NILPOTENCY DEGREE OF THE NILRADICAL OF SOLVABLE LIE ALGEBRAS ON TWO GENERATORS

LEANDRO CAGLIERO, FERNANDO LEVSTEIN, AND FERNANDO SZECHTMAN

Abstract

Given a field F of characteristic 0 , we consider solvable Lie algebras \mathfrak{g} of block upper triangular matrices on two generators. Imposing mild conditions on these generators, we prove that the nilpotency degree of the nilradicals $\mathfrak{n}=[\mathfrak{g}, \mathfrak{g}]$ is as large as possible, namely the number of diagonal blocks minus one.

As an application when F is algebraically closed, let $\mathcal{N}_{\ell}(V)$ denote the free ℓ-step nilpotent Lie algebra associated to a given F-vector space V. As a consequence of the above degree, we obtain a complete classification of all uniserial representations of the solvable Lie algebra $\mathfrak{g}=\langle x\rangle \ltimes \mathcal{N}_{\ell}(V)$, where x acts on V via an arbitrary invertible Jordan block.

1. Introduction

We fix throughout a field F of characteristic 0 . All Lie algebras and representations considered in this paper are assumed to be finite dimensional over F, unless explicitly stated otherwise.

Given a 5 -tuple $(\ell, d, \alpha, \lambda, X)$, where ℓ is a positive integer, $d=\left(d_{1}, \ldots, d_{\ell+1}\right)$ is a sequence of $\ell+1$ positive integers, $\alpha, \lambda \in F$, and $X=(X(1), \ldots, X(\ell))$ is a sequence of ℓ matrices $X(i) \in M_{d_{i} \times d_{i+1}}$ such that $X(i)_{d_{i}, 1} \neq 0$ for all i, consider the matrices $D, E \in \mathfrak{g l}(d), d=d_{1}+\cdots+d_{\ell+1}$, given in block form by

$$
D=J^{d_{1}}(\alpha) \oplus J^{d_{2}}(\alpha-\lambda) \oplus \cdots \oplus J^{d_{\ell+1}}(\alpha-\ell \lambda)
$$

where $J^{p}(\beta)$ denotes the upper triangular Jordan block of size p and eigenvalue β,

$$
E=\left(\begin{array}{ccccc}
0 & X(1) & 0 & \cdots & 0 \\
0 & 0 & X(2) & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & \ddots & X(\ell) \\
0 & 0 & \cdots & \ldots & 0
\end{array}\right)
$$

The Lie subalgebra of $\mathfrak{g l}(d)$ generated by D and E is easily seen to be equal to $\langle D\rangle \ltimes$ \mathfrak{n}, where \mathfrak{n} is nilpotent. Theorem ?? proves that, except for a few extraordinary cases, the nilpotency degree of \mathfrak{n} is exactly ℓ.

Suppose F is algebraically closed. Theorem ?? uses the above bound to give a complete classification of all uniserial representations of the solvable Lie algebra $\mathfrak{g}=\mathfrak{g}_{* * * * *, \ell, n}=\langle x\rangle \ltimes \mathcal{N}_{\ell}(V)$, where V is a vector space of dimension $n \geq 1, \mathcal{N}_{\ell}(V)$

[^0]is the free ℓ-step nilpotent Lie algebra associated to V, and x acts on V via a single Jordan block $J_{n}(\lambda), \lambda \neq 0$.

A representation $R: \mathfrak{g} \rightarrow \mathfrak{g l}(U)$ is relatively faithful if $\operatorname{ker}(R) \cap V=0$ and $\operatorname{ker}(R) \cap \mathfrak{n}^{\ell-1}$ is properly contained in $\mathfrak{n}^{\ell-1}$. It suffices to classify all uniserial representations of \mathfrak{g} that are relatively faithful. Indeed, let $R: \mathfrak{g} \rightarrow \mathfrak{g l}(U)$ be a uniserial representation. If $V \subseteq \operatorname{ker}(R)$ then R is determined by a uniserial representation $\langle x\rangle \rightarrow \mathfrak{g l}(U)$. The Jordan normal form suffices to classify such representations. We may thus assume without loss of generality that V is not contained in $\operatorname{ker}(V)$. If $(0) \neq \operatorname{ker}(R) \cap V \neq V$, then R is determined by a uniserial representation $\bar{R}: \mathfrak{g}_{* * * *, \ell, m} \rightarrow \mathfrak{g l}(U)$, where $\mathfrak{g}_{* * * *, \ell, m}=\langle x\rangle \ltimes \mathcal{N}_{\ell}(\bar{V}), \bar{V}$ is a factor of V by an x-invariant subspace, x acts on \bar{V} via an invertible Jordan block $J_{m}(\lambda)$, $1 \leq m<n$, and $\operatorname{ker}(\bar{R}) \cap \bar{V}=0$. Hence, we may assume without loss of generality that $\operatorname{ker}(R) \cap V=0$. Let $1<s \leq \ell$ be the smallest positive integer such that \mathfrak{n}^{s} is contained in $\operatorname{ker}(R)$. Then R is determined by a uniserial representation $\bar{R}: \mathfrak{g}_{* * * *, s, n}: \rightarrow \mathfrak{g l}(U)$, where $\mathfrak{g}_{* * * *, s, n}=\langle x\rangle \ltimes \overline{\mathfrak{n}}, \overline{\mathfrak{n}}=\mathfrak{n} / \mathfrak{n}^{s}$, and $\overline{\mathfrak{n}}^{s-1}$ is not contained in the kernel of \bar{R}. Therefore, we may assume without loss of generality that $\operatorname{ker}(R) \cap V=0$ and that $\mathfrak{n}^{\ell-1} \not \subset \operatorname{ker}(R)$, that is, that R is relatively faithful.

The degenerate case $n=1$ appears as a special case in [?]. The cases $\ell=1$ and $\ell=2$ have recently been solved in [?] and [?], respectively. Without resorting to any of these cases, we will obtain the following classification, valid for all ℓ and n.

Let v_{0}, \ldots, v_{n-1} be a basis of V such that

$$
\left[x, v_{0}\right]=\lambda v_{0}+v_{1},\left[x, v_{1}\right]=\lambda v_{1}+v_{2}, \ldots,\left[x, v_{n-1}\right]=\lambda v_{n-1}
$$

Given a sequence $\vec{d}=\left(d_{1}, \ldots, d_{\ell+1}\right)$ of $\ell+1$ positive integers satisfying

$$
\max _{1 \leq i \leq l}\left\{d_{i}+d_{i+1}\right\}=n+1
$$

and a scalar $\alpha \in F$, we define a representation $R=R_{\vec{d}, X, \alpha}: \mathfrak{g} \rightarrow \mathfrak{g l}(d)$, where $d=d_{1}+\cdots+d_{\ell+1}$, in block form, in the following manner:

$$
\begin{gathered}
R(x)=A=J^{d_{1}}(\alpha) \oplus J^{d_{2}}(\alpha-\lambda) \oplus \cdots \oplus J^{d_{\ell+1}}(\alpha-\ell \lambda) \\
R\left(v_{j}\right)=\left(\operatorname{ad}_{\mathfrak{g} l(d)} A-\lambda 1_{\mathfrak{g l}(d)}\right)^{j}\left(\begin{array}{ccccc}
0 & X(1) & 0 & \cdots & 0 \\
0 & 0 & X(2) & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \ddots & X(\ell) \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right), \quad 0 \leq j \leq n-1 .
\end{gathered}
$$

This extends uniquely to a representation $\mathfrak{g} \rightarrow \mathfrak{g l}(d)$ by the universal property that defines of $\mathcal{N}_{\ell}(V)$.

Conjugating all $R(y), y \in \mathfrak{g}$, by a suitable block diagonal matrix commuting with A, we may normalize R, in the sense that the last row of every $X(i)$ is the first canonical vector of $F^{d_{i+1}}$ and the first column of $X(1)$ is the last canonical vector of $F^{d_{1}}$. The representation R is always uniserial. It is also relatively faithful, except for a few extraordinary cases that occur when $n>1$. Theorem ?? proves that, when $n>1$, every relatively faithful uniserial representation of \mathfrak{g} is isomorphic to one and only one normalized representation $R_{\vec{d}, X, \alpha}$ of non-extraordinary type (the degenerate case can be found in Theorem ??).

2. Preliminaries and notation

2.1. The Lie algebras $\mathfrak{g}_{n, \lambda}$ and $\mathfrak{g}_{n, \lambda, \ell}$. If \mathfrak{g} is a Lie algebra, let $\left\{\mathfrak{g}^{i}: i \geq 0\right\}$ be the lower central series, that is $\mathfrak{g}^{0}=\mathfrak{g}$ and $\mathfrak{g}^{i+1}=\left[\mathfrak{g}, \mathfrak{g}^{i}\right]$.

