NILPOTENCY DEGREE OF THE NILRADICAL OF SOLVABLE
LIE ALGEBRAS ON TWO GENERATORS

LEANDRO CAGLIERO, FERNANDO LEVSTEIN, AND FERNANDO SZECHTMAN

ABSTRACT. Given a field F' of characteristic 0, we consider solvable Lie alge-
bras g of block upper triangular matrices on two generators. Imposing mild
conditions on these generators, we prove that the nilpotency degree of the nil-
radicals n = [g, g] is as large as possible, namely the number of diagonal blocks
minus one.

As an application when F is algebraically closed, let Ny(V) denote the
free ¢-step nilpotent Lie algebra associated to a given F-vector space V. As
a consequence of the above degree, we obtain a complete classification of all
uniserial representations of the solvable Lie algebra g = (x) x Ny(V'), where x
acts on V via an arbitrary invertible Jordan block.

1. INTRODUCTION

We fix throughout a field F' of characteristic 0. All Lie algebras and representa-
tions considered in this paper are assumed to be finite dimensional over F', unless
explicitly stated otherwise.

Given a 5-tuple (¢,d, a, A\, X), where £ is a positive integer, d = (di,...,dps1)
is a sequence of ¢ + 1 positive integers, a, A € F, and X = (X(1),...,X(¥)) is a
sequence of £ matrices X (i) € Mg, xq,,, such that X(i)q, 1 # 0 for all i, consider
the matrices D, F € gl(d), d =dy + -+ + dg+1, given in block form by

D=J%"a)®J?(a-N) & & JU (a—L1N),

where J?(f) denotes the upper triangular Jordan block of size p and eigenvalue g,

0 X(1) 0 ... 0
0 0 X2 .. 0
N . . .
0 0 ... . X
0 0 ... ... 0

The Lie subalgebra of gl(d) generated by D and FE is easily seen to be equal to (D) x
n, where n is nilpotent. Theorem 77 proves that, except for a few extraordinary
cases, the nilpotency degree of n is exactly /.

Suppose F' is algebraically closed. Theorem 7?7 uses the above bound to give
a complete classification of all uniserial representations of the solvable Lie algebra
0 = Guwsnntn = () X Ng(V), where V is a vector space of dimension n > 1, Ny(V)
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is the free ¢-step nilpotent Lie algebra associated to V', and x acts on V via a single
Jordan block J,(A), A # 0.

A representation R : g — gl(U) is relatively faithful if ker(R) NV = 0 and
ker(R) N n‘~! is properly contained in n‘~!. It suffices to classify all uniserial
representations of g that are relatively faithful. Indeed, let R : g — gl(U) be
a uniserial representation. If V' C ker(R) then R is determined by a uniserial
representation (z) — gl(U). The Jordan normal form suffices to classify such
representations. We may thus assume without loss of generality that V' is not
contained in ker(V'). If (0) # ker(R) NV # V, then R is determined by a uniserial
representation R : guwss o.m — 9H(U), where guswsom = () x No(V), V is a factor
of V by an z-invariant subspace, = acts on V via an invertible Jordan block J,, (),
1 <m < n, and ker(R) NV = 0. Hence, we may assume without loss of generality
that ker(R) NV = 0. Let 1 < s < £ be the smallest positive integer such that
n® is contained in ker(R). Then R is determined by a uniserial representation
R ¢ Guwsnsn = OI(U), where guwssn = (z) X I, T = n/n®, and 771 is not
contained in the kernel of R. Therefore, we may assume without loss of generality
that ker(R) NV = 0 and that n~! ¢ ker(R), that is, that R is relatively faithful.

The degenerate case n = 1 appears as a special case in [?]. The cases £ = 1 and
£ = 2 have recently been solved in [?] and [?], respectively. Without resorting to
any of these cases, we will obtain the following classification, valid for all £ and n.

Let vg,...,v,—1 be a basis of V' such that

[z, v0] = Avg + vy, [T, v1] = Avr + V2, ..., [T, V1] = AVp_1.

Given a sequence d = (di,...,dey1) of £+ 1 positive integers satisfying
, R 1
Fgl?%(z{dz +diq1}=n+1,

and a scalar o € F', we define a representation R = Ry, : ¢ — gl(d), where

d=4dj + -+ dgy1, in block form, in the following manner:

Ra)=A=J%)®J®2(a—N) @ - & JW (a—LN),

0 X(1) 0 0
0 0 X2 0
R(v;) = (adgiayA — Mg’ | : : : , 0<j<n-—1.
0 0 T X0
0 0 S ()

This extends uniquely to a representation g — gl(d) by the universal property that
defines of NV;(V).

