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Abstract. Given a field F of characteristic 0, we consider solvable Lie alge-

bras g of block upper triangular matrices on two generators. Imposing mild
conditions on these generators, we prove that the nilpotency degree of the nil-

radicals n = [g, g] is as large as possible, namely the number of diagonal blocks

minus one.
As an application when F is algebraically closed, let N`(V ) denote the

free `-step nilpotent Lie algebra associated to a given F -vector space V . As

a consequence of the above degree, we obtain a complete classification of all
uniserial representations of the solvable Lie algebra g = 〈x〉nN`(V ), where x

acts on V via an arbitrary invertible Jordan block.

1. Introduction

We fix throughout a field F of characteristic 0. All Lie algebras and representa-
tions considered in this paper are assumed to be finite dimensional over F , unless
explicitly stated otherwise.

Given a 5-tuple (`, d, α, λ,X), where ` is a positive integer, d = (d1, . . . , d`+1)
is a sequence of ` + 1 positive integers, α, λ ∈ F , and X = (X(1), . . . , X(`)) is a
sequence of ` matrices X(i) ∈ Mdi×di+1

such that X(i)di,1 6= 0 for all i, consider
the matrices D,E ∈ gl(d), d = d1 + · · ·+ d`+1, given in block form by

D = Jd1(α)⊕ Jd2(α− λ)⊕ · · · ⊕ Jd`+1(α− `λ),

where Jp(β) denotes the upper triangular Jordan block of size p and eigenvalue β,

E =



0 X(1) 0 . . . 0
0 0 X(2) . . . 0
...

...
. . .

. . .
...

0 0 . . .
. . . X(`)

0 0 . . . . . . 0

 .

The Lie subalgebra of gl(d) generated by D and E is easily seen to be equal to 〈D〉n
n, where n is nilpotent. Theorem ?? proves that, except for a few extraordinary
cases, the nilpotency degree of n is exactly `.

Suppose F is algebraically closed. Theorem ?? uses the above bound to give
a complete classification of all uniserial representations of the solvable Lie algebra
g = g∗∗∗∗∗,`,n = 〈x〉nN`(V ), where V is a vector space of dimension n ≥ 1, N`(V )
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is the free `-step nilpotent Lie algebra associated to V , and x acts on V via a single
Jordan block Jn(λ), λ 6= 0.

A representation R : g → gl(U) is relatively faithful if ker(R) ∩ V = 0 and
ker(R) ∩ n`−1 is properly contained in n`−1. It suffices to classify all uniserial
representations of g that are relatively faithful. Indeed, let R : g → gl(U) be
a uniserial representation. If V ⊆ ker(R) then R is determined by a uniserial
representation 〈x〉 → gl(U). The Jordan normal form suffices to classify such
representations. We may thus assume without loss of generality that V is not
contained in ker(V ). If (0) 6= ker(R) ∩ V 6= V , then R is determined by a uniserial
representation R : g∗∗∗∗,`,m → gl(U), where g∗∗∗∗,`,m = 〈x〉nN`(V ), V is a factor

of V by an x-invariant subspace, x acts on V via an invertible Jordan block Jm(λ),
1 ≤ m < n, and ker(R) ∩ V = 0. Hence, we may assume without loss of generality
that ker(R) ∩ V = 0. Let 1 < s ≤ ` be the smallest positive integer such that
ns is contained in ker(R). Then R is determined by a uniserial representation
R : g∗∗∗∗,s,n :→ gl(U), where g∗∗∗∗,s,n = 〈x〉 n n, n = n/ns, and ns−1 is not

contained in the kernel of R. Therefore, we may assume without loss of generality
that ker(R) ∩ V = 0 and that n`−1 6⊂ ker(R), that is, that R is relatively faithful.

The degenerate case n = 1 appears as a special case in [?]. The cases ` = 1 and
` = 2 have recently been solved in [?] and [?], respectively. Without resorting to
any of these cases, we will obtain the following classification, valid for all ` and n.

Let v0, . . . , vn−1 be a basis of V such that

[x, v0] = λv0 + v1, [x, v1] = λv1 + v2, . . . , [x, vn−1] = λvn−1.

Given a sequence ~d = (d1, . . . , d`+1) of `+ 1 positive integers satisfying

max
1≤i≤l

{di + di+1} = n+ 1,

and a scalar α ∈ F , we define a representation R = R~d,X,α : g → gl(d), where

d = d1 + · · ·+ d`+1, in block form, in the following manner:

R(x) = A = Jd1(α)⊕ Jd2(α− λ)⊕ · · · ⊕ Jd`+1(α− `λ),

R(vj) = (adgl(d)A− λ1gl(d))
j



0 X(1) 0 . . . 0
0 0 X(2) . . . 0
...

...
. . .

. . .
...

0 0 . . .
. . . X(`)

0 0 . . . . . . 0

 , 0 ≤ j ≤ n− 1.

This extends uniquely to a representation g→ gl(d) by the universal property that
defines of N`(V ).

Conjugating all R(y), y ∈ g, by a suitable block diagonal matrix commuting
with A, we may normalize R, in the sense that the last row of every X(i) is the
first canonical vector of F di+1 and the first column of X(1) is the last canonical
vector of F d1 . The representation R is always uniserial. It is also relatively faithful,
except for a few extraordinary cases that occur when n > 1. Theorem ?? proves
that, when n > 1, every relatively faithful uniserial representation of g is isomorphic
to one and only one normalized representation R~d,X,α of non-extraordinary type

(the degenerate case can be found in Theorem ??).
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2. Preliminaries and notation

2.1. The Lie algebras gn,λ and gn,λ,`. If g is a Lie algebra, let {gi : i ≥ 0} be
the lower central series, that is g0 = g and gi+1 = [g, gi].

Let V be a vector space of dimension n ≥ 2 and let L(V ) be the free Lie algebra
associated to V (or the free Lie algebra on n generators). For ` ≥ 1, let

N`(V ) = L(V )/L(V )`

be the free `-step nilpotent Lie algebra associated to V .
Given an integer p ≥ 1 and α ∈ F , we write Jp(α) (resp. Jp(α)) for the lower

(resp. upper) triangular Jordan block of size p and eigenvalue α. Let x ∈ End(V )
the linear map acting on V via a single Jordan block Jn(λ). In particular V has a
basis {v0, . . . , vn−1} such that

(2.1) (adx− λ)kv0 =

{
vk, if 0 ≤ k < n;

0, if k = n.