Let V be a vector space of dimension $n \geq 2$ and let $\mathcal{L}(V)$ be the free Lie algebra associated to V (or the free Lie algebra on n generators). For $\ell \geq 1$, let

$$
\mathcal{N}_{\ell}(V)=\mathcal{L}(V) / \mathcal{L}(V)^{\ell}
$$

be the free ℓ-step nilpotent Lie algebra associated to V.
Given an integer $p \geq 1$ and $\alpha \in F$, we write $J_{p}(\alpha)$ (resp. $J^{p}(\alpha)$) for the lower (resp. upper) triangular Jordan block of size p and eigenvalue α. Let $x \in \operatorname{End}(V)$ the linear map acting on V via a single Jordan block $J_{n}(\lambda)$. In particular V has a basis $\left\{v_{0}, \ldots, v_{n-1}\right\}$ such that

$$
(\operatorname{ad} x-\lambda)^{k} v_{0}= \begin{cases}v_{k}, & \text { if } 0 \leq k<n \tag{2.1}\\ 0, & \text { if } k=n\end{cases}
$$

We extend the action of x on V to $\mathcal{L}(V)$ so that x becomes a Lie algebra derivation. This action preserves $\mathcal{L}(V)^{\ell}$ and thus x also acts by derivations on $\mathcal{N}_{\ell}(V)$. Let

$$
\mathfrak{g}_{n, \lambda}=\langle x\rangle \ltimes \mathcal{L}(V) \quad \text { and } \quad \mathfrak{g}_{n, \lambda, \ell}=\langle x\rangle \ltimes \mathcal{N}_{\ell}(V)
$$

be the corresponding semidirect products.
2.2. Gradings in $\mathfrak{g l}(d)$ and the outer automorphism. If $\vec{d}=\left(d_{1}, \ldots, d_{\ell+1}\right)$ is a sequence of $\ell+1$ positive integers, we define $|\vec{d}|=|\vec{d}|_{1}=d_{1}+\cdots+d_{\ell+1}$. A sequence \vec{d} provides $\mathfrak{g l}(d), d=|\vec{d}|$, with a block structure and we define

$$
p_{i, j}: \mathfrak{g l}(d) \rightarrow M_{d_{i}, d_{j}}
$$

the projection onto the (i, j)-block.
We consider, in $\mathfrak{g l}(d)$ two 'diagonal' gradings: one associated to the actual diagonals of $\mathfrak{g l}(d)$, that is

$$
\begin{equation*}
\mathcal{D}_{t}=\left\{A \in \mathfrak{g l}(d): A_{i j}=0 \text { if } j-i \neq t\right\} \tag{2.2}
\end{equation*}
$$

and the other one associated to the block-diagonals of $\mathfrak{g l}(d)$, that is

$$
\begin{equation*}
\overline{\mathcal{D}}_{t}=\left\{A \in \mathfrak{g l}(d): p_{i j}(A)=0 \text { if } j-i \neq t\right\} \tag{2.3}
\end{equation*}
$$

We call the degrees 2.2 and 2.3 diagonal-degree and block-degree respectively. The proof of the following proposition is straightforward. Ojo con las a,b y t sue se usan después $A^{t}, a_{i, j}$, etc
Proposition 2.1. If $A \in \mathcal{D}_{t}$ with $\left(p_{i, j}(A)\right)_{a, b} \neq 0$, (with $1 \leq a \leq d_{i}$ and $1 \leq b \leq$ $\left.d_{j}\right)$ then

$$
t=d_{j-1}+\ldots d_{i}+(b-a)
$$

In particular, if either

$$
d_{j+1}-1<d_{i}-d_{j}+b-a \quad \text { or } \quad d_{i}-d_{j}+b-a<1-d_{i+1}
$$

then $p_{i+1, j+1}(A)=0$. Similarly, if either

$$
d_{i-1}-1<b-a \quad \text { or } \quad b-a<1-d_{j-1}
$$

then $p_{i-1, j-1}(A)=0$.

Recall that the map $\phi: \mathfrak{g l}(d) \rightarrow \mathfrak{g l}(d)$ given by

$$
\phi(A)_{i, j}=(-1)^{i-j+1} A_{d+1-j, d+1-i}
$$

gives a representative of the unique nontrivial class of outer automorphisms of $\mathfrak{s l}(d)$. In fact, ϕ is in the class of $A \mapsto-A^{t}$, indeed, if $K=\left(a_{i, j}\right) \in \mathfrak{g l}(d)$ is the antidiagonal matrix with $a_{i, d+1-i}=(-1)^{i+1}\left(a_{i, j}=0\right.$ if $\left.i+j \neq d+1\right)$, then $\phi(A)=-K A^{t} K^{-1}$. It is clear that

$$
\begin{equation*}
\left.\phi\right|_{\mathcal{D}_{t}}=(-1)^{t+1} . \tag{2.4}
\end{equation*}
$$

2.3. The Lie algebra $\mathfrak{h}(\alpha, \lambda, S)$. Given a 5 -tuple $(\ell, \vec{d}, \alpha, \lambda, S)$, where

- $\vec{d}=\left(d_{1}, \ldots, d_{\ell+1}\right)$ is a sequence of $\ell+1$ positive integers, $\ell \geq 1$,
- $\alpha, \lambda \in F$ are scalars,
- $S=(S(1), \ldots, S(\ell))$ is a sequence of ℓ matrices satisfying

$$
\begin{equation*}
S(i) \in M_{d_{i} \times d_{i+1}} \text { and } S(i)_{d_{i}, 1} \neq 0 \text { for all } i \tag{2.5}
\end{equation*}
$$

we consider the matrices $D(\alpha, \lambda), E(S) \in \mathfrak{g l}(d), d=|\vec{d}|$, given in block form by

$$
D(\alpha, \lambda)=J^{d_{1}}(\alpha) \oplus J^{d_{2}}(\alpha-\lambda) \oplus \cdots \oplus J^{d_{\ell+1}}(\alpha-\ell \lambda)
$$

and

$$
E(S)=\left(\begin{array}{ccccc}
0 & S(1) & 0 & \cdots & 0 \\
0 & 0 & S(2) & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \ddots & S(\ell) \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right)
$$

Let $\mathfrak{h}(\alpha, \lambda, S)$ be the Lie subalgebra of $\mathfrak{g l}(d)$ generated by $D(\alpha, \lambda)$ and $E(S)$.
Definition 2.2. Given $\vec{d}=\left(d_{1}, \ldots, d_{\ell+1}\right)$, let

$$
C(i)=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0
\end{array}\right) \in M_{d_{i} \times d_{i+1}}
$$

and set $C=(C(1), \ldots, C(\ell))$; we say that C is the canonical sequence. Also, given a sequence $S=(S(1), \ldots, S(\ell))$ as in 2.5 , we say that S is normalized if all the following conditions are satisfied:
(1) $S(i)_{d_{i}, 1}=1$ for all $1 \leq i \leq \ell$;
(2) $S(i)_{d_{i}, j}=S(i+1)_{d_{i+1}+1-j, 1}$ for $1 \leq j \leq d_{i+1}$ and $1 \leq i \leq \ell$;
(3) $S(1)_{j, 1}=0$ for $1 \leq j<d_{1}$, and $S(\ell)_{d_{\ell}, j}=0$ for $1<j \leq d_{\ell+1}$.

We say that S is weakly normalized if conditions (1) and (2) are satisfied (this last concept will be used only in §??).

Example 2.3. It is clear that the canonical sequence C is normalized. Also, if $\vec{d}=(3,5,3,4)$ and $S=(S(1), S(2), S(3))$ is a normalizad sequence, then $E(S)$
looks like as follows (the $*$ might be any scalar)

$$
E(S)=\left(\begin{array}{ccc|ccccc|ccc|cccc}
0 & 0 & 0 & 0 & * & * & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & * & * & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & a_{2} & a_{3} & a_{4} & a_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{5} & * & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{4} & * & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{3} & * & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{2} & * & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & b_{2} & b_{3} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{3} & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{2} & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

The following proposition is not difficult to prove.
Proposition 2.4. Let $\vec{d}=\left(d_{1}, \ldots, d_{\ell+1}\right)$ and let $G(\vec{d})$ be the subgroup of $G L(d)$, $d=|\vec{d}|$, consisting of invertible matrices $P=P_{1} \oplus \cdots \oplus P_{\ell+1} \in G L(d)$, with P_{i} a polynomial (with non-zero constant term) in $J^{d_{i}}(0)$. Given a sequence $S=$ $(S(1), \ldots, S(\ell))$ as in 2.5$)$, there is an unique invertible matrix $P \in G(\vec{d})$ such that $P E(S) P^{-1}$ is equal to $E\left(S^{\prime}\right)$ for a normalized sequence S^{\prime}.

Let us denote

$$
E^{(l)}=\operatorname{ad}(D(0,0))^{l}(E(S)), \quad \text { for } l \geq 0
$$

Since char $\mathbb{F}=0$, a straightforward computation (or the representation theory of $\mathfrak{s l}(2))$ shows that the set $\left\{E^{(l)}\right\}_{l=0}^{\rho}$, with $\rho=\max \left\{d_{i}+d_{i+1}-2: i=1, \ldots, \ell\right\}$, is linearly independent. Let $\mathfrak{n}(S)$ be the Lie algebra generated by $\left\{E^{(l)}\right\}_{l=0}^{\rho}$, that is

$$
\mathfrak{n}(S)=\operatorname{span}_{\mathbb{F}}\left[\left[\left[E^{\left(l_{1}\right)}, E^{\left(l_{2}\right)}\right], E^{\left(l_{3}\right)}\right], \ldots, E^{\left(l_{q}\right)}\right]
$$

The following proposition shows that this nilpotent Lie algebra, which is independent of α and λ, is the nilradical of $\mathfrak{h}(\alpha, \lambda, S)$.