Conjugating all R(y), y € g, by a suitable block diagonal matrix commuting
with A, we may normalize R, in the sense that the last row of every X(i) is the
first canonical vector of F%+! and the first column of X (1) is the last canonical
vector of F% . The representation R is always uniserial. It is also relatively faithful,
except for a few extraordinary cases that occur when n > 1. Theorem 77 proves
that, when n > 1, every relatively faithful uniserial representation of g is isomorphic
to one and only one normalized representation R X0 of non-extraordinary type
(the degenerate case can be found in Theorem 77).
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2. PRELIMINARIES AND NOTATION

2.1. The Lie algebras g, and g, . If g is a Lie algebra, let {g’ : i > 0} be
the lower central series, that is g° = g and g+ = [g, g].

Let V be a vector space of dimension n > 2 and let £(V') be the free Lie algebra
associated to V' (or the free Lie algebra on n generators). For ¢ > 1, let

Ne(V)=L(V)/L(V)*

be the free ¢-step nilpotent Lie algebra associated to V.

Given an integer p > 1 and o € F, we write Jp(a) (resp. JP(«)) for the lower
(resp. upper) triangular Jordan block of size p and eigenvalue «. Let 2z € End(V)
the linear map acting on V via a single Jordan block J,,(\). In particular V' has a
basis {vg, . ..,vn_1} such that

if 0 <k <mn;
2.1 da—NFyg =4 8 DO =ES
21) (adz = A)"vo {0, if k= n.

We extend the action of z on V' to £L(V) so that x becomes a Lie algebra derivation.
This action preserves £(V)¢ and thus x also acts by derivations on Ny(V). Let

g = (@) x L(V) and gy xe = (@) x Ny(V)

be the corresponding semidirect products.

2.2. Gradings in gl(d) and the outer automorphism. If d = (dy,...,dg41) is
a sequence of ¢ + 1 positive integers, we define |d| = |d|; = d1 + -+ + dep1. A
sequence d provides gl(d), d = |d|, with a block structure and we define

pij : gl(d) = Mg, q

the projection onto the (¢, j)-block.
We consider, in gl(d) two ‘diagonal’ gradings: one associated to the actual diag-
onals of gl(d), that is

(2.2) Dy={Aecgld):A; =0if j —i#t}
and the other one associated to the block-diagonals of gl(d), that is
(2.3) Dy ={A€gl(d):pij(A) =0if j —i #t}.

We call the degrees (2.2) and (2.3) diagonal-degree and block-degree respectively.
The proof of the following proposition is straightforward. Ojo con las a,b y t sue
se usan después A',a; ;,etc

Proposition 2.1. If A € D; with (pi,j(A))a , 70, (with1 < a<d; and1 <b <
d;) then
t:dj_1+...di+(b*a).
In particular, if either
dj+1—1<di—dj+b—a or dl-—dj+b—a<1—di+1
then pi41 j41(A) = 0. Similarly, if either
di—1—1<b—a or b—a<1—dj,1
then pi—l,j—l(A) =0.
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Recall that the map ¢ : gl(d) — gl(d) given by
D(A)ij = (1) Ag1_jar1—i

gives a representative of the unique nontrivial class of outer automorphisms of sl(d).
In fact, ¢ is in the class of A — —A?, indeed, if K = (a; ;) € gl(d) is the antidiagonal
matrix with Qi d+1—i = (—1)i+1 (aw- =0ifq +j 7& d+ 1), then gi)(A) = —KAtK_l.
It is clear that

(2.4) ¢lp, = (1)

2.3. The Lie algebra h(«, A, S). Given a 5-tuple (E,dja,A,S), where

d= (di,...,des1) is a sequence of £ + 1 positive integers, £ > 1,
e a, A € F are scalars,
S=(5(1),...,5(¢)) is a sequence of ¢ matrices satisfying

(2.5) S(i) € Mg, xa,,, and S(i)g, 1 # 0 for all ;

i4+1

we consider the matrices D(a, \), E(S) € gl(d), d = |d], given in block form by

D(a,N) = JU () & JE(a—N) & - @ JW 1 (a— 1)),

and
0 S(1) 0 0
0 0 S(2) 0
E(S)= K
0 0 S
0 0 0

Let h(e, A, S) be the Lie subalgebra of gl(d) generated by D(a, A) and E(S).

Definition 2.2. Given d = (di,...,deyr), let

00 ... 0
00 ... 0
1 0 ... 0

and set C' = (C(1),...,C(¢)); we say that C is the canonical sequence. Also, given
a sequence S = (S(1),...,5(¢)) as in (2.5), we say that S is normalized if all the
following conditions are satisfied:

(1) S(i)g,1 =1foralll <i<¥;

(2) S(Z')di,j = S(’L + 1)di+1+17]',1 for 1 Sj S di+1 and 1 S 7 S E;

(3) S(1)ji=0for1<j<di, and S({)g,; =0for 1 <j<dp.