We extend the action of x on V to L(V ) so that x becomes a Lie algebra derivation.
This action preserves L(V )` and thus x also acts by derivations on N`(V ). Let

gn,λ = 〈x〉n L(V ) and gn,λ,` = 〈x〉nN`(V )

be the corresponding semidirect products.

2.2. Gradings in gl(d) and the outer automorphism. If ~d = (d1, . . . , d`+1) is

a sequence of ` + 1 positive integers, we define |~d| = |~d|1 = d1 + · · · + d`+1. A

sequence ~d provides gl(d), d = |~d|, with a block structure and we define

pi,j : gl(d)→Mdi,dj

the projection onto the (i, j)-block.
We consider, in gl(d) two ‘diagonal’ gradings: one associated to the actual diag-

onals of gl(d), that is

(2.2) Dt = {A ∈ gl(d) : Aij = 0 if j − i 6= t};

and the other one associated to the block-diagonals of gl(d), that is

(2.3) D̄t = {A ∈ gl(d) : pij(A) = 0 if j − i 6= t}.

We call the degrees (2.2) and (2.3) diagonal-degree and block-degree respectively.
The proof of the following proposition is straightforward. Ojo con las a,b y t sue
se usan después At, ai,j , etc

Proposition 2.1. If A ∈ Dt with
(
pi,j(A)

)
a,b
6= 0, (with 1 ≤ a ≤ di and 1 ≤ b ≤

dj) then

t = dj−1 + . . . di + (b− a).

In particular, if either

dj+1 − 1 < di − dj + b− a or di − dj + b− a < 1− di+1

then pi+1,j+1(A) = 0. Similarly, if either

di−1 − 1 < b− a or b− a < 1− dj−1
then pi−1,j−1(A) = 0.
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Recall that the map φ : gl(d)→ gl(d) given by

φ(A)i,j = (−1)i−j+1Ad+1−j,d+1−i

gives a representative of the unique nontrivial class of outer automorphisms of sl(d).
In fact, φ is in the class of A 7→ −At, indeed, if K = (ai,j) ∈ gl(d) is the antidiagonal
matrix with ai,d+1−i = (−1)i+1 (ai,j = 0 if i+ j 6= d+ 1), then φ(A) = −KAtK−1.
It is clear that

(2.4) φ|Dt
= (−1)t+1.

2.3. The Lie algebra h(α, λ, S). Given a 5-tuple (`, ~d, α, λ, S), where

• ~d = (d1, . . . , d`+1) is a sequence of `+ 1 positive integers, ` ≥ 1,
• α, λ ∈ F are scalars,
• S = (S(1), . . . , S(`)) is a sequence of ` matrices satisfying

(2.5) S(i) ∈Mdi×di+1
and S(i)di,1 6= 0 for all i;

we consider the matrices D(α, λ), E(S) ∈ gl(d), d = |~d|, given in block form by

D(α, λ) = Jd1(α)⊕ Jd2(α− λ)⊕ · · · ⊕ Jd`+1(α− `λ),

and

E(S) =



0 S(1) 0 . . . 0
0 0 S(2) . . . 0
...

...
. . .

. . .
...

0 0 . . .
. . . S(`)

0 0 . . . . . . 0

 .

Let h(α, λ, S) be the Lie subalgebra of gl(d) generated by D(α, λ) and E(S).

Definition 2.2. Given ~d = (d1, . . . , d`+1), let

C(i) =


0 0 . . . 0
...

...
...

0 0 . . . 0
1 0 . . . 0

 ∈Mdi×di+1
.

and set C = (C(1), . . . , C(`)); we say that C is the canonical sequence. Also, given
a sequence S = (S(1), . . . , S(`)) as in (2.5), we say that S is normalized if all the
following conditions are satisfied:

(1) S(i)di,1 = 1 for all 1 ≤ i ≤ `;
(2) S(i)di,j = S(i+ 1)di+1+1−j,1 for 1 ≤ j ≤ di+1 and 1 ≤ i ≤ `;
(3) S(1)j,1 = 0 for 1 ≤ j < d1, and S(`)d`,j = 0 for 1 < j ≤ d`+1.

We say that S is weakly normalized if conditions (1) and (2) are satisfied (this last
concept will be used only in §??).

Example 2.3. It is clear that the canonical sequence C is normalized. Also, if
~d = (3, 5, 3, 4) and S = (S(1), S(2), S(3)) is a normalizad sequence, then E(S)
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looks like as follows (the ∗ might be any scalar)

E(S) =



0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0

0 0 0 1 a2 a3 a4 a5 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 a5 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 0 a4 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 0 a3 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 0 a2 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 0 1 b2 b3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 b3 ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 b2 ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


.

The following proposition is not difficult to prove.

Proposition 2.4. Let ~d = (d1, . . . , d`+1) and let G(~d) be the subgroup of GL(d),

d = |~d|, consisting of invertible matrices P = P1 ⊕ · · · ⊕ P`+1 ∈ GL(d), with
Pi a polynomial (with non-zero constant term) in Jdi(0). Given a sequence S =

(S(1), . . . , S(`)) as in (2.5), there is an unique invertible matrix P ∈ G(~d) such that
PE(S)P−1 is equal to E(S′) for a normalized sequence S′.

Let us denote

E(l) = ad(D(0, 0))l(E(S)), for l ≥ 0.

Since charF = 0, a straightforward computation (or the representation theory of
sl(2)) shows that the set {E(l)}ρl=0, with ρ = max{di + di+1 − 2 : i = 1, . . . , `}, is

linearly independent. Let n(S) be the Lie algebra generated by {E(l)}ρl=0, that is

n(S) = spanF[[[E(l1), E(l2)], E(l3)], . . . , E(lq)].

The following proposition shows that this nilpotent Lie algebra, which is indepen-
dent of α and λ, is the nilradical of h(α, λ, S).