Proposition 2.5. The Lie algebra $\mathfrak{h}(\alpha, \lambda, S)$ is a solvable Lie subalgebra of $\mathfrak{g l}(d)$. Additionally
(1) $\mathfrak{h}(\alpha, \lambda, S)$ is the semidirect product $\mathfrak{h}(\alpha, \lambda, S)=\mathbb{F} D(\alpha, \lambda) \ltimes \mathfrak{n}(S)$.
(2) $\mathfrak{n}(S)$ is graded by the block-degree and filtered by the diagonal-degree.
(3) $\mathfrak{n}(C)$ is graded by both the block-degree and the diagonal-degree. Moreover, $\mathfrak{n}(C)$ is isomorphic to the associated graded Lie algebra $\operatorname{gr}(\mathfrak{n}(S))$ corresponding to the filtration given by the diagonal-degree.

Proof. (1) It is not difficult to see that, for $l \geq 1$,

$$
\left(\operatorname{ad}_{\mathfrak{g l}(d)} D(\alpha, \lambda)-\lambda\right)^{l}(E(S))=E^{(l)}
$$

and thus, the Lie subalgebra of $\mathfrak{h}(\alpha, \lambda, S)$ generated by

$$
\left\{\operatorname{ad}_{\mathfrak{g} t(d)}(D(\alpha, \lambda))^{l}(E(S)): l \geq 0\right\}
$$

which is invariant under the action of $\operatorname{ad}(D(\alpha, \lambda))$, coincides with $\mathfrak{n}(S)$. Finally, since $\mathbb{F} D(\alpha, \lambda) \oplus \mathfrak{n}(S)$ is a Lie subalgebra of $\mathfrak{h}(\alpha, \lambda, S)$ containing $D(\alpha, \lambda)$ and $E(S)$, it follows that $\mathfrak{h}(\alpha, \lambda, S)=\mathbb{F} D(\alpha, \lambda) \ltimes \mathfrak{n}(S)$.
(2) and (3) These are straightforward.
2.4. The uniserial representations $R_{\vec{d}, \alpha, S}$. Recall that given a vector space V of dimension $n, \mathfrak{g}_{n, \lambda}=\langle x\rangle \ltimes \mathcal{L}(V)$ and $\mathfrak{g}_{n, \lambda, \ell}=\langle x\rangle \ltimes \mathcal{N}_{\ell}(V)$ (see 2.1).

Given a scalar $\alpha \in F$, a sequence of positive integers $\vec{d}=\left(d_{1}, \ldots, d_{\ell+1}\right)$ satisfying

$$
\begin{align*}
d_{i}+d_{i+1} & \leq n+1 \text { for all } i \text { and } \tag{2.6}\\
d_{i}+d_{i+1} & =n+1 \text { for at least one } i \tag{2.7}
\end{align*}
$$

and a sequence $S=(S(1), \ldots, S(\ell))$ as in 2.5, we use 2.1, 2.6) and the universal property of $\mathcal{L}(V)$ to define a representation

$$
R_{\vec{d}, \alpha, S}: \mathfrak{g}_{n, \lambda} \rightarrow \mathfrak{g l}(d), \quad d=|\vec{d}|
$$

by setting

$$
\begin{aligned}
R_{\vec{d}, \alpha, S}(x) & =D(\alpha, \lambda) \\
R_{\vec{d}, \alpha, S}\left(v_{j}\right) & =\left(\operatorname{ad}_{\mathfrak{g l}(d)} D(\alpha, \lambda)-\lambda\right)^{j}(E(S)), \quad 0 \leq j \leq n-1
\end{aligned}
$$

It follows from (2.7) that $V \cap \operatorname{ker} R_{\vec{d}, \alpha, S}=0$ and we also have

$$
\begin{aligned}
R_{\vec{d}, \alpha, S}\left(\mathfrak{g}_{n, \lambda}\right) & =\mathfrak{h}(\alpha, \lambda, S), \\
\mathcal{L}(V)^{\ell} & \subset \operatorname{ker} R_{\vec{d}, \alpha, S}
\end{aligned}
$$

In particular, we also obtain a representation of the truncated Lie algebra

$$
\bar{R}_{\vec{d}, \alpha, S}: \mathfrak{g}_{n, \lambda, \ell} \rightarrow \mathfrak{g l}(d)
$$

Since, for all $i=1, \ldots, d-1$, either $R(x)_{i, i+1} \neq 0$ or $R\left(v_{0}\right)_{i, i+1} \neq 0$, it follows that $R_{\vec{d}, \alpha, S}$ and $\bar{R}_{\vec{d}, \alpha, S}$ are uniserial representations of $\mathcal{L}(V)$ and $\mathcal{N}_{\ell}(V)$ respectively.
Definition 2.6. If the sequence S is normalized, we say that $R_{\vec{d}, \alpha, S}$ and $\bar{R}_{\vec{d}, \alpha, S}$ are normalized.

Proposition 2.7. Assume $\lambda \neq 0$. The normalized representations $R_{\vec{d}, \alpha, S}$ (resp. $\bar{R}_{\vec{d}, \alpha, S}$) of $\mathfrak{g}_{n, \lambda}$ (resp. $\mathfrak{g}_{n, \lambda, \ell}$) are non-isomorphic to each other.
Proof. It is enough to consider the case for the representations of $\mathfrak{g}_{n, \lambda}$. Considering the eigenvalues of the image of x as well as their multiplicities, the only possible isomorphisms are easily seen to be between $R_{\vec{d}, \alpha, S}$ and $R_{\vec{d}, \alpha, S^{\prime}}$. Assume that $R_{\vec{d}, \alpha, S}$ is isomorphic to $R_{\vec{d}, \alpha, S^{\prime}}$. Then there is $P \in \mathrm{GL}(|\vec{d}|)$ satisfying

$$
\begin{equation*}
P R_{\vec{d}, \alpha, S}(y) P^{-1}=R_{\vec{d}, \alpha, S^{\prime}}(y), \quad \text { for all } y \in \mathfrak{g}_{n, \lambda} \tag{2.8}
\end{equation*}
$$

Considering $y=x$ in 2.8 we obtain that P must commute with $D(\alpha, \lambda)$, and hence $P \in G(\vec{d})$ (see Proposition 2.4. Finally, considering $y=v_{0}$ in 2.8), it follows from Proposition 2.4 that $S=S^{\prime}$.

3. Classification of all uniserial $\mathfrak{g}_{n, \lambda}$-MODULES

In this section we classify all uniserial (finite dimensional) representations of $\mathfrak{g}_{n, \lambda}=\langle x\rangle \ltimes \mathcal{L}(V)$, where V is a vector space of dimension n over an algebraically closed filed \mathbb{F} of characteristic 0 on which x acts via a single Jordan block $J_{n}(\lambda)$. First we prove a proposition that provides information about the structure of a uniserial representation of certain class of Lie algebras.

Proposition 3.1. Let \mathfrak{n} be a solvable Lie algebra and let x be a derivation of \mathfrak{n} such that $[\mathfrak{n}, \mathfrak{n}]$ has an x-invariant complement, say \mathfrak{p}, in \mathfrak{n}, and x acts on \mathfrak{p} via a single Jordan block $J_{n}(\lambda), \lambda \neq 0$. Let v_{0}, \ldots, v_{n-1} be a basis \mathfrak{p} such that

$$
\begin{equation*}
x\left(v_{0}\right)=\lambda v_{0}+v_{1}, x\left(v_{1}\right)=\lambda v_{1}+v_{2}, \ldots, x\left(v_{n-1}\right)=\lambda v_{n-1} . \tag{3.1}
\end{equation*}
$$

Set $\mathfrak{g}=\langle x\rangle \ltimes \mathfrak{n}$ and let $T: \mathfrak{g} \rightarrow \mathfrak{g l}(U)$ be a uniserial representation of dimension d such that

$$
\operatorname{ker}(T) \cap \mathfrak{p}=0
$$

Then there is a basis \mathcal{B} of U, a unique scalar $\alpha \in \mathbb{F}$, a unique sequence of positive integers $\vec{d}=\left(d_{1}, \ldots, d_{\ell+1}\right), \ell \geq 1$, satisfying $|\vec{d}|=d$ and

$$
\begin{aligned}
& d_{i}+d_{i+1} \leq n+1 \text { for all } i \\
& d_{i}+d_{i+1}=n+1 \text { for at least one } i
\end{aligned}
$$

and a unique normalized sequence $S=(S(1), \ldots, S(\ell))$ of matrices such that the matrix representation $R: \mathfrak{g} \rightarrow \mathfrak{g l}(d)$ associated to \mathcal{B} satisfies:

$$
\begin{align*}
R(x) & =J^{d_{1}}(\alpha) \oplus J^{d_{2}}(\alpha-\lambda) \oplus \cdots \oplus J^{d_{\ell+1}}(\alpha-\ell \lambda), \tag{3.2}\\
R\left(v_{0}\right) & =\left(\begin{array}{ccccc}
0 & S(1) & 0 & \cdots & 0 \\
0 & 0 & S(2) & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \ddots & S(\ell) \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right) \tag{3.3}
\end{align*}
$$

and every $R(y), y \in \mathfrak{n}$, is block strictly upper triangular relative to \vec{d}. Moreover, if \mathfrak{n}^{k-1} is not contained in $\operatorname{ker}(T)$, then $\ell \geq k$.
Proof. This proof follows the lines of the proof of [?, Theorem 3.2]. It follows from Lie's theorem that there is a basis $\mathcal{B}=\left\{u_{1}, \ldots, u_{d}\right\}$ of U such that the corresponding matrix representation $R: \mathfrak{g} \rightarrow \mathfrak{g l}(d)$ consists of upper triangular matrices.