We say that S is weakly normalized if conditions (1) and (2) are satisfied (this last
concept will be used only in §?7).

Example 2.3. It is clear that the canonical sequence C is normalized. Also, if
d = (3,5,3,4) and S = (5(1),5(2),5(3)) is a normalizad sequence, then E(S)
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looks like as follows (the * might be any scalar)
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The following proposition is not difficult to prove.

Proposition 2.4. Let d = (dy,...,dew1) and let G(d) be the subgroup of GL(d),
d = |d|, consisting of invertible matrices P = P, ® --- ® Ppy1 € GL(d), with
P; a polynomial (with non-zero constant term) in J%(0). Given a sequence S =

(S(1),...,5(0) as in (2.), there is an unique invertible matriz P € G(d) such that
PE(S)P~! is equal to E(S’) for a normalized sequence S'.

Let us denote
EW =ad(D(0,0) (E(S)),  forl>0.
Since charF = 0, a straightforward computation (or the representation theory of
5[(2)) shows that the set {EW}_ | with p = max{d; + diy1 —2:i=1,...,¢}, is
linearly independent. Let n(S) be the Lie algebra generated by {E(W}/_ . that is
n(8) = spang[[[E®), B, BC)], .. B4].
The following proposition shows that this nilpotent Lie algebra, which is indepen-
dent of « and A, is the nilradical of h(a, A, S).
Proposition 2.5. The Lie algebra h(a, A, S) is a solvable Lie subalgebra of gl(d).
Additionally

(1) bla, A, S) is the semidirect product h(a, A, S) =FD(a, \) x n(S).

(2) n(S) is graded by the block-degree and filtered by the diagonal-degree.

(8) n(C) is graded by both the block-degree and the diagonal-degree. Moreover,
n(C) is isomorphic to the associated graded Lie algebra gr(n(S)) corre-
sponding to the filtration given by the diagonal-degree.

Proof. (1) It is not difficult to see that, for [ > 1,
1
(adgia) D(a, A) — A)' (E(S)) = E®
and thus, the Lie subalgebra of h(a, A, S) generated by
{adgia)(D(e, X)'(E(S)) : 1 = 0},

which is invariant under the action of ad(D(«, A)), coincides with n(S). Finally,
since FD(a, A) ®n(S) is a Lie subalgebra of h(a, A, S) containing D(a, A) and E(S),
it follows that h(a, A, S) = FD(a, A) x n(S).

(2) and (3) These are straightforward. O
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2.4. The uniserial representations Ry .. Recall that given a vector space V'
of dimension n, g, x = (x) X L(V) and gn ¢ = (z) x Ng(V) (see .

Given a scalar « € F, a sequence of positive integers d = (dy, . . ., dy1) satisfying
(2.6) d; + dir1 <n—+1 for all ¢ and
(2.7) d; + d;11 =n + 1 for at least one i,

and a sequence S = (S(1),...,5(¢)) as in (2.5)), we use (2.1)), (2.6) and the universal
property of £L(V) to define a representation

—

Riog:i8nx 2 old), d= |d],
by setting

Ry, (@) = D(a,\),

Ry, s(v;) = (adgiayD(a, \) = A)*(E(S)), 0<j<n-—1.
It follows from (2.7)) that V' NkerR; =0 and we also have

R(ia,s(gn,/\) = h(a7 A S),
4
E(V) C kechz:oz,S'

In particular, we also obtain a representation of the truncated Lie algebra

Rjos: Onxe — gl(d).
Since, for all i = 1,...,d — 1, either R(z); i+1 # 0 or R(vo)ii+1 # 0, it follows that

Rz, ¢ and R Ia.s are uniserial representations of £(V') and Ne(V) respectively.

Definition 2.6. If the sequence S is normalized, we say that R; o and RJQ g
are normalized.

Proposition 2.7. Assume A\ # 0. The normalized representations Ry o (resp.

Ri,a,s) of Gn,x (Tesp. On,x.¢) are non-isomorphic to each other.

