4.1) or as (4.2). In either case, it is clear that $rk(p_{i,j+1}([E, X])) = 1$.

Now we prove the particular statements. By symmetry, it is enough to prove (a1), (b) and (c1).

Proof of (a1): it is immediate that (a1) implies the existence of $X \in \mathfrak{h}$ such that $p_{i,j}(X) = 0$ and $p_{i+1,j+1}(X) \neq 0$.

Proof of (b): let $X \in \mathfrak{h} \cap \mathcal{D}_{t_X}$ be homogeneous such that all the entries of $p_{i,j}(X)$ are zero except that $(p_{i,j}(X))_{1,d_j} = 1$, as granted by Proposition 4.6. This implies that $t_X = d_{j-1} + \cdots + d_i + (d_j - 1)$.

Similarly, let $Y \in \mathfrak{h} \cap \mathcal{D}_{t_Y}$ be homogeneous such that all the entries of $p_{i+1,j+1}(X)$ are zero except that $(p_{i+1,j+1}(X))_{1,d_{j+1}} = 1$. Now $t_Y = d_j + \cdots + d_{i+1} + (d_{j+1} - 1)$. It follows from the hypothesis that

$$t_Y - t_X = d_{j+1} - d_i \neq 0.$$

Therefore, either $t_Y > t_X$, in which case $p_{i,j}(Y) = 0$ or $t_X > t_Y$, in which case $p_{i+1,j+1}(X) = 0$, and we are done.

Proof of (c1): This is analogous to the proof of (b).

Proposition 4.8. If $r_{i,j} = 1$ and one of the following hold:

 $\begin{array}{ll} (a) \ d_i, d_j > 1, \\ (b1) \ d_j > 1 \ and \ r_{i+1,j+1} = 0, \\ (b2) \ d_i > 1 \ and \ r_{i-1,j-1} = 0, \\ (c) \ r_{i+1,j+1} = r_{i-1,j-1} = 0. \end{array}$

then $r_{i-1,j+1} = 1$.

Proof. Any of these conditions implies that, for any $X \in \mathfrak{h}$,

$$(p_{i-1,j+1}([[X,E],E]])_{d_{i-1},1} = -2(p_{i,j}(X))_{1,d_j}.$$

Since $r_{i,j} = 1$, it follows from Proposition 4.6 that there exists $X \in \mathfrak{h}$ such that $(p_{i,j}(X))_{1,d_j} \neq 0$, and thus $(p_{i-1,j+1}([[X, E], E]])_{d_{i-1},1} \neq 0$. Now Proposition 4.5 implies $r_{i-1,j+1} = 1$.

Proposition 4.9. If $r_{i,j} = 2$, then $r_{i-1,j} \neq 2$ and $r_{i,j-1} \neq 2$.

Proof. By symmetry, it is enough to show $r_{i,j-1} \neq 2$. We use induction on k. For k = 3 there is nothing to prove, since $r_{1,2} = 1$. Let k > 3, we can assume i = 1 and j = k. Arguing by contradiction, we assume $r_{1,k-1} = 2$. By inductive hypothesis $r_{1,k-2}, r_{2,k-1} \neq 2$ and, since $r_{1,k-1} = 2$, Proposition 4.7 (a1), (a2), implies that

$$r_{1,k-2}, r_{2,k-1} = 1$$

Since $r_{1,k-1} = 2$ then $d_{k-1} > 1$ and hence, since $r_{2,k-1} = 1$ and $r_{1,k} = 2$, Proposition 4.8 (a) implies $d_2 = 1$ and thus $r_{2,k} \neq 2$. Since $r_{1,k} = 2$, Proposition 4.7 (a2) implies $r_{2,k} = 1$. Proposition 4.7 (c2) implies $d_1 = d_k + 1$.

Now we have $r_{3,k} \neq 0$ since, otherwise, Proposition 4.8 (b1), applied to (i, j) = (2, k-1) would imply that $r_{1,k} = 1$. Moreover, we claim $r_{3,k} = 2$.