Set

$$
D=R(x) \text { and } E_{k}=R\left(v_{k}\right), 0 \leq k \leq n-1 .
$$

Conjugating by an upper triangular matrix (see [?, Lemma 2.2] for the details) we may assume that D satisfies:

$$
\begin{equation*}
D_{i, j}=0 \text { whenever } D_{i, i} \neq D_{j, j} \tag{3.4}
\end{equation*}
$$

Since $\lambda \neq 0$ we have that the action of x on \mathfrak{p} is invertible and hence $\mathfrak{p} \subset[\mathfrak{g}, \mathfrak{g}]$. This implies that
E_{k} is strictly upper triangular for all $0 \leq k \leq n-1$,
and hence $R(v)_{i, i+1}=0$ for all $1 \leq i<d$ and $v \in[\mathfrak{n}, \mathfrak{n}]$.
On the other hand we know, from [?, Lemma 2.1], that for every $1 \leq i \leq d$ there is some $y \in \mathfrak{g}$ such that

$$
\begin{equation*}
R(y)_{i, i+1} \neq 0 \tag{3.6}
\end{equation*}
$$

This, combined with (3.5) and (3.4), imply that

$$
\begin{equation*}
\text { if } D_{i, i} \neq D_{i+1, i+1} \text { then } R(v)_{i, i+1} \neq 0 \text { for some } v \in \mathfrak{p} \tag{3.7}
\end{equation*}
$$

Step 1. If $D_{i, i} \neq D_{i+1, i+1}$ then $D_{i, i}-D_{i+1, i+1}=\lambda$ and $\left(E_{0}\right)_{i, i+1} \neq 0$.

Indeed, since T is a representation, it follows from (3.1) that, for $1 \leq i<d$,

$$
\left(\operatorname{ad}_{\mathfrak{g l}(d)} D-\lambda\right)^{k} E_{0}= \begin{cases}E_{k}, & \text { if } 0 \leq k<n \tag{3.8}\\ 0, & \text { if } k=n\end{cases}
$$

Since D is upper triangular and E_{0} is strictly upper triangular, this implies that, for $1 \leq i<d$,

$$
\left(D_{i, i}-D_{i+1, i+1}-\lambda\right)^{k}\left(E_{0}\right)_{i, i+1}= \begin{cases}\left(E_{k}\right)_{i, i+1}, & \text { if } 0 \leq k<n \tag{3.9}\\ 0, & \text { if } k=n\end{cases}
$$

Now, if $D_{i, i} \neq D_{i+1, i+1}$ then it follows from 3.7) and 3.9 that $\left(E_{0}\right)_{i, i+1} \neq 0$ and case $k=n$ in (3.9) implies $D_{i, i}-D_{i+1, i+1}=\lambda$.
Step 2. For some integer $\ell \geq 0$, there is a unique sequence $\vec{d}=\left(d_{1}, \ldots, d_{\ell+1}\right)$ of positive integers, with $d=|\vec{d}|$, such that

$$
D=D_{1} \oplus \cdots \oplus D_{\ell+1}, \quad D_{i} \in \mathfrak{g l}\left(d_{i}\right)
$$

where each D_{i} has scalar diagonal of scalar $\alpha_{i}=\alpha-(i-1) \lambda$ for some $\alpha \in \mathbb{F}$.
This follows at once from (3.4) and Step 1, uniqueness is a consequence of the arrangement of the eigenvalues of D.
Step 3. According to the block structure of $\mathfrak{g l}(d)$ given by $\vec{d}, p_{r, r}\left(E_{k}\right)=0$ for all $1 \leq r \leq \ell+1$ and $0 \leq k \leq n-1$.

Indeed, setting $U^{j}=\operatorname{span}\left\{u_{1}, \ldots, u_{j}\right\}$ (each U^{j} is a \mathfrak{g}-submodule of U), we have to show that the endomorphism induced by E_{k}, say \bar{E}_{k}, in

$$
\bar{U}^{r}=U^{d_{1}+\cdots+d_{r}} / U^{d_{1}+\cdots+d_{r-1}}
$$

is zero. On the one hand, the endomorphism induced by $\operatorname{ad}_{\mathfrak{g l}(d)} D$ in $\mathfrak{g l}\left(\bar{U}^{r}\right)$ is nilpotent. On the other hand, it follows from (3.8) that \bar{E}_{k} is a generalized eigenvector of eigenvalue λ of the endomorphism induced by $\operatorname{ad}_{\mathfrak{g l}(d)} D$. Since $\lambda \neq 0$ this is a contradiction.
Step 4. According to the block structure of $\mathfrak{g l}(d)$ given by \vec{d}, if $1 \leq i<j \leq \ell+1$ and $j \neq i+1$, then $p_{i, j}\left(E_{k}\right)=0$ for all $0 \leq k \leq n-1$.

The proof of this uses the same argument used in the proof of Step 3. The point is that $p_{i, j}\left(E_{k}\right)$ corresponds to an eigenvector of eigenvalue $(j-i) \lambda$ of $\operatorname{ad}_{\mathfrak{g l}(d)} D$ and, if $j-i \neq 1$, 3.8 implies that $p_{i, j}\left(E_{k}\right)$ must be zero.
Step 5. Let α as in Step 2. We may assume that D is in Jordan form

$$
D=J^{d_{1}}(\alpha) \oplus J^{d_{2}}(\alpha-\lambda) \oplus \cdots \oplus J^{d_{\ell+1}}(\alpha-\ell \lambda)
$$

Moreover, $\ell \geq 1$ and if \mathfrak{n}^{k-1} is not contained in $\operatorname{ker}(T)$, then $\ell \geq k$.
Indeed, by 3.6 and Step 3, the first superdiagonal of every D_{i} consists entirely of non-zero entries. Thus, for each $1 \leq i \leq \ell+1$, there is $P_{i} \in G L\left(d_{i}\right)$ such that

$$
P_{i} D_{i} P_{i}^{-1}=J^{d_{i}}(\alpha-(i-1) \lambda)
$$

Set $P=P_{1} \oplus \cdots \oplus P_{\ell+1} \in G L(d)$, then $P D P^{-1}$ is as stated and and $P E_{k} P^{-1}$ is still strictly block upper triangular with $p_{i, j}\left(P E_{k} P^{-1}\right)=0$ if $1 \leq i \leq j \leq \ell+1$ and $j-i \neq 1$. Since \mathfrak{n}^{k-1} is obtained by bracketing elements of \mathfrak{p}, it follows from Step 3 that, if $\ell<k$, then $\mathfrak{n}^{k-1} \subset \operatorname{ker}(T)$. In particular, since $\operatorname{ker}(T) \cap \mathfrak{p}=0$, we have $\ell \geq 1$.
Step 6. For all $1 \leq i \leq \ell, d_{i}+d_{i+1} \leq n+1$ and the equality holds for some i.

Indeed, from Step 1 we know that $\left(E_{0}\right)_{d_{i}, d_{i}+1} \neq 0$ for all i. If $d_{i}+d_{i+1}>n+1$, for some i, it follows from the Clebsh-Gordan decomposition of the tensor product of irreducible representations of $\mathfrak{s l}(2)$ that $\left(\operatorname{ad}_{\mathfrak{g l}(d)} D-\lambda\right)^{n} E_{0} \neq 0$, contradicting 3.8) (for the details, see [?, Proposition 2.2]). On the other hand, if $d_{i}+d_{i+1}<n+1$ for all i then Clebsh-Gordan implies that $E_{n}=\left(\operatorname{ad}_{\mathfrak{g l}(d)} D-\lambda\right)^{n-1} E_{0}=0$, which is impossible since $\operatorname{ker}(T) \cap \mathfrak{p}=0$.
Final Step. We may assume $E_{0}=\left(\begin{array}{cccc}0 & S(1) & \ldots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & & \ddots & S(\ell) \\ 0 & 0 & \ldots & 0\end{array}\right)$, for a unique normalized sequence $S=(S(1), \ldots, S(\ell))$.

Indeed, it follows from Step 3 and 4 that $E_{0}=E(S)$ for some sequence as in (2.5). It follows from Proposition 2.4 that there is a unique normalized sequence $S=(S(1), \ldots, S(\ell))$ and an invertible matrix $P=P_{1} \oplus \cdots \oplus P_{\ell+1} \in G L(d)$, with P_{i} a polynomial in $J^{d_{i}}(0)$ (and thus commuting with D), such that $P E_{0} P^{-1}=$ $E(S)$.