Proposition 2.5. The Lie algebra h(α, λ, S) is a solvable Lie subalgebra of gl(d).
Additionally

(1) h(α, λ, S) is the semidirect product h(α, λ, S) = FD(α, λ) n n(S).
(2) n(S) is graded by the block-degree and filtered by the diagonal-degree.
(3) n(C) is graded by both the block-degree and the diagonal-degree. Moreover,

n(C) is isomorphic to the associated graded Lie algebra gr (n(S)) corre-
sponding to the filtration given by the diagonal-degree.

Proof. (1) It is not difficult to see that, for l ≥ 1,(
adgl(d)D(α, λ)− λ

)l
(E(S)) = E(l)

and thus, the Lie subalgebra of h(α, λ, S) generated by

{adgl(d)(D(α, λ))l(E(S)) : l ≥ 0},

which is invariant under the action of ad(D(α, λ)), coincides with n(S). Finally,
since FD(α, λ)⊕n(S) is a Lie subalgebra of h(α, λ, S) containing D(α, λ) and E(S),
it follows that h(α, λ, S) = FD(α, λ) n n(S).

(2) and (3) These are straightforward. �
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2.4. The uniserial representations R~d,α,S. Recall that given a vector space V

of dimension n, gn,λ = 〈x〉n L(V ) and gn,λ,` = 〈x〉nN`(V ) (see §2.1).

Given a scalar α ∈ F , a sequence of positive integers ~d = (d1, . . . , d`+1) satisfying

di + di+1 ≤ n+ 1 for all i and(2.6)

di + di+1 = n+ 1 for at least one i,(2.7)

and a sequence S = (S(1), . . . , S(`)) as in (2.5), we use (2.1), (2.6) and the universal
property of L(V ) to define a representation

R~d,α,S : gn,λ → gl(d), d = |~d|,

by setting

R~d,α,S(x) = D(α, λ),

R~d,α,S(vj) =
(
adgl(d)D(α, λ)− λ

)j
(E(S)), 0 ≤ j ≤ n− 1.

It follows from (2.7) that V ∩ kerR~d,α,S = 0 and we also have

R~d,α,S(gn,λ) = h(α, λ, S),

L(V )` ⊂ kerR~d,α,S .

In particular, we also obtain a representation of the truncated Lie algebra

R̄~d,α,S : gn,λ,` → gl(d).

Since, for all i = 1, . . . , d− 1, either R(x)i,i+1 6= 0 or R(v0)i,i+1 6= 0, it follows that
R~d,α,S and R̄~d,α,S are uniserial representations of L(V ) and N`(V ) respectively.

Definition 2.6. If the sequence S is normalized, we say that R~d,α,S and R̄~d,α,S

are normalized.

Proposition 2.7. Assume λ 6= 0. The normalized representations R~d,α,S (resp.

R̄~d,α,S) of gn,λ (resp. gn,λ,`) are non-isomorphic to each other.

Proof. It is enough to consider the case for the representations of gn,λ. Considering
the eigenvalues of the image of x as well as their multiplicities, the only possible
isomorphisms are easily seen to be between R~d,α,S and R~d,α,S′ . Assume that R~d,α,S

is isomorphic to R~d,α,S′ . Then there is P ∈ GL(|~d|) satisfying

(2.8) PR~d,α,S(y)P−1 = R~d,α,S′(y), for all y ∈ gn,λ.

Considering y = x in (2.8) we obtain that P must commute with D(α, λ), and hence

P ∈ G(~d) (see Proposition 2.4). Finally, considering y = v0 in (2.8), it follows from
Proposition 2.4 that S = S′. �

3. Classification of all uniserial gn,λ-modules

In this section we classify all uniserial (finite dimensional) representations of
gn,λ = 〈x〉n L(V ), where V is a vector space of dimension n over an algebraically
closed filed F of characteristic 0 on which x acts via a single Jordan block Jn(λ).
First we prove a proposition that provides information about the structure of a
uniserial representation of certain class of Lie algebras.
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Proposition 3.1. Let n be a solvable Lie algebra and let x be a derivation of n
such that [n, n] has an x-invariant complement, say p, in n, and x acts on p via a
single Jordan block Jn(λ), λ 6= 0. Let v0, . . . , vn−1 be a basis p such that

(3.1) x(v0) = λv0 + v1, x(v1) = λv1 + v2, . . . , x(vn−1) = λvn−1.

Set g = 〈x〉n n and let T : g→ gl(U) be a uniserial representation of dimension d
such that

ker(T ) ∩ p = 0.

Then there is a basis B of U , a unique scalar α ∈ F, a unique sequence of positive

integers ~d = (d1, . . . , d`+1), ` ≥ 1, satisfying |~d| = d and

di + di+1 ≤ n+ 1 for all i,

di + di+1 = n+ 1 for at least one i;

and a unique normalized sequence S = (S(1), . . . , S(`)) of matrices such that the
matrix representation R : g→ gl(d) associated to B satisfies:

R(x) = Jd1(α)⊕ Jd2(α− λ)⊕ · · · ⊕ Jd`+1(α− `λ),(3.2)

R(v0) =



0 S(1) 0 . . . 0
0 0 S(2) . . . 0
...

...
. . .

. . .
...

0 0 . . .
. . . S(`)

0 0 . . . . . . 0

 .(3.3)

and every R(y), y ∈ n, is block strictly upper triangular relative to ~d. Moreover, if
nk−1 is not contained in ker(T ), then ` ≥ k.

Proof. This proof follows the lines of the proof of [?, Theorem 3.2]. It follows from
Lie’s theorem that there is a basis B = {u1, . . . , ud} of U such that the corresponding
matrix representation R : g→ gl(d) consists of upper triangular matrices.

Set

D = R(x) and Ek = R(vk), 0 ≤ k ≤ n− 1.

Conjugating by an upper triangular matrix (see [?, Lemma 2.2] for the details) we
may assume that D satisfies:

(3.4) Di,j = 0 whenever Di,i 6= Dj,j .

Since λ 6= 0 we have that the action of x on p is invertible and hence p ⊂ [g, g].
This implies that

Ek is strictly upper triangular for all 0 ≤ k ≤ n− 1,

and hence R(v)i,i+1 = 0 for all 1 ≤ i < d and v ∈ [n, n].
(3.5)

On the other hand we know, from [?, Lemma 2.1], that for every 1 ≤ i ≤ d there
is some y ∈ g such that

(3.6) R(y)i,i+1 6= 0.