If $r_{3,k} = 1$ we can find a homogeneous $X \in \mathfrak{h} \cap \mathcal{D}_t$ such that $p_{3,k}(X)$ is as stated in Proposition 4.6, that is $(p_{3,k}(X))_{1,d_k} = 1$. Since $1 = d_2 < 2 \leq d_k$, Proposition 2.1 implies $p_{2,k-1}(X) = 0$. Since $r_{1,k-1} = 2$, Proposition 4.7 implies $p_{1,k-2}(X) = 0$. Therefore

$$p_{1,k-1}([X,E]) = 0$$
 and $p_{2,k}([X,E]) \neq 0$

and, once again, Proposition 4.7 implies $r_{1,k} = 1$, a contradiction. We have proved that $r_{3,k} = 2$ and hence $d_3 \ge 2$, $r_{3,k-1} \ne 2$ by the inductive hypothesis, and $r_{3,k-1} \ne 0$ by Proposition 4.7. Therefore $r_{3,k-1} = 1$ and, it follows from Proposition 4.6 that there is a homogeneous $X \in \mathfrak{h}$ as in (4.1), that is with $(p_{3,k-1}(X))_{1,d_k-1} = 1$. Taking into account that $d_3, d_{k-1} \ge 2$ it is not difficult to see that

$$(p_{1,k}([[[X, E], E], E])))_{1, d_1} = 3$$

which implies that $r_{1,k} = 1$, a contradiction.

Proposition 4.10. $r_{1,k} = 2$ *implies* $d_1 = d_k > 1$.

Proof. Since $r_{1,k} = 2$, we have $d_{1,k} > 1$. We must show that $d_1 = d_k$. We know by Proposition 4.9 that $r_{1,k-1}, r_{2,k} \neq 2$. Also, by fact Proposition 4.7, it follows that $r_{1,k-1}, r_{2,k} \neq 0$. Therefore $r_{1,k-1} = r_{2,k} = 1$. Now Proposition 4.7 (b) implies $d_1 = d_k$.

Proposition 4.11. If $r_{1,k} = 0$ then $d_1 = 1$ or $d_k = 1$.

Proof. We will consider all possible values for $r_{1,k-1}, r_{2,k}$.

Case $r_{1,k-1} = 0$, $r_{2,k} \neq 0$; or $r_{1,k-1} \neq 0$, $r_{2,k} = 0$: Impossible by Proposition 4.7.

Case $r_{1,k-1} = r_{2,k} = 1$: It follows from Proposition 4.7 (b) that $d_1 = d_k$ and it is clear that if $d_1 \neq 1$ then $r_{1,k} \neq 0$, thus $d_1 = 1$.

Case $r_{1,k-1} = r_{2,k} = 2$: This implies that $d_1, d_2, d_{k-1}, d_k \ge 2$. Consider $r_{2,k-1}$. It is not 0 by Proposition 4.7 and it can not be 2 by Proposition 4.9. Hence $r_{2,k-1} = 1$ and now Proposition 4.8 implies $r_{1,k} = 1$ contradicting our hypothesis.

Case $r_{1,k-1} = 2$, $r_{2,k} = 1$: This implies $d_1 > 1$. It follows from Propositions 4.9 and 4.7 (a2) that $r_{2,k-1} = 1$. Then, since $d_1 > 1$ if we also had $d_k > 1$, we would have $r_{1,k} = 1$ by Proposition 4.8. Thus $d_k = 1$.

Case $r_{1,k-1} = r_{2,k} = 0$: By the induction hypothesis, either the claim is true or $d_1, d_k > 1$ and $d_2 = d_{k-1} = 1$. We assume, by contradiction that

$$d_1, d_k > 1$$
 and $d_2 = d_{k-1} = 1$.

Let j_0 be the largest j such that

 $r_{i,k-j+i} = 0$ for all $i = 1, \ldots, j$.