Theorem 3.2. Let $\lambda \neq 0$. Every finite dimensional uniserial representation T : $\mathfrak{g}_{n, \lambda} \rightarrow \mathfrak{g l}(U)$ satisfying $\operatorname{ker}(T) \cap V=0$ is isomorphic to one and only one normalized representation $R_{\vec{d}, \alpha, S}$ with \vec{d} satisfying $|\vec{d}|=\operatorname{dim} U$ and

$$
\begin{aligned}
d_{i}+d_{i+1} & \leq n+1 \text { for all } i \\
d_{i}+d_{i+1} & =n+1 \text { for at least one } i
\end{aligned}
$$

Proof. This is a consequence of Propositions 2.7 and 3.1

4. The nilpotency degree of the nilradical $\mathfrak{n}(S)$

The goal of this section is to compute the nilpotency degree of the nilradical $\mathfrak{n}(S)$ of $\mathfrak{h}(\alpha, \lambda, S)$. We will see that, for generic \vec{d} and S, the nilpotency degree of $\mathfrak{n}(S)$ is ℓ. The only exceptions will occur when \vec{d} are odd-symmetric (as defined below) with $d_{1}=d_{\ell+1}=1$ and $\phi(E(S))=E(S)$ (see 2.2).

From now on, set $k=\ell+1$.
Definition 4.1. Given $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$, we say that \vec{d} is symmetric if $d_{i}=d_{k+1-i}$ for all $i=1, \ldots, k$. We say that \vec{d} is odd-symmetric if, in addition, k is odd and $d_{(k+1) / 2}$ is odd. Also, if $S=(S(1), \ldots, S(k-1))$ is a sequence satisfying 2.5), we say that S is ϕ-invariant if $E(S)$ is invariant by the automorphism ϕ. We notice that it follows from (2.4) that the canonical sequence (see Definition 2.2 is invariant.
Proposition 4.2. Let $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$ be odd-symmetric, set $d=|\vec{d}|$, and let $S=(S(1), \ldots, S(k-1)$) be a ϕ-invariant sequence satisfying 2.5). Then

$$
A_{i, d+1-i}=0, \quad i=1, \ldots, \frac{d+1}{2}
$$

for all $A \in \mathfrak{h}(\alpha, \lambda, S)$. In particular, if in addition $d_{1}=1$ then $p_{1, k}(\mathfrak{h}(\alpha, \lambda, S))=0$. Proof. It follows from Proposition 2.5 that it is enough to prove the result for $\alpha=$ $\lambda=0$. The hypothesis on \vec{d} implies that $\phi(D(0,0))=D(0,0)$ and the hypothesis on S says that $\phi(E(S))=E(S)$ and since it follows that $\phi(A)=A$ for all $A \in \mathfrak{h}(0,0, S)$. Therefore, since \vec{d} is odd-symmetric (and hence d is odd), the definition of ϕ implies that all the entries of A in the antidiagonal must be zero for all $A \in \mathfrak{h}(0,0, S)$.
4.1. The nilradical corresponding to the canonical sequence $S=C$. In this subsection we will consider the case $(\alpha, \lambda, S)=(0,0, C)$. In order to simplify the notation, let $\mathfrak{h}=\mathfrak{h}(0,0, C)$ and $E=E(C)$.

Associated to the Lie algebra \mathfrak{h} we define, for $1 \leq i<j \leq k$, the numbers

$$
r_{i, j}= \begin{cases}0, & \text { if } p_{i, j}(X)=0 \text { for all } X \in \mathfrak{h} \\ \min \left\{\operatorname{rk}\left(p_{i, j}(X)\right): 0 \neq X \in \mathfrak{h}\right\}, & \text { otherwise }\end{cases}
$$

Proposition 4.3. $r_{i, j} \in\{0,1,2\}$.
Proof. It follows from the definition of E that $r_{i, i+1}=1$, for $1 \leq i \leq k-1$. For $l \geq 1, r_{i, i+l+1} \leq 2$ is a consequence of the following two facts. First, if X is any element of block-degree l, then $\operatorname{rk}\left(p_{i, i+l+1}([E, X])\right) \leq 2$, since all the elements of $p_{i, i+l+1}([E, X])$ are zero, with the possible exception of those in the first column and the last row.

On the other hand, set $j=i+l+1$, we will prove that if $p_{i, j}([E, X])=0$ for all $X \in \mathfrak{h}$, then $r_{i, j}=0$. By induction we will show that

$$
p_{i, j}\left(\left[\operatorname{ad}(D)^{r} E, X\right]\right)=0, \quad r \geq 0 ; X \in \mathfrak{h}
$$

The case $r=0$ is given. Moreover, given the case r,

$$
\begin{aligned}
p_{i, j}\left(\left[\operatorname{ad}(D)^{r+1} E, X\right]\right) & \left.=p_{i, j}\left(\left[D, \operatorname{ad}(D)^{r} E\right], X\right]\right) \\
& =-p_{i, j}\left(\left[\operatorname{ad}(D)^{r} E,[D, X]\right]\right)+p_{i, j}\left(\left[D,\left[\operatorname{ad}(D)^{r} E, X\right]\right]\right) \\
& =p_{i, i}(D) p_{i, j}\left(\left[\operatorname{ad}(D)^{r} E, X\right]\right)-p_{i, j}\left(\left[\operatorname{ad}(D)^{r} E, X\right]\right) p_{j, j}(D) \\
& =0
\end{aligned}
$$

Since we know, from Proposition 2.5, that the elements $\operatorname{ad}(D)^{r} E, r \geq 0$, generates \mathfrak{n}, it follows that $r_{i, j}=0$.

Proposition 4.4. If $A \in \mathfrak{g l}(d)$ has the property

$$
\left(p_{i, j}(A)\right)_{a, b}= \begin{cases}1, & \text { if } a, b=a_{0}, b_{0} \\ 0, & \text { otherwise }\end{cases}
$$

then the entries of $p_{i, j}\left(\operatorname{ad}(D)^{k}(A)\right)$ are zero except those contained in the diagonal $b-a=b_{0}-a_{0}+k$, in which case:

$$
\left(p_{i, j}\left(\operatorname{ad}(D)^{k}(A)\right)\right)_{a_{0}-i, b_{0}+k-i}=(-1)^{k-i}\binom{k}{i}
$$

In particular, $\left(p_{i, j}(A)\right)_{d_{i}, 1}=1$ then all the entries of $p_{i, j}\left(\operatorname{ad}(D)^{d_{i}+d_{j}-1}(A)\right)$ are zero except

$$
\left(p_{i, j}\left(\operatorname{ad}(D)^{d_{i}+d_{j}-2}(A)\right)\right)_{1, d_{j}}=(-1)^{d_{j}-1}\binom{d_{i}+d_{j}-2}{d_{i}-1}
$$

Proof. This is an straightforward computation.
Proposition 4.5. If there is $X \in \mathfrak{h}$ such that $\left(p_{i, j}(X)\right)_{d_{i}, 1} \neq 0$, then $r_{i, j}=1$.
Proof. This is consequence of Proposition 4.4.

Proposition 4.6. If $r_{i, j}=1$ then there exists $X \in \mathfrak{h}$ such that

$$
p_{i, j}(X)=\left(\begin{array}{cccc}
0 & \ldots & 0 & 1 \tag{4.1}\\
0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right)
$$

and if $r_{i, j}=2$ then there exists $X \in \mathfrak{h}$ such that

$$
p_{i, j}(X)=\left(\begin{array}{cccc}
0 & \ldots & 1 & * \tag{4.2}\\
0 & \ldots & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right)
$$

Moreover, for any $X \in \mathfrak{h}$ satisfying $p_{i, j}(X) \neq 0$ then there exists k_{0} such that $p_{i, j}\left(\operatorname{ad}(D)^{k_{0}}(X)\right)$ is either as 4.1) or as 4.2.

Proof. Let $X \in \mathfrak{h}$ be such that $\operatorname{rk}\left(p_{i, j}(X)\right)=r_{i, j}$, and let

$$
\begin{aligned}
t_{0} & =\min \left\{t=b-a:\left(p_{i, j}(X)\right)_{a, b} \neq 0\right\}, \\
T_{0} & =\left\{(a, b): b-a=t_{0} \text { and }\left(p_{i, j}(X)\right)_{a, b} \neq 0\right\} .
\end{aligned}
$$

If $r_{i, j}=1$ then there is only one pair $\left(a_{0}, b_{0}\right) \in T_{0}$. If $k_{0}=d_{j}-1-t_{0}$ then it follows from Proposition 4.4 that $\operatorname{ad}(D)^{k_{0}}(X)$ is, up to a non-zero scalar, as stated.