Proof. It is enough to consider the case for the representations of g, . Considering
the eigenvalues of the image of = as well as their multiplicities, the only possible

isomorphisms are easily seen to be between R(I,a,s and Rd:a,S" Assume that Rcf,a,s

is isomorphic to Ry . Then there is P € GL(|d]) satisfying
(2.8) PRJ,Q,S(?/)P_l =Rz, q(y), forallyegnna.
Considering y = z in (2.8)) we obtain that P must commute with D(«, A), and hence

-

P € G(d) (see Proposition. Finally, considering y = vy in (2.8]), it follows from
Proposition that S = 5’. O

3. CLASSIFICATION OF ALL UNISERIAL gn,A-MODULES

In this section we classify all uniserial (finite dimensional) representations of
gnx = () x L(V), where V is a vector space of dimension n over an algebraically
closed filed T of characteristic 0 on which x acts via a single Jordan block J,,(\).
First we prove a proposition that provides information about the structure of a
uniserial representation of certain class of Lie algebras.
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Proposition 3.1. Let n be a solvable Lie algebra and let x be a derivation of n
such that [n,n] has an z-invariant complement, say p, in n, and x acts on p via a
single Jordan block J,(\), A # 0. Let vo,...,v,—1 be a basis p such that

(3.1) z(vo) = Avg + vi, 2(v1) = Avi + 02, ..., 2(Vp—1) = ANVp_1.

Set g = (x) xnand let T : g — gl(U) be a uniserial representation of dimension d
such that
ker(T)Np =0.
Then theCe 1s a basis B of U, a unique scalar_g € F, a unique sequence of positive
integers d = (dy,...,dey1), £ > 1, satisfying |d| = d and
di +diy1 <n+1 forall i
d; +diy1 =n+1 for at least one i;

and a unique normalized sequence S = (S(1),...,5(¢)) of matrices such that the
matrixz representation R : g — gl(d) associated to B satisfies:
(3.2) R(z) = J"(a) @ J®2(a —\) @ --- @ J¥ (. — LX),
0 S1) 0 ... 0
0 0 S2 .. o0
(3.3) R(w)=| = = T o
0 0 ... . 80
0 0 e 0

and every R(y), y € n, is block strictly upper triangular relative to d. Moreover, if
n*=1 is not contained in ker(T), then £ > k.

Proof. This proof follows the lines of the proof of [?, Theorem 3.2]. It follows from
Lie’s theorem that there is a basis B = {uy, ..., uq} of U such that the corresponding
matrix representation R : g — gl(d) consists of upper triangular matrices.
Set
D = R(z) and By, = R(vg), 0 <k <n-—1.

Conjugating by an upper triangular matrix (see [?, Lemma 2.2] for the details) we
may assume that D satisfies:

(3.4) D; ; =0 whenever D, ; # D; ;.

Since A # 0 we have that the action of 2 on p is invertible and hence p C [g, g].
This implies that

E}, is strictly upper triangular for all 0 < k <n —1,

3.5
(3.5) and hence R(v); 41 =0forall 1 <i < d and v € [n,n].

On the other hand we know, from [?, Lemma 2.1], that for every 1 < i < d there
is some y € g such that

(3.6) R(Y)i,i+1 # 0.
This, combined with (3.5) and (3.4)), imply that
(3.7) if D;; # Dit1,i41 then R(v); ;41 # 0 for some v € p.

Step 1. If Di,i # Di+1,i+1 then Di,i - Di+1,i+1 = X and (EO)i,i—i-l # 0.
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Indeed, since T is a representation, it follows from (3.1) that, for 1 <i < d,

Ep, if0<k<mn;
3.8 doyayD — NVFEy = ’ = '
(38) (gt D = A" B {o, if k = n.

Since D is upper triangular and Ejy is strictly upper triangular, this implies that,
for 1 <1 < d,

(Br)iit1, f0<k<my

0, if k=n.

Now, if D, ; # D; 11,41 then it follows from (3.7) and (3.9) that (Ep)ii+1 # 0 and
case k =n in (3.9) implies D; ; — D;y141 = A.

Step 2. For some integer ¢ > 0, there is a unique sequence d = (di,...,dpy1) of

(3.9) (Dii — Dit1iv1 — N (Eo)iiz1 = {

positive integers, with d = |d_] , such that
D:D1@~~-@D(+1, D; Gg[(di),
where each D; has scalar diagonal of scalar a; = a — (i — 1)\ for some a € F.

This follows at once from (3.4) and Step 1, uniqueness is a consequence of the
arrangement of the eigenvalues of D.

Step 3. According to the block structure of gl(d) given by d, prr(Er) = 0 for all
1<r</+land0<k<n-1.
Indeed, setting U’ = span{u1,...,u;} (each U’ is a g-submodule of U), we have
to show that the endomorphism induced by Ej, say Ej, in
UT _ Ud1+"'+d7‘/Udl+“'+dr71

is zero. On the one hand, the endomorphism induced by adg4)D in gl(U™) is nilpo-
tent. On the other hand, it follows from that Ej, is a generalized eigenvector
of eigenvalue A of the endomorphism induced by adgq)D. Since A # 0 this is a
contradiction.