This, combined with (3.5) and (3.4), imply that

(3.7) if Di,i 6= Di+1,i+1 then R(v)i,i+1 6= 0 for some v ∈ p.

Step 1. If Di,i 6= Di+1,i+1 then Di,i −Di+1,i+1 = λ and (E0)i,i+1 6= 0.
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Indeed, since T is a representation, it follows from (3.1) that, for 1 ≤ i < d,

(3.8) (adgl(d)D − λ)kE0 =

{
Ek, if 0 ≤ k < n;

0, if k = n.

Since D is upper triangular and E0 is strictly upper triangular, this implies that,
for 1 ≤ i < d,

(3.9) (Di,i −Di+1,i+1 − λ)k(E0)i,i+1 =

{
(Ek)i,i+1, if 0 ≤ k < n;

0, if k = n.

Now, if Di,i 6= Di+1,i+1 then it follows from (3.7) and (3.9) that (E0)i,i+1 6= 0 and
case k = n in (3.9) implies Di,i −Di+1,i+1 = λ.

Step 2. For some integer ` ≥ 0, there is a unique sequence ~d = (d1, . . . , d`+1) of

positive integers, with d = |~d|, such that

D = D1 ⊕ · · · ⊕D`+1, Di ∈ gl(di),

where each Di has scalar diagonal of scalar αi = α− (i− 1)λ for some α ∈ F.
This follows at once from (3.4) and Step 1, uniqueness is a consequence of the

arrangement of the eigenvalues of D.

Step 3. According to the block structure of gl(d) given by ~d, pr,r(Ek) = 0 for all
1 ≤ r ≤ `+ 1 and 0 ≤ k ≤ n− 1.

Indeed, setting U j = span{u1, . . . , uj} (each U j is a g-submodule of U), we have
to show that the endomorphism induced by Ek, say Ēk, in

Ūr = Ud1+···+dr/Ud1+···+dr−1

is zero. On the one hand, the endomorphism induced by adgl(d)D in gl(Ūr) is nilpo-

tent. On the other hand, it follows from (3.8) that Ēk is a generalized eigenvector
of eigenvalue λ of the endomorphism induced by adgl(d)D. Since λ 6= 0 this is a
contradiction.

Step 4. According to the block structure of gl(d) given by ~d, if 1 ≤ i < j ≤ ` + 1
and j 6= i+ 1, then pi,j(Ek) = 0 for all 0 ≤ k ≤ n− 1.

The proof of this uses the same argument used in the proof of Step 3. The point
is that pi,j(Ek) corresponds to an eigenvector of eigenvalue (j− i)λ of adgl(d)D and,
if j − i 6= 1, (3.8) implies that pi,j(Ek) must be zero.

Step 5. Let α as in Step 2. We may assume that D is in Jordan form

D = Jd1(α)⊕ Jd2(α− λ)⊕ · · · ⊕ Jd`+1(α− `λ).

Moreover, ` ≥ 1 and if nk−1 is not contained in ker(T ), then ` ≥ k.
Indeed, by (3.6) and Step 3, the first superdiagonal of every Di consists entirely

of non-zero entries. Thus, for each 1 ≤ i ≤ `+ 1, there is Pi ∈ GL(di) such that

PiDiP
−1
i = Jdi(α− (i− 1)λ).

Set P = P1 ⊕ · · · ⊕ P`+1 ∈ GL(d), then PDP−1 is as stated and and PEkP
−1 is

still strictly block upper triangular with pi,j(PEkP
−1) = 0 if 1 ≤ i ≤ j ≤ `+ 1 and

j − i 6= 1. Since nk−1 is obtained by bracketing elements of p, it follows from Step
3 that, if ` < k, then nk−1 ⊂ ker(T ). In particular, since ker(T ) ∩ p = 0, we have
` ≥ 1.

Step 6. For all 1 ≤ i ≤ `, di + di+1 ≤ n+ 1 and the equality holds for some i.
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Indeed, from Step 1 we know that (E0)di,di+1 6= 0 for all i. If di+di+1 > n+1, for
some i, it follows from the Clebsh-Gordan decomposition of the tensor product of
irreducible representations of sl(2) that (adgl(d)D− λ)nE0 6= 0, contradicting (3.8)
(for the details, see [?, Proposition 2.2]). On the other hand, if di + di+1 < n + 1
for all i then Clebsh-Gordan implies that En = (adgl(d)D − λ)n−1E0 = 0, which is
impossible since ker(T ) ∩ p = 0.

Final Step. We may assume E0 =


0 S(1) . . . 0

.

.

.
. .
.

. .
.

.

.

.

0
.
.
. S(`)

0 0 . . . 0

, for a unique normalized

sequence S = (S(1), . . . , S(`)).
Indeed, it follows from Step 3 and 4 that E0 = E(S) for some sequence as in

(2.5). It follows from Proposition 2.4 that there is a unique normalized sequence
S = (S(1), . . . , S(`)) and an invertible matrix P = P1 ⊕ · · · ⊕ P`+1 ∈ GL(d), with
Pi a polynomial in Jdi(0) (and thus commuting with D), such that PE0P

−1 =
E(S). �

Theorem 3.2. Let λ 6= 0. Every finite dimensional uniserial representation T :
gn,λ → gl(U) satisfying ker(T )∩V = 0 is isomorphic to one and only one normalized

representation R~d,α,S with ~d satisfying |~d| = dimU and

di + di+1 ≤ n+ 1 for all i,

di + di+1 = n+ 1 for at least one i.

Proof. This is a consequence of Propositions 2.7 and 3.1 �

4. The nilpotency degree of the nilradical n(S)

The goal of this section is to compute the nilpotency degree of the nilradical

n(S) of h(α, λ, S). We will see that, for generic ~d and S, the nilpotency degree of

n(S) is `. The only exceptions will occur when ~d are odd-symmetric (as defined
below) with d1 = d`+1 = 1 and φ(E(S)) = E(S) (see §2.2).

From now on, set k = `+ 1.

Definition 4.1. Given ~d = (d1, . . . , dk), we say that ~d is symmetric if di = dk+1−i
for all i = 1, . . . , k. We say that ~d is odd-symmetric if, in addition, k is odd and
d(k+1)/2 is odd. Also, if S = (S(1), . . . , S(k − 1)) is a sequence satisfying (2.5),
we say that S is φ-invariant if E(S) is invariant by the automorphism φ. We
notice that it follows from (2.4) that the canonical sequence (see Definition 2.2) is
invariant.