If $r_{i, j}=2$ then there are at most two possible pairs $(a, b) \in T_{0}$. It follows from Proposition 4.4 that, if $k_{0}=d_{j}-2-t_{0}$, then the only possible non-zero entries of $p_{i, j}\left(\operatorname{ad}(D)^{k_{0}}(X)\right)$ are

$$
\begin{aligned}
\left(p_{i, j}(X)\right)_{1, d_{j}-1} & \left(p_{i, j}(X)\right)_{1, d_{j}} \\
& \left(p_{i, j}(X)\right)_{2, d_{j}}
\end{aligned}
$$

Moreover, the pair

$$
\begin{equation*}
\left(\left(p_{i, j}(X)\right)_{1, d_{j}-1},\left(p_{i, j}(X)\right)_{2, d_{j}}\right) \tag{4.3}
\end{equation*}
$$

is a linear combination of two pairs of two consecutive binomial numbers $\binom{k_{0}}{l}$, $0 \leq l \leq k$, that is

$$
\left(\left(p_{i, j}(X)\right)_{1, d_{j}-1},\left(p_{i, j}(X)\right)_{2, d_{j}}\right)=x_{1}\left(\binom{k_{0}}{l_{1}},\binom{k_{0}}{l_{1}+1}\right)+x_{2}\left(\binom{k_{0}}{l_{2}},\binom{k_{0}}{l_{2}+1}\right)
$$

with $0 \leq l_{1} \neq l_{2} \leq k_{0}$ for some $\left(x_{1}, x_{2}\right) \neq(0,0)$. Since $\left(\binom{k_{0}}{l_{1}}, \quad\binom{k_{0}}{l_{1}+1}\right)$ and $\left(\binom{k_{0}}{l_{2}},\binom{k_{0}}{l_{2}+1}\right)$ are linearly independent, it follows that the pair 4.3) is non-zero. Finally, we conclude that $\operatorname{ad}(D)^{k_{0}}(X)$ is, up to a non-zero scalar, as stated because otherwise we would have $r_{i, j}=1$.

Proposition 4.7. If there exists $X \in \mathfrak{h}$ such that either

$$
p_{i, j}(X)=0 \quad \text { and } \quad p_{i+1, j+1}(X) \neq 0
$$

or

$$
p_{i, j}(X) \neq 0 \quad \text { and } \quad p_{i+1, j+1}(X)=0
$$

then $r_{i, j+1}=1$. Moreover, any of the following:
(a1) $r_{i, j}=0$ and $r_{i+1, j+1} \neq 0$,
(a2) $r_{i, j} \neq 0$ and $r_{i+1, j+1}=0$,
(b) $r_{i, j}=r_{i+1, j+1}=1$ and $d_{i} \neq d_{j+1}$,
(c1) $r_{i, j}=1, r_{i+1, j+1}=2$ and $d_{i}+1 \neq d_{j+1}$,
(c2) $r_{i, j}=2, r_{i+1, j+1}=1$ and $d_{i} \neq d_{j+1}+1$.
implies the existence of such an X and thus $r_{i, j+1}=1$.
Proof. First, if there exists $X \in \mathfrak{h}$ such that $p_{i, j}(X)=0$ and $p_{i+1, j+1}(X) \neq 0$, then, by Proposition 4.6, we may assume that X isis either as 4.1) or as 4.2. In either case, it is clear that $\operatorname{rk}\left(p_{i, j+1}([E, X])\right)=1$.

Now we prove the particular statements. By symmetry, it is enough to prove (a1), (b) and (c1).

Proof of (a1): it is immediate that (a1) implies the existence of $X \in \mathfrak{h}$ such that $p_{i, j}(X)=0$ and $p_{i+1, j+1}(X) \neq 0$.

Proof of (b): let $X \in \mathfrak{h} \cap \mathcal{D}_{t_{X}}$ be homogeneous such that all the entries of $p_{i, j}(X)$ are zero except that $\left(p_{i, j}(X)\right)_{1, d_{j}}=1$, as granted by Proposition 4.6. This implies that $t_{X}=d_{j-1}+\cdots+d_{i}+\left(d_{j}-1\right)$.

Similarly, let $Y \in \mathfrak{h} \cap \mathcal{D}_{t_{Y}}$ be homogeneous such that all the entries of $p_{i+1, j+1}(X)$ are zero except that $\left(p_{i+1, j+1}(X)\right)_{1, d_{j+1}}=1$. Now $t_{Y}=d_{j}+\cdots+d_{i+1}+\left(d_{j+1}-1\right)$.

It follows from the hypothesis that

$$
t_{Y}-t_{X}=d_{j+1}-d_{i} \neq 0
$$

Therefore, either $t_{Y}>t_{X}$, in which case $p_{i, j}(Y)=0$ or $t_{X}>t_{Y}$, in which case $p_{i+1, j+1}(X)=0$, and we are done.

Proof of (c1): This is analogous to the proof of (b).
Proposition 4.8. If $r_{i, j}=1$ and one of the following hold:
(a) $d_{i}, d_{j}>1$,
(b1) $d_{j}>1$ and $r_{i+1, j+1}=0$,
(b2) $d_{i}>1$ and $r_{i-1, j-1}=0$,
(c) $r_{i+1, j+1}=r_{i-1, j-1}=0$.
then $r_{i-1, j+1}=1$.
Proof. Any of these conditions implies that, for any $X \in \mathfrak{h}$,

$$
\left(p_{i-1, j+1}([[X, E], E]]\right)_{d_{i-1}, 1}=-2\left(p_{i, j}(X)\right)_{1, d_{j}}
$$

Since $r_{i, j}=1$, it follows from Proposition 4.6 that there exists $X \in \mathfrak{h}$ such that $\left(p_{i, j}(X)\right)_{1, d_{j}} \neq 0$, and thus $\left(p_{i-1, j+1}([[X, E], E]]\right)_{d_{i-1}, 1} \neq 0$. Now Proposition 4.5 implies $r_{i-1, j+1}=1$.
Proposition 4.9. If $r_{i, j}=2$, then $r_{i-1, j} \neq 2$ and $r_{i, j-1} \neq 2$.
Proof. By symmetry, it is enough to show $r_{i, j-1} \neq 2$. We use induction on k. For $k=3$ there is nothing to prove, since $r_{1,2}=1$. Let $k>3$, we can assume $i=1$ and $j=k$. Arguing by contradiction, we assume $r_{1, k-1}=2$. By inductive hypothesis $r_{1, k-2}, r_{2, k-1} \neq 2$ and, since $r_{1, k-1}=2$, Proposition 4.7 (a1), (a2), implies that

$$
r_{1, k-2}, r_{2, k-1}=1
$$

Since $r_{1, k-1}=2$ then $d_{k-1}>1$ and hence, since $r_{2, k-1}=1$ and $r_{1, k}=2$, Proposition 4.8 (a) implies $d_{2}=1$ and thus $r_{2, k} \neq 2$. Since $r_{1, k}=2$, Proposition 4.7 (a2) implies $r_{2, k}=1$. Proposition 4.7 (c2) implies $d_{1}=d_{k}+1$.

Now we have $r_{3, k} \neq 0$ since, otherwise, Proposition 4.8 (b1), applied to $(i, j)=$ $(2, k-1)$ would imply that $r_{1, k}=1$. Moreover, we claim $r_{3, k}=2$.

If $r_{3, k}=1$ we can find a homogeneous $X \in \mathfrak{h} \cap \mathcal{D}_{t}$ such that $p_{3, k}(X)$ is as stated in Proposition 4.6, that is $\left(p_{3, k}(X)\right)_{1, d_{k}}=1$. Since $1=d_{2}<2 \leq d_{k}$, Proposition 2.1 implies $p_{2, k-1}(X)=0$. Since $r_{1, k-1}=2$, Proposition 4.7 implies $p_{1, k-2}(X)=0$. Therefore

$$
p_{1, k-1}([X, E])=0 \quad \text { and } \quad p_{2, k}([X, E]) \neq 0
$$

and, once again, Proposition 4.7 implies $r_{1, k}=1$, a contradiction. We have proved that $r_{3, k}=2$ and hence $d_{3} \geq 2, r_{3, k-1} \neq 2$ by the inductive hypothesis, and $r_{3, k-1} \neq$ 0 by Proposition 4.7. Therefore $r_{3, k-1}=1$ and, it follows from Proposition 4.6 that there is a homogeneous $X \in \mathfrak{h}$ as in 4.1, that is with $\left(p_{3, k-1}(X)\right)_{1, d_{k}-1}=1$. Taking into account that $d_{3}, d_{k-1} \geq 2$ it is not difficult to see that

$$
\left.\left(p_{1, k}([[[X, E], E], E])\right)\right)_{1, d_{1}}=3
$$

which implies that $r_{1, k}=1$, a contradiction.
Proposition 4.10. $r_{1, k}=2$ implies $d_{1}=d_{k}>1$.
Proof. Since $r_{1, k}=2$, we have $d_{1}, k>1$. We must show that $d_{1}=d_{k}$. We know by Proposition 4.9 that $r_{1, k-1}, r_{2, k} \neq 2$. Also, by fact Proposition 4.7, it follows that $r_{1, k-1}, r_{2, k} \neq 0$. Therefore $r_{1, k-1}=r_{2, k}=1$. Now Proposition 4.7(b) implies $d_{1}=d_{k}$.
Proposition 4.11. If $r_{1, k}=0$ then $d_{1}=1$ or $d_{k}=1$.
Proof. We will consider all possible values for $r_{1, k-1}, r_{2, k}$.
Case $r_{1, k-1}=0, r_{2, k} \neq 0$; or $r_{1, k-1} \neq 0, r_{2, k}=0$: Impossible by Proposition 4.7.
Case $r_{1, k-1}=r_{2, k}=1$: It follows from Proposition 4.7(b) that $d_{1}=d_{k}$ and it is clear that if $d_{1} \neq 1$ then $r_{1, k} \neq 0$, thus $d_{1}=1$.
Case $r_{1, k-1}=r_{2, k}=2$: This implies that $d_{1}, d_{2}, d_{k-1}, d_{k} \geq 2$. Consider $r_{2, k-1}$. It is not 0 by Proposition 4.7 and it can not be 2 by Proposition 4.9. Hence $r_{2, k-1}=1$ and now Proposition 4.8 implies $r_{1, k}=1$ contradicting our hypothesis.
Case $r_{1, k-1}=2, r_{2, k}=1$: This implies $d_{1}>1$. It follows from Propositions 4.9 and 4.7 (a2) that $r_{2, k-1}=1$. Then, since $d_{1}>1$ if we also had $d_{k}>1$, we would have $r_{1, k}=1$ by Proposition 4.8. Thus $d_{k}=1$.
Case $r_{1, k-1}=r_{2, k}=0$: By the induction hypothesis, either the claim is true or $d_{1}, d_{k}>1$ and $d_{2}=d_{k-1}=1$. We assume, by contradiction that