Step 4. According to the block structure of gl(d) given by d, if 1 <i < j <+ 1
and j # i+ 1, then p; ;(Ex) =0forall 0 <k <n-—1.

The proof of this uses the same argument used in the proof of Step 3. The point
is that p; ;(Ey) corresponds to an eigenvector of eigenvalue (j —i)\ of adgq)D and,
if j —i#1, (3.8) implies that p; ;j(E)) must be zero.

Step 5. Let a as in Step 2. We may assume that D is in Jordan form
D=J"a)®J"2(a -\ @@ J% (a—LN).

Moreover, £ > 1 and if n*~1 is not contained in ker(T"), then £ > k.
Indeed, by (3.6) and Step 3, the first superdiagonal of every D, consists entirely
of non-zero entries. Thus, for each 1 < ¢ < £+ 1, there is P, € GL(d;) such that

PD;P; ' = J%(a — (i — 1)\).
Set P=P & ® Pry1 € GL(d), then PDP~! is as stated and and PE,P~! is
still strictly block upper triangular with p; ;(PE,P™') =0if 1 <i<j </{+1 and
j —i # 1. Since n*~1 is obtained by bracketing elements of p, it follows from Step
3 that, if ¢ < k, then n*~! C ker(T). In particular, since ker(T) Np = 0, we have
£>1.

Step 6. For all 1 <i < ¥, d; +d;y1 <n+1 and the equality holds for some i.



NILRADICAL OF SOLVABLE LIE ALGEBRAS ON TWO GENERATORS 9

Indeed, from Step 1 we know that (Ep)g, 4,41 # 0 for all 4. If d;+d;4+1 > n+1, for
some 1, it follows from the Clebsh-Gordan decomposition of the tensor product of
irreducible representations of sl(2) that (adgiqyD — A)"Ep # 0, contradicting
(for the details, see [?, Proposition 2.2]). On the other hand, if d; + d;41 < n+1
for all 7 then Clebsh-Gordan implies that £, = (adgyqD — A" 1Ey = 0, which is
impossible since ker(T') Np = 0.

0 S@1) ... 0

Final Step. We may assume Fy = | ' ' " |, for a unique normalized
0 E0)
0 0 L. 0

sequence S = (S(1),...,5(¢)).

Indeed, it follows from Step 3 and 4 that Ey = E(S) for some sequence as in
([2.5). It follows from Proposition that there is a unique normalized sequence
S =(5(1),...,5(¢)) and an invertible matrix P = P; @ --- @& Pyy; € GL(d), with
P; a polynomial in J%(0) (and thus commuting with D), such that PE,P~! =
E(S). O

Theorem 3.2. Let A\ # 0. Every finite dimensional uniserial representation T :
gn.x — gl(U) satisfying ker(?)ﬂV =0is isomorphic to one and only one normalized
representation Ry, o with d satisfying |d| = dim U and

di +diy1 <n+1 forall i,

d; +diy1 =n+1 for at least one .
Proof. This is a consequence of Propositions and [l

4. THE NILPOTENCY DEGREE OF THE NILRADICAL n(S)

The goal of this section is to compute the nilpotency degree of the nilradical
n(S) of h(a, A, S). We will see that, for generic d and S, the nilpotency degree of
n(S) is £. The only exceptions will occur when d are odd-symmetric (as defined
below) with dy = dgy1 = 1 and ¢(E(S)) = E(S) (see §2.2).

From now on, set k = ¢+ 1.

Definition 4.1. Given d = (di,...,dy), we say that d is symmetric if d; = dp41-;
forall i = 1,..., k. We say that d is odd-symmetric if, in addition, k is odd and
dk+1)/2 is odd. Also, if S = (S(1),...,5(k —1)) is a sequence satisfying (2.5),
we say that S is ¢-invariant if E(S) is invariant by the automorphism ¢. We
notice that it follows from that the canonical sequence (see Definition is

invariant.

Proposition 4.2. Let d = (di,...,dx) be odd-symmetric, set d = |cﬂ, and let
S=(5(1),...,5(k—1)) be a p-invariant sequence satisfying (2.5). Then

; d+1
Ai,d-‘rl—i =0, = 17"'7%7

for all A € h(a, A, S). In particular, if in addition d; =1 then p1 x(h(a, A, S)) = 0.
Proof. Tt follows from Proposition that it is enough to prove the result for a =
A = 0. The hypothesis on d implies that ¢(D(0,0)) = D(0,0) and the hypothesis on
S says that ¢(E(S)) = E(S) and since it follows that ¢(A) = A for all A € §(0,0, S).