Clearly $2 \leq j_0 \leq k-2$ and, again, the induction hypothesis imply

(4.4)
$$d_j = d_{k+1-j} = 1 \text{ for all } 2 \le j \le j_0$$

Since, by definition of j_0 , we have $r_{i,k-(j_0+1)+i} \neq 0$ for some i, it follows from Proposition 4.7 (a1) or (a2) that in fact $r_{i,k-(j_0+1)+i} \neq 0$ for all $i = 1, \ldots, j_0 + 1$. Moreover, (4.4) implies that

$$r_{i,k-(j_0+1)+i} = 1$$
 for all $i = 2, \ldots, j_0$.

Let $X \in \overline{D}_{k-(j_0+1)}$, $X \neq 0$ such that [D, X] = 0. By the definition of j_0 , we must have [E, X] = 0 and thus [E + D, X] = 0. Since D + E is principal nilpotent, it follows that, up to scalar, X is a power of D + E. This implies that $d_1 = d_k = 2$ and $r_{1,k-j_0} = r_{j_0+1,k} = 2$. At this point we know that

Moreover, there must exists $Y \in \overline{\mathcal{D}}_{k-(j_0+2)}$ such that [D,Y] = X. This implies that $d_{j_0+1} = d_{k-j_0} = 2$ and

	(a_0	0	0	0			0	$0 $ \rangle
		0	0	0	0			0	0
			0	a_1	0				
						·			
Y =						a_{j_0-1}	0	0	0
							a_{j_0}	0	0
							0	0	0
								0	a_{j_0+1}
								:	:)

But with this Y it is impossible to satisfy the condition [D, Y] = X.

Now we can prove the crucial step.

Proposition 4.12. Let $k \ge 2$ and $\vec{d} = (d_1, \ldots, d_k)$. Then

- (1) If $r_{2,k-1} = 2$ and $d_1 = d_k = 1$ then $r_{1,k} = 0$.
- (2) If $r_{1,k} = 0$ then $d_1 = 1$ and $d_k = 1$.
- (3) If $r_{2,k-1} = 1$ then $r_{1,k} = 1$, unless k = 4 and $\vec{d} = (1, 1, 1, 1)$.
- (4) If $r_{1,k} = 2$ then k is odd and \vec{d} is odd-symmetric with $d_1 = d_k > 1$.
- (5) If $r_{1,k} = 0$ then either k is even and $\vec{d} = (1, ..., 1)$, or k is odd and \vec{d} is odd-symmetric with $d_1 = d_k = 1$.

Proof. We use induction on k. For k = 2 there is nothing to prove. We assume $k \ge 3$ and that the whole proposition is true for lower values of k.

Proof of part (1), we have $r_{2,k-1} = 2$ and $d_1 = d_k = 1$: By induction hypothesis on part (4), $r_{2,k-1} = 2$ implies that k-2 is odd and \vec{d} is odd-symmetric. Proposition 4.2 and $d_1 = d_k = 1$ imply $r_{1,k} = 0$.

Proof of part (2), we have $r_{1,k} = 0$: As in Proposition 4.11, we will consider all possible values for $r_{1,k-1}, r_{2,k}$.

The cases $r_{1,k-1} = 0$, $r_{2,k} \neq 0$ and $r_{1,k-1} \neq 0$, $r_{2,k} = 0$ are impossible by Proposition 4.7.

The case $r_{1,k-1} = r_{2,k} = 0$ follows by induction hypothesis on part (2).

The cases $r_{1,k-1} = r_{2,k} = 1$ and $r_{1,k-1} = r_{2,k} = 2$ are as in Proposition 4.11. In particular, $r_{1,k-1} = r_{2,k} = 1$ implies $d_1 = d_k = 1$.

Finally, let us prove that the case $r_{1,k-1} = 2$, $r_{2,k} = 1$ is impossible.