Proposition 4.2. Let ~d = (d1, . . . , dk) be odd-symmetric, set d = |~d|, and let
S = (S(1), . . . , S(k − 1)) be a φ-invariant sequence satisfying (2.5). Then

Ai,d+1−i = 0, i = 1, . . . , d+1
2 ,

for all A ∈ h(α, λ, S). In particular, if in addition d1 = 1 then p1,k(h(α, λ, S)) = 0.

Proof. It follows from Proposition 2.5 that it is enough to prove the result for α =

λ = 0. The hypothesis on ~d implies that φ(D(0, 0)) = D(0, 0) and the hypothesis on
S says that φ(E(S)) = E(S) and since it follows that φ(A) = A for all A ∈ h(0, 0, S).

Therefore, since ~d is odd-symmetric (and hence d is odd), the definition of φ implies
that all the entries of A in the antidiagonal must be zero for all A ∈ h(0, 0, S). �
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4.1. The nilradical corresponding to the canonical sequence S = C. In this
subsection we will consider the case (α, λ, S) = (0, 0, C). In order to simplify the
notation, let h = h(0, 0, C) and E = E(C).

Associated to the Lie algebra h we define, for 1 ≤ i < j ≤ k, the numbers

ri,j =

{
0, if pi,j(X) = 0 for all X ∈ h;

min{rk(pi,j(X)) : 0 6= X ∈ h}, otherwise.

Proposition 4.3. ri,j ∈ {0, 1, 2}.

Proof. It follows from the definition of E that ri,i+1 = 1, for 1 ≤ i ≤ k − 1. For
l ≥ 1, ri,i+l+1 ≤ 2 is a consequence of the following two facts. First, if X is any
element of block-degree l, then rk(pi,i+l+1([E,X])) ≤ 2, since all the elements of
pi,i+l+1([E,X]) are zero, with the possible exception of those in the first column
and the last row.

On the other hand, set j = i+ l+ 1, we will prove that if pi,j([E,X]) = 0 for all
X ∈ h, then ri,j = 0. By induction we will show that

pi,j([ad(D)rE,X]) = 0, r ≥ 0; X ∈ h.

The case r = 0 is given. Moreover, given the case r,

pi,j([ad(D)r+1E,X]) = pi,j([D, ad(D)rE], X])

= −pi,j([ad(D)rE, [D,X]]) + pi,j([D, [ad(D)rE,X]])

= pi,i(D)pi,j([ad(D)rE,X])− pi,j([ad(D)rE,X])pj,j(D)

= 0.

Since we know, from Proposition 2.5, that the elements ad(D)rE, r ≥ 0, generates
n, it follows that ri,j = 0. �

Proposition 4.4. If A ∈ gl(d) has the property

(
pi,j(A)

)
a,b

=

{
1, if a, b = a0, b0;

0, otherwise;

then the entries of pi,j(ad(D)k(A)) are zero except those contained in the diagonal
b− a = b0 − a0 + k, in which case:(

pi,j(ad(D)k(A))
)
a0−i,b0+k−i

= (−1)k−i
(
k

i

)
.

In particular,
(
pi,j(A)

)
di,1

= 1 then all the entries of pi,j(ad(D)di+dj−1(A)) are

zero except (
pi,j(ad(D)di+dj−2(A))

)
1,dj

= (−1)dj−1
(
di + dj − 2

di − 1

)
.

Proof. This is an straightforward computation. �

Proposition 4.5. If there is X ∈ h such that
(
pi,j(X)

)
di,1
6= 0, then ri,j = 1.

Proof. This is consequence of Proposition 4.4. �
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Proposition 4.6. If ri,j = 1 then there exists X ∈ h such that

(4.1) pi,j(X) =


0 . . . 0 1
0 . . . 0 0
...

...
...

...
0 . . . 0 0


and if ri,j = 2 then there exists X ∈ h such that

(4.2) pi,j(X) =


0 . . . 1 ∗
0 . . . 0 1
...

...
...

...
0 . . . 0 0

 .

Moreover, for any X ∈ h satisfying pi,j(X) 6= 0 then there exists k0 such that
pi,j
(
ad(D)k0(X)

)
is either as (4.1) or as (4.2).

Proof. Let X ∈ h be such that rk(pi,j(X)) = ri,j , and let

t0 = min{t = b− a :
(
pi,j(X)

)
a,b
6= 0},

T0 = {(a, b) : b− a = t0 and
(
pi,j(X)

)
a,b
6= 0}.

If ri,j = 1 then there is only one pair (a0, b0) ∈ T0. If k0 = dj − 1 − t0 then it
follows from Proposition 4.4 that ad(D)k0(X) is, up to a non-zero scalar, as stated.

If ri,j = 2 then there are at most two possible pairs (a, b) ∈ T0. It follows from
Proposition 4.4 that, if k0 = dj − 2− t0, then the only possible non-zero entries of
pi,j(ad(D)k0(X)) are (

pi,j(X)
)
1,dj−1

(
pi,j(X)

)
1,dj(

pi,j(X)
)
2,dj

.

Moreover, the pair

(4.3)
((
pi,j(X)

)
1,dj−1

,
(
pi,j(X)

)
2,dj

)
is a linear combination of two pairs of two consecutive binomial numbers

(
k0
l

)
,

0 ≤ l ≤ k, that is((
pi,j(X)

)
1,dj−1

,
(
pi,j(X)

)
2,dj

)
= x1

((k0
l1

)
,

(
k0

l1 + 1

))
+ x2

((k0
l2

)
,

(
k0

l2 + 1

))
with 0 ≤ l1 6= l2 ≤ k0 for some (x1, x2) 6= (0, 0). Since

((
k0
l1

)
,
(
k0
l1+1

))
and((

k0
l2

)
,
(
k0
l2+1

))
are linearly independent, it follows that the pair (4.3) is non-zero.