Therefore, since d is odd-symmetric (and hence d is odd), the definition of ¢ implies
that all the entries of A in the antidiagonal must be zero for all A € §(0,0,5). O
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4.1. The nilradical corresponding to the canonical sequence S = C. In this
subsection we will consider the case (a, A, S) = (0,0,C). In order to simplify the
notation, let h = §(0,0,C) and E = E(C).

Associated to the Lie algebra b we define, for 1 <i < j < k, the numbers

- 0, if p; ;(X) =0 for all X € b;
"7 | min{rk(p; j(X)): 0# X € b}, otherwise.

Proposition 4.3. r; ; € {0,1,2}.

Proof. It follows from the definition of E that r; ;41 =1, for 1 < i < k—1. For
I >1, riiti41 < 2 is a consequence of the following two facts. First, if X is any
element of block-degree I, then rk(p; ;41+1([E,X])) < 2, since all the elements of
Di,i+i+1([E, X]) are zero, with the possible exception of those in the first column
and the last row.

On the other hand, set j =i+ + 1, we will prove that if p; ;([E, X]) = 0 for all
X € b, then r; ; = 0. By induction we will show that

pi,;([ad(D)"E, X]) = 0, r>0; Xebh.
The case r = 0 is given. Moreover, given the case r,
pij([ad(D) B, X]) = pi ;([D,ad(D)" E], X])
= —pi;([ad(D)"E, [D, X]]) + pi ;([D, [ad(D)" E, X]])
= pii(D)pi;([ad(D)"E, X]) — pi ;([ad(D)"E, X])p;;(D)
=0.

Since we know, from Proposition that the elements ad(D)"E, r > 0, generates
n, it follows that r; ; = 0. ([l

Proposition 4.4. If A € gl(d) has the property

17 ifa7b:a0ab0;

(pi,j (A))a,b = {0

then the entries of p; j(ad(D)*(A)) are zero except those contained in the diagonal
b—a=by—ag+k, in which case:

(pi,j(ad(D)k(A)))aofi,boJrk*i = (D" <k>

]

otherwise;

In particular, (p;;(A)) . = 1 then all the entries of pij(ad(D)4T4i=1(A)) are

d;
zero except
d v d; +d; —2
di+d;—2 _ di—1 [ @i T Qj
(s @D 2 )), , = (-1t (B0 7).
Proof. This is an straightforward computation. O

Proposition 4.5. If there is X € b such that (pm(X))d_ L #0, thenr; ;=1

Proof. This is consequence of Proposition [4.4 O
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Proposition 4.6. If r; ; =1 then there exists X € b such that

0 ... 01

0 ... 00

0 ... 00
and if r; ; = 2 then there exists X € b such that

0 ... 1 =x

0 ... 01

0 ... 00

Moreover, for any X € b satisfying p; j(X) # 0 then there exists ko such that
pi,j(ad(D)* (X)) is either as (1) or as (4.2).
Proof. Let X € b be such that rk(p; ;(X)) =, ;, and let
to=min{t=b—a: (inj(X))a’b # 0},
To ={(a,b) : b—a =ty and (piaj(X))a,b # 0}.
If r; ; = 1 then there is only one pair (ag,bo) € To. If kg = dj — 1 — to then it
follows from Proposition that ad(D)*° (X) is, up to a non-zero scalar, as stated.
If r; ; = 2 then there are at most two possible pairs (a,b) € Tp. It follows from

Proposition that, if kg = dj — 2 — to, then the only possible non-zero entries of
pij(ad(D)™ (X)) are

(pi,j (X)) 1,d;—1 (pi7j (X)) 1,d;
(Pig(X)), 4 -

J

Moreover, the pair
(43) ((pivj(X))l,djfﬂ (pi,j(X)>2’dj)

is a linear combination of two pairs of two consecutive binomial numbers (kl"),
0<I[ <k, that is

((Pi,j(X))l,dj_p (Pi,j(X))Zdj) = 1’1((2?) (llki 1)) +$2<<I;§>a (lzki 1))

with 0 < Iy # Iy < ko for some (z1,25) # (0,0). Since ((’;f), Qf&)) and

((’;20), (lzki1)> are linearly independent, it follows that the pair (4.3)) is non-zero.

Finally, we conclude that ad(D)*o(X) is, up to a non-zero scalar, as stated because
otherwise we would have r; ; = 1. O

Proposition 4.7. If there exists X € by such that either
pij(X) =0 and pit1;41(X)#0
or
pii(X)#0  and  pit141(X) =0
then r; j+1 = 1. Moreover, any of the following:
(al) 7 ; =0 and 1,11 j41 # 0,
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(a2) ri; # 0 and rity 541 =0,

(b) Tij = Ti4+l,j+1 = 1 and dz 7é dj+1,
(C_Z) Tij = ]., Ti+1,j4+41 = 2 and dl +1 7é dj+1,
(62) Tij = 2, Titl,j+1 = 1 and d; # dj+1 + 1.

implies the existence of such an X and thus r; j11 = 1.