This case implies that $d_{k-1}, d_1 \geq 2$ and thus, by Proposition 4.11, $d_k = 1$. Proposition 4.7 (c2) implies that $d_1 = 2$. Proposition 4.9 implies $r_{2,k-1} \neq 2$, Proposition 4.7 implies $r_{2,k-1} \neq 0$, and thus $r_{2,k-1} = 1$. Since $d_{k-1} \geq 2$, if $d_2 > 1$, Proposition 4.8 (a) would imply that $r_{1,k} = 1$; hence $d_2 = 1$. Let $l \geq 2$ be the first index such that $d_{l-1} = 1$ but $d_l > 1$. Thus we have

$$2 = d_1, \ 1 = d_2 = \dots = d_{l-1}, \ 2 \le d_l, \ \dots, \ 2 \le d_{k-1}, \ 1 = d_k$$

Now we will show that $r_{l,k-1} \neq 0, 1, 2$, which is a contradiction.

Since $d_l, d_{k-1} \geq 2$, Proposition 4.11 implies $r_{l,k-1} \neq 0$. Let us show that $r_{l,k-1} \neq 1$. Otherwise there would be a homogeneous $X \in \mathcal{D}_t \cap \overline{\mathcal{D}}_{k-1-l}$ such that $\operatorname{rk}(p_{l,k-1}(X)) = 1$ and by Proposition 4.6 we may assume as in (4.1). Since $d_{k-1} \geq 2$ and $X \in \mathcal{D}_t$, it follows that

$$p_{i,k-1-l+i}(X) = 0$$
, for all $j = 2, \ldots, l-1$

and this implies that $\operatorname{rk}(p_{1,k}(\operatorname{ad}(E)^{l}(X))) = 1$, a contradiction.

Let us show that $r_{l,k-1} \neq 2$. If $r_{l,k-1} = 2$ then, by induction hypothesis on (1) we have $r_{l-1,k} = 0$. This implies that $r_{l,k} = r_{l-1,k-1} = 1$ and thus we have a homogeneous $X \in \mathcal{D}_t \cap \overline{\mathcal{D}}_{k-l}$ such that $\operatorname{rk}(p_{l,k}(X)) = 1$, but since $r_{l-1,k} = 0$, Proposition 4.7 implies that $\operatorname{rk}(p_{l-1,k-1}(X)) = 1$ and $p_{l-1,k}([X, E])) = 0$. By Proposition 4.6 we may assume that $p_{l,k}(X)$ and $p_{l-1,k-1}(X)$ are as in (4.1). Now $\operatorname{ad}^{l-1}(E)(X) \neq 0$ which is absurd.

Proof of part (3), we have $r_{2,k-1} = 1$: If $d_1 \neq d_k$, it follows from Proposition 4.10 and part (2) that $r_{1,k} = 1$. Therefore, we assume from now on $d_1 = d_k$. Let us consider now $r_{1,k-1}$ and $r_{2,k}$.

If $r_{1,k-1} = r_{2,k} = 0$, then $r_{1,k} = 0$ and the induction hypothesis on part (5) implies (this does not depend on the parity of k) that $d_i = 1$, for all $1 \le i \le k$ which in turn implies $r_{2,k-1} = 0$, and this can not happen unless k = 4.

The cases $r_{1,k-1} = 0$, $r_{2,k} \neq 0$ and $r_{1,k-1} \neq 0$, $r_{2,k} = 0$ imply that $r_{1,k} = 1$ by Proposition 4.7.

The case $r_{1,k-1} = 2$ implies that $r_{1,k}$ can not by 2 by Proposition 4.9 and that $r_{1,k}$ can not by 0 by part (2), and thus $r_{1,k} = 1$. Similarly, $r_{2,k} = 2$ then $r_{1,k} = 1$.