Finally, we conclude that ad(D)k0(X) is, up to a non-zero scalar, as stated because
otherwise we would have ri,j = 1. �

Proposition 4.7. If there exists X ∈ h such that either

pi,j(X) = 0 and pi+1,j+1(X) 6= 0

or
pi,j(X) 6= 0 and pi+1,j+1(X) = 0

then ri,j+1 = 1. Moreover, any of the following:

(a1) ri,j = 0 and ri+1,j+1 6= 0,
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(a2) ri,j 6= 0 and ri+1,j+1 = 0,
(b) ri,j = ri+1,j+1 = 1 and di 6= dj+1,

(c1) ri,j = 1, ri+1,j+1 = 2 and di + 1 6= dj+1,
(c2) ri,j = 2, ri+1,j+1 = 1 and di 6= dj+1 + 1.

implies the existence of such an X and thus ri,j+1 = 1.

Proof. First, if there exists X ∈ h such that pi,j(X) = 0 and pi+1,j+1(X) 6= 0, then,
by Proposition 4.6, we may assume that X isis either as (4.1) or as (4.2). In either
case, it is clear that rk(pi,j+1([E,X])) = 1.

Now we prove the particular statements. By symmetry, it is enough to prove
(a1), (b) and (c1).

Proof of (a1): it is immediate that (a1) implies the existence of X ∈ h such that
pi,j(X) = 0 and pi+1,j+1(X) 6= 0.

Proof of (b): let X ∈ h∩DtX be homogeneous such that all the entries of pi,j(X)
are zero except that

(
pi,j(X)

)
1,dj

= 1, as granted by Proposition 4.6. This implies

that tX = dj−1 + · · ·+ di + (dj − 1).
Similarly, let Y ∈ h∩DtY be homogeneous such that all the entries of pi+1,j+1(X)

are zero except that
(
pi+1,j+1(X)

)
1,dj+1

= 1. Now tY = dj + · · ·+di+1 +(dj+1−1).

It follows from the hypothesis that

tY − tX = dj+1 − di 6= 0.

Therefore, either tY > tX , in which case pi,j(Y ) = 0 or tX > tY , in which case
pi+1,j+1(X) = 0, and we are done.

Proof of (c1): This is analogous to the proof of (b). �

Proposition 4.8. If ri,j = 1 and one of the following hold:

(a) di, dj > 1,
(b1) dj > 1 and ri+1,j+1 = 0,
(b2) di > 1 and ri−1,j−1 = 0,
(c) ri+1,j+1 = ri−1,j−1 = 0.

then ri−1,j+1 = 1.

Proof. Any of these conditions implies that, for any X ∈ h,(
pi−1,j+1([[X,E], E]]

)
di−1,1

= −2
(
pi,j(X)

)
1,dj

.

Since ri,j = 1, it follows from Proposition 4.6 that there exists X ∈ h such that(
pi,j(X)

)
1,dj
6= 0, and thus

(
pi−1,j+1([[X,E], E]]

)
di−1,1

6= 0. Now Proposition 4.5

implies ri−1,j+1 = 1. �

Proposition 4.9. If ri,j = 2, then ri−1,j 6= 2 and ri,j−1 6= 2.

Proof. By symmetry, it is enough to show ri,j−1 6= 2. We use induction on k. For
k = 3 there is nothing to prove, since r1,2 = 1. Let k > 3, we can assume i = 1 and
j = k. Arguing by contradiction, we assume r1,k−1 = 2. By inductive hypothesis
r1,k−2, r2,k−1 6= 2 and, since r1,k−1 = 2, Proposition 4.7 (a1), (a2), implies that

r1,k−2, r2,k−1 = 1.

Since r1,k−1 = 2 then dk−1 > 1 and hence, since r2,k−1 = 1 and r1,k = 2, Proposi-
tion 4.8 (a) implies d2 = 1 and thus r2,k 6= 2. Since r1,k = 2, Proposition 4.7 (a2)
implies r2,k = 1. Proposition 4.7 (c2) implies d1 = dk + 1.
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Now we have r3,k 6= 0 since, otherwise, Proposition 4.8 (b1), applied to (i, j) =
(2, k − 1) would imply that r1,k = 1. Moreover, we claim r3,k = 2.

If r3,k = 1 we can find a homogeneous X ∈ h∩Dt such that p3,k(X) is as stated
in Proposition 4.6, that is

(
p3,k(X)

)
1,dk

= 1. Since 1 = d2 < 2 ≤ dk, Proposition

2.1 implies p2,k−1(X) = 0. Since r1,k−1 = 2, Proposition 4.7 implies p1,k−2(X) = 0.
Therefore

p1,k−1([X,E]) = 0 and p2,k([X,E]) 6= 0

and, once again, Proposition 4.7 implies r1,k = 1, a contradiction. We have proved
that r3,k = 2 and hence d3 ≥ 2, r3,k−1 6= 2 by the inductive hypothesis, and r3,k−1 6=
0 by Proposition 4.7. Therefore r3,k−1 = 1 and, it follows from Proposition 4.6 that
there is a homogeneous X ∈ h as in (4.1), that is with

(
p3,k−1(X)

)
1,dk−1

= 1.

Taking into account that d3, dk−1 ≥ 2 it is not difficult to see that(
p1,k([[[X,E], E], E]))

)
1,d1

= 3

which implies that r1,k = 1, a contradiction. �

Proposition 4.10. r1,k = 2 implies d1 = dk > 1.

Proof. Since r1,k = 2, we have d1,k > 1. We must show that d1 = dk. We know
by Proposition 4.9 that r1,k−1, r2,k 6= 2. Also, by fact Proposition 4.7, it follows
that r1,k−1, r2,k 6= 0. Therefore r1,k−1 = r2,k = 1. Now Proposition 4.7 (b) implies
d1 = dk. �

Proposition 4.11. If r1,k = 0 then d1 = 1 or dk = 1.

Proof. We will consider all possible values for r1,k−1, r2,k.

Case r1,k−1 = 0, r2,k 6= 0; or r1,k−1 6= 0, r2,k = 0: Impossible by Proposition 4.7.

Case r1,k−1 = r2,k = 1: It follows from Proposition 4.7 (b) that d1 = dk and it is
clear that if d1 6= 1 then r1,k 6= 0, thus d1 = 1.