$$
d_{1}, d_{k}>1 \text { and } d_{2}=d_{k-1}=1
$$

Let j_{0} be the largest j such that

$$
r_{i, k-j+i}=0 \text { for all } i=1, \ldots, j
$$

Clearly $2 \leq j_{0} \leq k-2$ and, again, the induction hypothesis imply

$$
\begin{equation*}
d_{j}=d_{k+1-j}=1 \text { for all } 2 \leq j \leq j_{0} \tag{4.4}
\end{equation*}
$$

Since, by definition of j_{0}, we have $r_{i, k-\left(j_{0}+1\right)+i} \neq 0$ for some i, it follows from Proposition 4.7 (a1) or (a2) that in fact $r_{i, k-\left(j_{0}+1\right)+i} \neq 0$ for all $i=1, \ldots, j_{0}+1$. Moreover, 4.4 implies that

$$
r_{i, k-\left(j_{0}+1\right)+i}=1 \text { for all } i=2, \ldots, j_{0}
$$

Let $X \in \overline{\mathcal{D}}_{k-\left(j_{0}+1\right)}, X \neq 0$ such that $[D, X]=0$. By the definition of j_{0}, we must have $[E, X]=0$ and thus $[E+D, X]=0$. Since $D+E$ is principal nilpotent, it follows that, up to scalar, X is a power of $D+E$. This implies that $d_{1}=d_{k}=2$ and $r_{1, k-j_{0}}=r_{j_{0}+1, k}=2$. At this point we know that

$$
X=\left(\begin{array}{c|ccc|c|c|c|cc}
\ldots & \ldots & 1 & 0 & 0 & & & 0 & 0 \\
\cdots & \ldots & 0 & 1 & 0 & & & 0 & 0 \\
\hline & & & 0 & 1 & & & & \\
\hline & & & & & \ddots & & & \\
\hline & & & & & 0 & 1 & 0 & 0 \\
\hline & & & & & 0 & 1 & 0 \\
& & & & & & 0 & 1 \\
& & & & & & & \vdots & \vdots \\
\hline & & & & & & \vdots & \vdots
\end{array}\right)
$$

Moreover, there must exists $Y \in \overline{\mathcal{D}}_{k-\left(j_{0}+2\right)}$ such that $[D, Y]=X$. This implies that $d_{j_{0}+1}=d_{k-j_{0}}=2$ and

$$
Y=\left(\begin{array}{c|c|cc|c|c|c|cc}
\cdots & a_{0} & 0 & 0 & 0 & & & 0 & 0 \\
\cdots & 0 & 0 & 0 & 0 & & & 0 & 0 \\
\hline & & 0 & a_{1} & 0 & & & & \\
\hline & & & & & \ddots & & & \\
\hline & & & & & a_{j_{0}-1} & 0 & 0 & 0 \\
\hline & & & & & a_{j_{0}} & 0 & 0 \\
& & & & & 0 & 0 & 0 \\
\hline & & & & & & 0 & a_{j_{0}+1} \\
\hline & & & & & & \vdots & \vdots
\end{array}\right)
$$

But with this Y it is impossible to satisfy the condition $[D, Y]=X$.
Now we can prove the crucial step.
Proposition 4.12. Let $k \geq 2$ and $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$. Then
(1) If $r_{2, k-1}=2$ and $d_{1}=d_{k}=1$ then $r_{1, k}=0$.
(2) If $r_{1, k}=0$ then $d_{1}=1$ and $d_{k}=1$.
(3) If $r_{2, k-1}=1$ then $r_{1, k}=1$, unless $k=4$ and $\vec{d}=(1,1,1,1)$.
(4) If $r_{1, k}=2$ then k is odd and \vec{d} is odd-symmetric with $d_{1}=d_{k}>1$.
(5) If $r_{1, k}=0$ then either k is even and $\vec{d}=(1, \ldots, 1)$, or k is odd and \vec{d} is odd-symmetric with $d_{1}=d_{k}=1$.

Proof. We use induction on k. For $k=2$ there is nothing to prove. We assume $k \geq 3$ and that the whole proposition is true for lower values of k.
Proof of part (1), we have $r_{2, k-1}=2$ and $d_{1}=d_{k}=1$: By induction hypothesis on part (4), $r_{2, k-1}=2$ implies that $k-2$ is odd and \vec{d} is odd-symmetric. Proposition 4.2 and $d_{1}=d_{k}=1$ imply $r_{1, k}=0$.

Proof of part (2), we have $r_{1, k}=0$: As in Proposition 4.11 we will consider all possible values for $r_{1, k-1}, r_{2, k}$.

The cases $r_{1, k-1}=0, r_{2, k} \neq 0$ and $r_{1, k-1} \neq 0, r_{2, k}=0$ are impossible by Proposition 4.7.

The case $r_{1, k-1}=r_{2, k}=0$ follows by induction hypothesis on part (2).
The cases $r_{1, k-1}=r_{2, k}=1$ and $r_{1, k-1}=r_{2, k}=2$ are as in Proposition 4.11. In particular, $r_{1, k-1}=r_{2, k}=1$ implies $d_{1}=d_{k}=1$.

Finally, let us prove that the case $r_{1, k-1}=2, r_{2, k}=1$ is impossible.
This case implies that $d_{k-1}, d_{1} \geq 2$ and thus, by Proposition 4.11, $d_{k}=1$. Proposition $4.7(\mathrm{c} 2)$ implies that $d_{1}=2$. Proposition 4.9 implies $r_{2, k-1} \neq 2$, Proposition 4.7 implies $r_{2, k-1} \neq 0$, and thus $r_{2, k-1}=1$. Since $d_{k-1} \geq 2$, if $d_{2}>1$, Proposition 4.8 (a) would imply that $r_{1, k}=1$; hence $d_{2}=1$. Let $l \geq 2$ be the first index such that $d_{l-1}=1$ but $d_{l}>1$. Thus we have

$$
2=d_{1}, 1=d_{2}=\cdots=d_{l-1}, 2 \leq d_{l}, \ldots, 2 \leq d_{k-1}, 1=d_{k}
$$

Now we will show that $r_{l, k-1} \neq 0,1,2$, which is a contradiction.
Since $d_{l}, d_{k-1} \geq 2$, Proposition 4.11 implies $r_{l, k-1} \neq 0$. Let us show that $r_{l, k-1} \neq 1$. Otherwise there would be a homogeneous $X \in \mathcal{D}_{t} \cap \overline{\mathcal{D}}_{k-1-l}$ such that $\operatorname{rk}\left(p_{l, k-1}(X)\right)=1$ and by Proposition 4.6 we may assume as in 4.1). Since $d_{k-1} \geq 2$ and $X \in \mathcal{D}_{t}$, it follows that

$$
p_{j, k-1-l+j}(X)=0, \text { for all } j=2, \ldots, l-1
$$

and this implies that $\operatorname{rk}\left(p_{1, k}\left(\operatorname{ad}(E)^{l}(X)\right)\right)=1$, a contradiction.
Let us show that $r_{l, k-1} \neq 2$. If $r_{l, k-1}=2$ then, by induction hypothesis on (1) we have $r_{l-1, k}=0$. This implies that $r_{l, k}=r_{l-1, k-1}=1$ and thus we have a homogeneous $X \in \mathcal{D}_{t} \cap \overline{\mathcal{D}}_{k-l}$ such that $\operatorname{rk}\left(p_{l, k}(X)\right)=1$, but since $r_{l-1, k}=0$, Proposition 4.7 implies that $\operatorname{rk}\left(p_{l-1, k-1}(X)\right)=1$ and $\left.p_{l-1, k}([X, E])\right)=0$. By Proposition 4.6 we may assume that $p_{l, k}(X)$ and $p_{l-1, k-1}(X)$ are as in 4.1). Now $\operatorname{ad}^{l-1}(E)(X) \neq 0$ which is absurd.
Proof of part (3), we have $r_{2, k-1}=1$: If $d_{1} \neq d_{k}$, it follows from Proposition 4.10 and part (2) that $r_{1, k}=1$. Therefore, we assume from now on $d_{1}=d_{k}$. Let us consider now $r_{1, k-1}$ and $r_{2, k}$.

If $r_{1, k-1}=r_{2, k}=0$, then $r_{1, k}=0$ and the induction hypothesis on part (5) implies (this does not depend on the parity of k) that $d_{i}=1$, for all $1 \leq i \leq k$ which in turn implies $r_{2, k-1}=0$, and this can not happen unless $k=4$.