Therefore, we can assume $r_{1,k-1} = r_{2,k} = 1$ and thus $(d_1, \ldots, d_k) \neq (1, \ldots, 1)$. If $d_{k-1} > 1$ and $d_2 > 1$ then, by Proposition 4.8 (a), $r_{1,k} = 1$. Let i < j be such that $d_i, d_j > 1$ and

(4.5)
$$d_l = 1 \text{ for } j < l \le k \text{ and } 1 \le l < i.$$

We have $r_{i,j} \neq 0$ by Proposition 4.11.

Assume first $r_{i,j} = 1$. This implies that we have a homogeneous $X \in \mathcal{D}_t \cap \mathcal{D}_{j-i}$ such that $\operatorname{rk}(p_{i,j}(X)) = 1$ and, by Proposition 4.6, we may assume $p_{i,j}(X)$ as in (4.1). Since $d_i, d_j > 1$, we have

$$p_{i-q,j+\beta-q}(\mathrm{ad}(E)^{\beta}(X)) = (-1)^{\beta-q} \binom{\beta}{q}.$$

and this implies that $r_{1,k} = 1$.

Now assume $r_{i,j} = 2$. By the induction hypothesis on part (4) we have j + 1 - i odd and

(4.6)
$$(d_i, d_{i+1}, \ldots, d_j)$$
 is odd-symmetric

Also, the induction hypothesis on part (1), implies $r_{i-1,j+1} = 0$ and thus $r_{i-1,j} = r_{i,j+1} = 1$. This implies that we have a homogeneous $X \in \mathcal{D}_t \cap \overline{\mathcal{D}}_{j+1-i}$ such that $\operatorname{rk}(p_{i-1,j}(X)) = 1$, but since $r_{i-1,j+1} = 0$, Proposition 4.7 implies that $\operatorname{rk}(p_{i,j+1}(X)) = 1$ and $p_{i-1,j+1}([X, E])) = 0$. By Proposition 4.6 we may assume that

$$p_{i-1,j}(X) = \begin{pmatrix} 0 & \cdots & 0 & 1 \end{pmatrix}$$
 and $p_{i,j+1}(X) = \begin{pmatrix} x \\ 0 \\ \vdots \\ 0 \end{pmatrix}$

but since $p_{i-1,j+1}([X, E])) = 0$ we have x = 1. This implies that

$$p_{i-q,j+1+\beta-q}(\mathrm{ad}(E)^{\beta}(X)) = \pm \left(\begin{pmatrix} \beta \\ q \end{pmatrix} - \begin{pmatrix} \beta \\ q-1 \end{pmatrix} \right)$$

when i - q > 1 and $j + 1 + \beta - q < k$ (in all these cases the size of block $p_{i-q,j+1+\beta-q}(\mathrm{ad}(E)^{\beta}(X))$ is 1×1) and

$$p_{1,k}(\mathrm{ad}(E)^{k-j+i-2}(X))_{d_{1},1} = \pm \left(\binom{k-j+i-2}{i-1} - \binom{k-j+i-2}{i-2} \right)$$

If this number is not zero, then $\operatorname{rk}(p_{1,k}(\operatorname{ad}(E)^{k-j+i-2}(X))) = 1$ and thus $r_{1,k} = 1$. Otherwise

$$\binom{k-j+i-2}{i-1} = \binom{k-j+i-2}{i-2}$$

and hence j = k + 1 - i. This, together with (4.5) and (4.6), imply k odd and

 $(d_2, d_3 \dots, d_{k-1})$ is odd-symmetric.

Now, Proposition 4.2 implies $r_{2,k-1} = 0$, a contradiction.

Proof of parts (4) and (5), we have $r_{1,k} \neq 1$: It follows from part (3) that $r_{2,k-1} \neq 1$. We now apply the induction hypothesis on parts (4) and (5) and we consider the cases k even and k odd.

If k is even, then $(d_2, \ldots, d_{k-1}) = (1, \ldots, 1)$ (in particular $r_{2,k-1} = 0$). We may assume $d_1 \ge d_k$, we will show that $d_1 = d_k = 1$.