Case r1,k−1 = r2,k = 2: This implies that d1, d2, dk−1, dk ≥ 2. Consider r2,k−1. It
is not 0 by Proposition 4.7 and it can not be 2 by Proposition 4.9. Hence r2,k−1 = 1
and now Proposition 4.8 implies r1,k = 1 contradicting our hypothesis.

Case r1,k−1 = 2, r2,k = 1: This implies d1 > 1. It follows from Propositions 4.9 and
4.7 (a2) that r2,k−1 = 1. Then, since d1 > 1 if we also had dk > 1, we would have
r1,k = 1 by Proposition 4.8. Thus dk = 1.

Case r1,k−1 = r2,k = 0: By the induction hypothesis, either the claim is true or
d1, dk > 1 and d2 = dk−1 = 1. We assume, by contradiction that

d1, dk > 1 and d2 = dk−1 = 1.

Let j0 be the largest j such that

ri,k−j+i = 0 for all i = 1, . . . , j.

Clearly 2 ≤ j0 ≤ k − 2 and, again, the induction hypothesis imply

(4.4) dj = dk+1−j = 1 for all 2 ≤ j ≤ j0.
Since, by definition of j0, we have ri,k−(j0+1)+i 6= 0 for some i, it follows from
Proposition 4.7 (a1) or (a2) that in fact ri,k−(j0+1)+i 6= 0 for all i = 1, . . . , j0 + 1.
Moreover, (4.4) implies that

ri,k−(j0+1)+i = 1 for all i = 2, . . . , j0.
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Let X ∈ D̄k−(j0+1), X 6= 0 such that [D,X] = 0. By the definition of j0, we must
have [E,X] = 0 and thus [E + D,X] = 0. Since D + E is principal nilpotent, it
follows that, up to scalar, X is a power of D + E. This implies that d1 = dk = 2
and r1,k−j0 = rj0+1,k = 2. At this point we know that

X =



. . . . . . 1 0 0 0 0

. . . . . . 0 1 0 0 0
0 1

. . .

0 1 0 0
0 1 0

0 1
...

...
...

...


Moreover, there must exists Y ∈ D̄k−(j0+2) such that [D,Y ] = X. This implies
that dj0+1 = dk−j0 = 2 and

Y =



. . . a0 0 0 0 0 0

. . . 0 0 0 0 0 0
0 a1 0

. . .

aj0−1 0 0 0
aj0 0 0
0 0 0

0 aj0+1

...
...


But with this Y it is impossible to satisfy the condition [D,Y ] = X. �

Now we can prove the crucial step.

Proposition 4.12. Let k ≥ 2 and ~d = (d1, . . . , dk). Then

(1) If r2,k−1 = 2 and d1 = dk = 1 then r1,k = 0.
(2) If r1,k = 0 then d1 = 1 and dk = 1.

(3) If r2,k−1 = 1 then r1,k = 1, unless k = 4 and ~d = (1, 1, 1, 1).

(4) If r1,k = 2 then k is odd and ~d is odd-symmetric with d1 = dk > 1.

(5) If r1,k = 0 then either k is even and ~d = (1, . . . , 1), or k is odd and ~d is
odd-symmetric with d1 = dk = 1.

Proof. We use induction on k. For k = 2 there is nothing to prove. We assume
k ≥ 3 and that the whole proposition is true for lower values of k.

Proof of part (1), we have r2,k−1 = 2 and d1 = dk = 1: By induction hypothesis on

part (4), r2,k−1 = 2 implies that k − 2 is odd and ~d is odd-symmetric. Proposition
4.2 and d1 = dk = 1 imply r1,k = 0.

Proof of part (2), we have r1,k = 0: As in Proposition 4.11, we will consider all
possible values for r1,k−1, r2,k.
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The cases r1,k−1 = 0, r2,k 6= 0 and r1,k−1 6= 0, r2,k = 0 are impossible by
Proposition 4.7.

The case r1,k−1 = r2,k = 0 follows by induction hypothesis on part (2).
The cases r1,k−1 = r2,k = 1 and r1,k−1 = r2,k = 2 are as in Proposition 4.11. In

particular, r1,k−1 = r2,k = 1 implies d1 = dk = 1.
Finally, let us prove that the case r1,k−1 = 2, r2,k = 1 is impossible.
This case implies that dk−1, d1 ≥ 2 and thus, by Proposition 4.11, dk = 1.

Proposition 4.7 (c2) implies that d1 = 2. Proposition 4.9 implies r2,k−1 6= 2,
Proposition 4.7 implies r2,k−1 6= 0, and thus r2,k−1 = 1. Since dk−1 ≥ 2, if d2 > 1,
Proposition 4.8 (a) would imply that r1,k = 1; hence d2 = 1. Let l ≥ 2 be the first
index such that dl−1 = 1 but dl > 1. Thus we have

2 = d1, 1 = d2 = · · · = dl−1, 2 ≤ dl, . . . , 2 ≤ dk−1, 1 = dk

Now we will show that rl,k−1 6= 0, 1, 2, which is a contradiction.
Since dl, dk−1 ≥ 2, Proposition 4.11 implies rl,k−1 6= 0. Let us show that

rl,k−1 6= 1. Otherwise there would be a homogeneous X ∈ Dt ∩ D̄k−1−l such
that rk(pl,k−1(X)) = 1 and by Proposition 4.6 we may assume as in (4.1). Since
dk−1 ≥ 2 and X ∈ Dt, it follows that

pj,k−1−l+j(X) = 0, for all j = 2, . . . , l − 1

and this implies that rk(p1,k(ad(E)l(X))) = 1, a contradiction.
Let us show that rl,k−1 6= 2. If rl,k−1 = 2 then, by induction hypothesis on

(1) we have rl−1,k = 0. This implies that rl,k = rl−1,k−1 = 1 and thus we have
a homogeneous X ∈ Dt ∩ D̄k−l such that rk(pl,k(X)) = 1, but since rl−1,k = 0,
Proposition 4.7 implies that rk(pl−1,k−1(X)) = 1 and pl−1,k([X,E])) = 0. By
Proposition 4.6 we may assume that pl,k(X) and pl−1,k−1(X) are as in (4.1). Now

adl−1(E)(X) 6= 0 which is absurd.

Proof of part (3), we have r2,k−1 = 1: If d1 6= dk, it follows from Proposition 4.10
and part (2) that r1,k = 1. Therefore, we assume from now on d1 = dk. Let us
consider now r1,k−1 and r2,k.