Proof. First, if there exists X € h such that p; ;(X) = 0 and p; 41 j41(X) # 0, then,
by Proposition we may assume that X isis either as or as . In either
case, it is clear that rk(p; ;+1([E, X])) = 1.

Now we prove the particular statements. By symmetry, it is enough to prove
(al), (b) and (c1).

Proof of (al): it is immediate that (al) implies the existence of X € bh such that
pi,j(X) = 0 and pit1,+1(X) # 0.

Proof of (b): let X € hND;, be homogeneous such that all the entries of p; ;(X)
are zero except that (pm- (X ))1 4 = 1, as granted by Proposition This implies
that tX :dj_l ++dl+(dj 71).

Similarly, let Y € hND,, be homogeneous such that all the entries of p; 1 ;41 (X)
are zero except that (Pz‘+1,j+1(X))1,d,_+1 =1. Now ty =dj+---+djp1+(djy1 —1).

It follows from the hypothesis that

tY*tX:dj_;,_l*di#O.

Therefore, either ty > tx, in which case p; ;(Y) = 0 or tx > ty, in which case
Pit+1,j+1(X) = 0, and we are done.
Proof of (c1): This is analogous to the proof of (b). O

Proposition 4.8. If r; ; =1 and one of the following hold:
(CL) di,dj >1,
(b1) d;j > 1 and ri41 41 =0,
(b?/) dz > 1 and Ti—1,j—1= 0,
(¢) riz1,j41 =7Ti—1,-1 =0.
then Ti—1,j+1 = 1.
Proof. Any of these conditions implies that, for any X € b,

(Pi-1i+1 (X EL BN, |y =—2(pii (X)), , -
Since r; ; = 1, it follows from Proposition that there exists X € b such that

(pij(X)); 4 # 0, and thus (pi—1;41([[X, B], E]]),, | # 0. Now Pr0position
] i—1,
implies 7;_1 ;11 = 1. L]

Proposition 4.9. Ifr; ; =2, then r;_1; # 2 and 15 j_1 # 2.

Proof. By symmetry, it is enough to show 7; ;_1 # 2. We use induction on k. For
k = 3 there is nothing to prove, since 712 = 1. Let k > 3, we can assume ¢ = 1 and
j = k. Arguing by contradiction, we assume r; ,—; = 2. By inductive hypothesis
T1k—2,T2,k—1 # 2 and, since r1 y_1 = 2, Proposition (al), (a2), implies that

T1k—2,T2,k—1 = L.

Since 71 y—1 = 2 then di_; > 1 and hence, since ry ;1 = 1 and 1, = 2, Proposi-
tion (a) implies do = 1 and thus rp , # 2. Since r1 = 2, Proposition (a2)
implies 75, = 1. Proposition (c2) implies dy = dj + 1.
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Now we have 73 ; # 0 since, otherwise, Proposition (b1), applied to (4,5) =
(2,k — 1) would imply that 1 , = 1. Moreover, we claim rz ; = 2.

If 73, = 1 we can find a homogeneous X € hN D, such that ps ,(X) is as stated
in Proposition that is (p3vk(X))1,dk = 1. Since 1 = dy < 2 < dj, Proposition

implies p2.k—1(X) =0. Since ry 1 = 2, Propositionimplies p1ie—2(X) =0.
Therefore

plﬁkfl([X,ED =0 and pzﬁk([X,E]) 750

and, once again, Proposition Fi;?l implies 71, = 1, a contradiction. We have proved
that r3 ;, = 2 and hence d3 > 2, r3 ;1 # 2 by the inductive hypothesis, and 73 1 #
0 by Proposition[d.7] Therefore r3 ;1 = 1 and, it follows from Proposition [£.6] that
there is a homogeneous X € §h as in , that is with (p3»’f*1(X)>1dk—1 = 1.
Taking into account that ds,dg_1 > 2 it is not difficult to see that 7

(X, E], E], E))), 4, =3
which implies that 7 ; = 1, a contradiction. U
Proposition 4.10. ry ; = 2 implies di = dj, > 1.

Proof. Since 11, = 2, we have dy,; > 1. We must show that d; = d. We know

by Proposition that 71 ,—1,72,5 # 2. Also, by fact Proposition [4.7] it follows
that 71 1,725 7 0. Therefore 7 y,_1 = r2; = 1. Now Proposition (b) implies

dy = dj,. O
Proposition 4.11. Ifr;;, =0 thendy =1 ord, =1.