Let $X = \operatorname{ad}(D)^{d_1-1}(E) \in \mathcal{D}_{d_1} \cap \overline{\mathcal{D}}_1$, we have

$$p_{1,2}(X) = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}$$

If $d_1 > d_k$ then $p_{\alpha,1+\alpha}(X) = 0$ for all $2 \le \alpha \le k-1$ and it is clear that $\operatorname{rk}(\operatorname{ad}(E)^{k-1}(X)) = 1$ and hence $r_{1,k} = 1$, a contradiction. Therefore $d_1 = d_k$. If $d_1 = d_k > 1$ then $p_{\alpha,\alpha+1}(X) = 0$ for all $2 \le \alpha \le k-2$ and

 $p_{k-1,k}(X) = \begin{pmatrix} 0 & \cdots & 0 & (-1)^{d_k-1} \end{pmatrix}.$

$$p_{1,k}\left(\mathrm{ad}(D+E)^{(k-1)+(d_k-1)}(X)\right) = \begin{pmatrix} 0 & \dots & (-1)^{k+d_k} & 0\\ 0 & \dots & 0 & (-1)^{d_k-1}\\ \vdots & \vdots & \vdots & \vdots\\ 0 & \dots & 0 & 0 \end{pmatrix}$$

and since k is even, we obtain $\operatorname{rk}\left(p_{1,k}\left(\operatorname{ad}(D+E)^{(k-1)+(d_k-1)+1}(X)\right)\right) = 1$, a contradiction. Therefore $d_1 = d_k = 1$.

If k is odd, then the induction hypothesis on parts (4) and (5) implies that (d_2, \ldots, d_{k-1}) is odd-symmetric. If $r_{1,k-1} \neq 1$, the induction hypothesis on parts (4) and (5) implies $(d_1, \ldots, d_{k-1}) = (1, \ldots, 1)$ and thus $d_k = 1$ (otherwise we would obtain $r_{1,k} = 1$). Hence $r_{1,k-1} = 1$ and similarly $r_{2,k} = 1$. Now $r_{1,k} \neq 1$, part (2) and Proposition 4.10 imply $d_1 = d_k$ and thus (d_1, \ldots, d_k) is odd-symmetric. Finally, Proposition 4.2 and item (2) imply that $r_{1,k} = 2$ if and only if $d_1 = d_k > 1$.

Summarizing, we have proved the following theorem.

Theorem 4.13. Let $k \geq 2$ and $\vec{d} = (d_1, \ldots, d_k)$. Then the nilpotency degree of $\mathfrak{n}(C)$ is k-1 except when $r_{1,k} = 0$. This occurs if and only if

- (1) $\vec{d} = (1, ..., 1)$, in which case \mathfrak{n} is 1-dimensional abelian.
- (2) k is odd, \vec{d} is odd-symmetric with $d_1 = d_k = 1$, in which case the nilpotency degree is k 2.

In addition, $r_{1,k} = 2$ if and only if k is odd, \vec{d} is odd-symmetric with $d_1 = d_k > 1$.

Corollary 4.14. If l < k and $r_{i,l+i} = 0$ for i = 1, ..., k - l, then $\vec{d} = (1, ..., 1)$.

Proof. By hypothesis, all sequences (d_1, \ldots, d_{l+1}) , (d_2, \ldots, d_{l+1}) , up to (d_{k-l}, \ldots, d_k) , fall in the cases of parts (5) and (4) of Proposition 4.12.

CIEM-CONICET, FAMAF-UNIVERSIDAD NACIONAL DE CÓRDOBA, ARGENTINA. *E-mail address*: cagliero@famaf.unc.edu.ar

CIEM-CONICET, FAMAF-UNIVERSIDAD NACIONAL DE CÓRDOBA, ARGENTINA. E-mail address: levstein@famaf.unc.edu.ar

Department of Mathematics and Statistics, University of Regina, Canada $E\text{-}mail \ address: \texttt{fernand}.szechtman@gmail.com}$

Now