If r1,k−1 = r2,k = 0, then r1,k = 0 and the induction hypothesis on part (5)
implies (this does not depend on the parity of k) that di = 1, for all 1 ≤ i ≤ k
which in turn implies r2,k−1 = 0, and this can not happen unless k = 4.

The cases r1,k−1 = 0, r2,k 6= 0 and r1,k−1 6= 0, r2,k = 0 imply that r1,k = 1 by
Proposition 4.7.

The case r1,k−1 = 2 implies that r1,k can not by 2 by Proposition 4.9 and that
r1,k can not by 0 by part (2), and thus r1,k = 1. Similarly, r2,k = 2 then r1,k = 1.

Therefore, we can assume r1,k−1 = r2,k = 1 and thus (d1, . . . , dk) 6= (1, . . . , 1).
If dk−1 > 1 and d2 > 1 then, by Proposition 4.8 (a), r1,k = 1. Let i < j be such
that di, dj > 1 and

(4.5) dl = 1 for j < l ≤ k and 1 ≤ l < i.

We have ri,j 6= 0 by Proposition 4.11.
Assume first ri,j = 1. This implies that we have a homogeneous X ∈ Dt ∩ D̄j−i

such that rk(pi,j(X)) = 1 and, by Proposition 4.6, we may assume pi,j(X) as in
(4.1). Since di, dj > 1, we have

pi−q,j+β−q(ad(E)β(X)) = (−1)β−q
(
β

q

)
.
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and this implies that r1,k = 1.
Now assume ri,j = 2. By the induction hypothesis on part (4) we have j + 1− i

odd and

(4.6) (di, di+1 . . . , dj) is odd-symmetric.

Also, the induction hypothesis on part (1), implies ri−1,j+1 = 0 and thus ri−1,j =
ri,j+1 = 1. This implies that we have a homogeneous X ∈ Dt ∩ D̄j+1−i such
that rk(pi−1,j(X)) = 1, but since ri−1,j+1 = 0, Proposition 4.7 implies that
rk(pi,j+1(X)) = 1 and pi−1,j+1([X,E])) = 0. By Proposition 4.6 we may assume
that

pi−1,j(X) =
(
0 · · · 0 1

)
and pi,j+1(X) =


x
0
...
0


but since pi−1,j+1([X,E])) = 0 we have x = 1. This implies that

pi−q,j+1+β−q(ad(E)β(X)) = ±
((

β

q

)
−
(

β

q − 1

))
when i − q > 1 and j + 1 + β − q < k (in all these cases the size of block
pi−q,j+1+β−q(ad(E)β(X)) is 1× 1) and

p1,k(ad(E)k−j+i−2(X))d1,1 = ±
((

k − j + i− 2

i− 1

)
−
(
k − j + i− 2

i− 2

))
If this number is not zero, then rk

(
p1,k(ad(E)k−j+i−2(X))

)
= 1 and thus r1,k = 1.

Otherwise (
k − j + i− 2

i− 1

)
=

(
k − j + i− 2

i− 2

)
and hence j = k + 1− i. This, together with (4.5) and (4.6), imply k odd and

(d2, d3 . . . , dk−1) is odd-symmetric.

Now, Proposition 4.2 implies r2,k−1 = 0, a contradiction.

Proof of parts (4) and (5), we have r1,k 6= 1: It follows from part (3) that r2,k−1 6= 1.
We now apply the induction hypothesis on parts (4) and (5) and we consider the
cases k even and k odd.

If k is even, then (d2, . . . , dk−1) = (1, . . . , 1) (in particular r2,k−1 = 0). We may
assume d1 ≥ dk, we will show that d1 = dk = 1.

Let X = ad(D)d1−1(E) ∈ Dd1 ∩ D̄1, we have

p1,2(X) =


1
0
...
0


If d1 > dk then pα,1+α(X) = 0 for all 2 ≤ α ≤ k − 1 and it is clear that
rk(ad(E)k−1(X)) = 1 and hence r1,k = 1, a contradiction. Therefore d1 = dk.

If d1 = dk > 1 then pα,α+1(X) = 0 for all 2 ≤ α ≤ k − 2 and

pk−1,k(X) =
(
0 · · · 0 (−1)dk−1

)
.
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Now

p1,k
(
ad(D + E)(k−1)+(dk−1)(X)

)
=


0 . . . (−1)k+dk 0
0 . . . 0 (−1)dk−1

...
...

...
...

0 . . . 0 0


and since k is even, we obtain rk

(
p1,k

(
ad(D + E)(k−1)+(dk−1)+1(X)

))
= 1, a con-

tradiction. Therefore d1 = dk = 1.
If k is odd, then the induction hypothesis on parts (4) and (5) implies that

(d2, . . . , dk−1) is odd-symmetric. If r1,k−1 6= 1, the induction hypothesis on parts
(4) and (5) implies (d1, . . . , dk−1) = (1, . . . , 1) and thus dk = 1 (otherwise we would
obtain r1,k = 1). Hence r1,k−1 = 1 and similarly r2,k = 1. Now r1,k 6= 1, part (2)
and Proposition 4.10 imply d1 = dk and thus (d1, . . . , dk) is odd-symmetric. Finally,
Proposition 4.2 and item (2) imply that r1,k = 2 if and only if d1 = dk > 1. �

Summarizing, we have proved the following theorem.

Theorem 4.13. Let k ≥ 2 and ~d = (d1, . . . , dk). Then the nilpotency degree of
n(C) is k − 1 except when r1,k = 0. This occurs if and only if

(1) ~d = (1, . . . , 1), in which case n is 1-dimensional abelian.

(2) k is odd, ~d is odd-symmetric with d1 = dk = 1, in which case the nilpotency
degree is k − 2.

In addition, r1,k = 2 if and only if k is odd, ~d is odd-symmetric with d1 = dk > 1.

Corollary 4.14. If l < k and ri,l+i = 0 for i = 1, . . . , k − l, then ~d = (1, . . . , 1).

Proof. By hypothesis, all sequences (d1, . . . , dl+1), (d2, . . . , dl+1), up to (dk−l, . . . , dk),
fall in the cases of parts (5) and (4) of Proposition 4.12. �
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