The cases $r_{1, k-1}=0, r_{2, k} \neq 0$ and $r_{1, k-1} \neq 0, r_{2, k}=0$ imply that $r_{1, k}=1$ by Proposition 4.7.

The case $r_{1, k-1}=2$ implies that $r_{1, k}$ can not by 2 by Proposition 4.9 and that $r_{1, k}$ can not by 0 by part (2), and thus $r_{1, k}=1$. Similarly, $r_{2, k}=2$ then $r_{1, k}=1$.

Therefore, we can assume $r_{1, k-1}=r_{2, k}=1$ and thus $\left(d_{1}, \ldots, d_{k}\right) \neq(1, \ldots, 1)$. If $d_{k-1}>1$ and $d_{2}>1$ then, by Proposition $4.8(\mathrm{a}), r_{1, k}=1$. Let $i<j$ be such that $d_{i}, d_{j}>1$ and

$$
\begin{equation*}
d_{l}=1 \text { for } j<l \leq k \text { and } 1 \leq l<i \tag{4.5}
\end{equation*}
$$

We have $r_{i, j} \neq 0$ by Proposition 4.11.
Assume first $r_{i, j}=1$. This implies that we have a homogeneous $X \in \mathcal{D}_{t} \cap \overline{\mathcal{D}}_{j-i}$ such that $\operatorname{rk}\left(p_{i, j}(X)\right)=1$ and, by Proposition 4.6. we may assume $p_{i, j}(X)$ as in 4.1). Since $d_{i}, d_{j}>1$, we have

$$
p_{i-q, j+\beta-q}\left(\operatorname{ad}(E)^{\beta}(X)\right)=(-1)^{\beta-q}\binom{\beta}{q}
$$

and this implies that $r_{1, k}=1$.
Now assume $r_{i, j}=2$. By the induction hypothesis on part (4) we have $j+1-i$ odd and

$$
\begin{equation*}
\left(d_{i}, d_{i+1} \ldots, d_{j}\right) \quad \text { is odd-symmetric. } \tag{4.6}
\end{equation*}
$$

Also, the induction hypothesis on part (1), implies $r_{i-1, j+1}=0$ and thus $r_{i-1, j}=$ $r_{i, j+1}=1$. This implies that we have a homogeneous $X \in \mathcal{D}_{t} \cap \overline{\mathcal{D}}_{j+1-i}$ such that $\operatorname{rk}\left(p_{i-1, j}(X)\right)=1$, but since $r_{i-1, j+1}=0$, Proposition 4.7 implies that $\operatorname{rk}\left(p_{i, j+1}(X)\right)=1$ and $\left.p_{i-1, j+1}([X, E])\right)=0$. By Proposition 4.6 we may assume that

$$
p_{i-1, j}(X)=\left(\begin{array}{llll}
0 & \cdots & 0 & 1
\end{array}\right) \quad \text { and } \quad p_{i, j+1}(X)=\left(\begin{array}{c}
x \\
0 \\
\vdots \\
0
\end{array}\right)
$$

but since $\left.p_{i-1, j+1}([X, E])\right)=0$ we have $x=1$. This implies that

$$
p_{i-q, j+1+\beta-q}\left(\operatorname{ad}(E)^{\beta}(X)\right)= \pm\left(\binom{\beta}{q}-\binom{\beta}{q-1}\right)
$$

when $i-q>1$ and $j+1+\beta-q<k$ (in all these cases the size of block $p_{i-q, j+1+\beta-q}\left(\operatorname{ad}(E)^{\beta}(X)\right)$ is $\left.1 \times 1\right)$ and

$$
p_{1, k}\left(\operatorname{ad}(E)^{k-j+i-2}(X)\right)_{d_{1}, 1}= \pm\left(\binom{k-j+i-2}{i-1}-\binom{k-j+i-2}{i-2}\right)
$$

If this number is not zero, then $\operatorname{rk}\left(p_{1, k}\left(\operatorname{ad}(E)^{k-j+i-2}(X)\right)\right)=1$ and thus $r_{1, k}=1$. Otherwise

$$
\binom{k-j+i-2}{i-1}=\binom{k-j+i-2}{i-2}
$$

and hence $j=k+1-i$. This, together with 4.5 and 4.6), imply k odd and

$$
\left(d_{2}, d_{3} \ldots, d_{k-1}\right) \quad \text { is odd-symmetric. }
$$

Now, Proposition 4.2 implies $r_{2, k-1}=0$, a contradiction.
Proof of parts (4) and (5), we have $r_{1, k} \neq 1$: It follows from part (3) that $r_{2, k-1} \neq 1$. We now apply the induction hypothesis on parts (4) and (5) and we consider the cases k even and k odd.

If k is even, then $\left(d_{2}, \ldots, d_{k-1}\right)=(1, \ldots, 1)$ (in particular $r_{2, k-1}=0$). We may assume $d_{1} \geq d_{k}$, we will show that $d_{1}=d_{k}=1$.

Let $X=\operatorname{ad}(D)^{d_{1}-1}(E) \in \mathcal{D}_{d_{1}} \cap \overline{\mathcal{D}}_{1}$, we have

$$
p_{1,2}(X)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

If $d_{1}>d_{k}$ then $p_{\alpha, 1+\alpha}(X)=0$ for all $2 \leq \alpha \leq k-1$ and it is clear that $\operatorname{rk}\left(\operatorname{ad}(E)^{k-1}(X)\right)=1$ and hence $r_{1, k}=1$, a contradiction. Therefore $d_{1}=d_{k}$.

If $d_{1}=d_{k}>1$ then $p_{\alpha, \alpha+1}(X)=0$ for all $2 \leq \alpha \leq k-2$ and

$$
p_{k-1, k}(X)=\left(\begin{array}{llll}
0 & \cdots & 0 & (-1)^{d_{k}-1}
\end{array}\right) .
$$

Now

$$
p_{1, k}\left(\operatorname{ad}(D+E)^{(k-1)+\left(d_{k}-1\right)}(X)\right)=\left(\begin{array}{cccc}
0 & \ldots & (-1)^{k+d_{k}} & 0 \\
0 & \ldots & 0 & (-1)^{d_{k}-1} \\
\vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right)
$$

and since k is even, we obtain $\operatorname{rk}\left(p_{1, k}\left(\operatorname{ad}(D+E)^{(k-1)+\left(d_{k}-1\right)+1}(X)\right)\right)=1$, a contradiction. Therefore $d_{1}=d_{k}=1$.

If k is odd, then the induction hypothesis on parts (4) and (5) implies that $\left(d_{2}, \ldots, d_{k-1}\right)$ is odd-symmetric. If $r_{1, k-1} \neq 1$, the induction hypothesis on parts (4) and (5) implies $\left(d_{1}, \ldots, d_{k-1}\right)=(1, \ldots, 1)$ and thus $d_{k}=1$ (otherwise we would obtain $r_{1, k}=1$). Hence $r_{1, k-1}=1$ and similarly $r_{2, k}=1$. Now $r_{1, k} \neq 1$, part (2) and Proposition 4.10 imply $d_{1}=d_{k}$ and thus $\left(d_{1}, \ldots, d_{k}\right)$ is odd-symmetric. Finally, Proposition 4.2 and item (2) imply that $r_{1, k}=2$ if and only if $d_{1}=d_{k}>1$.

Summarizing, we have proved the following theorem.
Theorem 4.13. Let $k \geq 2$ and $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$. Then the nilpotency degree of $\mathfrak{n}(C)$ is $k-1$ except when $r_{1, k}=0$. This occurs if and only if
(1) $\vec{d}=(1, \ldots, 1)$, in which case \mathfrak{n} is 1-dimensional abelian.
(2) k is odd, \vec{d} is odd-symmetric with $d_{1}=d_{k}=1$, in which case the nilpotency degree is $k-2$.
In addition, $r_{1, k}=2$ if and only if k is odd, \vec{d} is odd-symmetric with $d_{1}=d_{k}>1$.
Corollary 4.14. If $l<k$ and $r_{i, l+i}=0$ for $i=1, \ldots, k-l$, then $\vec{d}=(1, \ldots, 1)$.
Proof. By hypothesis, all sequences $\left(d_{1}, \ldots, d_{l+1}\right),\left(d_{2}, \ldots, d_{l+1}\right)$, up to $\left(d_{k-l}, \ldots, d_{k}\right)$, fall in the cases of parts (5) and (4) of Proposition 4.12 .

CIEM-CONICET, FAMAF-Universidad Nacional de Córdoba, Argentina.
E-mail address: cagliero@famaf.unc.edu.ar
CIEM-CONICET, FAMAF-Universidad Nacional de Córdoba, Argentina.
E-mail address: levstein@famaf.unc.edu.ar
Department of Mathematics and Statistics, Univeristy of Regina, Canada
E-mail address: fernando.szechtman@gmail.com

[^0]: 2010 Mathematics Subject Classification. 17B10, 17B30.
 Key words and phrases. uniserial representation; free ℓ-step nilpotent Lie algebra.
 This research was partially supported by grants from CONICET, FONCYT and SeCyTUNCórdoba).

 This research was partially supported by an NSERC grant.