Proof. We will consider all possible values for r1 ;1,72 k.
Case 11 1 =0, ra ) # 0; or r1 x—1 # 0, 72, = 0: Impossible by Proposition@

Case 11 y—1 = 12, = 1: It follows from Proposition (b) that dq = di, and it is
clear that if dy # 1 then 7 ; # 0, thus d; = 1.

Case 11 y—1 = ror = 2: This implies that dj, d2, dk—1,dr > 2. Consider 7 j_;. It
is not 0 by Proposition [£.7]and it can not be 2 by Proposition [£.9] Hence 7551 =1
and now Proposition implies 71, = 1 contradicting our hypothesis.

Case 11 ;-1 = 2,72, = 1: This implies d; > 1. It follows from Propositionsand
(a2) that ro 1 = 1. Then, since dy > 1 if we also had dj > 1, we would have
1) = 1 by Proposition [£.8] Thus dj; = 1.

Case 71,5,—1 = ro,x, = 0: By the induction hypothesis, either the claim is true or
di,di > 1 and dy = dp_1 = 1. We assume, by contradiction that

di,dr >1and do = di_1 = 1.
Let jo be the largest j such that

Tik—jrs =0foralli=1,...,7.
Clearly 2 < jo < k — 2 and, again, the induction hypothesis imply
(4.4) dj = dgt1—5 =1 for all 2 < 5 < jo.

Since, by definition of jo, we have r;_(j,41)4+i # 0 for some i, it follows from

Proposition [4.7 (al) or (a2) that in fact 7; y_(j,41)+ 7 0 for all i = 1,...,jo + 1.
Moreover, (4.4 implies that

Ti7k—(jo+1)+i =1foralli= 2, N ,jo.
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Let X € @k—(j0+1), X # 0 such that [D, X] = 0. By the definition of jg, we must
have [E, X] = 0 and thus [E + D, X] = 0. Since D + F is principal nilpotent, it
follows that, up to scalar, X is a power of D + E. This implies that dy = dy = 2
and 71 k—j, = Tjo+1,k = 2. At this point we know that

1 00 0 0
0 1]0 00
01
¥ — 01(0 0
10
0 1

Moreover, there must exists Y € Dj_(j,+2) such that [D,Y] = X. This implies
that dj0+1 = dk—jo =2 and

ap |0 0|0 0 0
0]0 010 0 0
0 aiq 0

Y = Aj5—1 0 0 0
a3, 0 0

010 0

0 ajos
But with this Y it is impossible to satisfy the condition [D,Y] = X. O

Now we can prove the crucial step.

Proposition 4.12. Let k > 2 and d= (di,...,dx). Then
(1) If ro 51 =2 and dy = dy, =1 then r1;, = 0.
(2) If 1, =0 then dy =1 and di, = 1.
(3) If roe—1 =1 then ri =1, unless k =4 and d= (1,1,1,1).
(4) If 1,5 =2 then k is odd and d is odd-symmetric with dy = d > 1.
(5) If rix = O then either k is even and d=(1,...,1), or k is odd and d is
odd-symmetric with di = dy, = 1.

Proof. We use induction on k. For k = 2 there is nothing to prove. We assume
k > 3 and that the whole proposition is true for lower values of k.

Proof of part , we have 73 ;1 = 2 and d; = dj, = 1: By induction hypothesis on
part , 79 k—1 = 2 implies that £ — 2 is odd and d is odd-symmetric. Proposition
[£2]and dy = d = 1 imply r1x = 0.

Proof of part (2)), we have r1; = 0: As in Proposition we will consider all
possible values for 71 k1,72 k.
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The cases ri -1 = 0, 72 # 0 and 71 ,-1 # 0, r2, = 0 are impossible by
Proposition [I.7]

The case 71 y—1 = r2,; = 0 follows by induction hypothesis on part .

The cases 11 ,—1 =1r2x, = 1 and 71 —1 = 72, = 2 are as in Proposition In
particular, 71 y—1 = ro; = 1 implies d; = dj, = 1.

Finally, let us prove that the case 71 ;—1 = 2, r2, = 1 is impossible.

This case implies that dy_1,d1 > 2 and thus, by Proposition @11} d = 1.
Proposition (c2) implies that d; = 2. Proposition implies rg 1 # 2,

Proposition implies 73 ;—1 # 0, and thus 73 ;1 = 1. Since dy_1 > 2, if dy > 1,
Proposition (a) would imply that r; ; = 1; hence dy = 1. Let [ > 2 be the first

index such that d;_; = 1 but d; > 1. Thus we have
2=di, 1=do=---=dj_1,2<dy, ..., 2<dp_1, 1 =d;

Now we will show that r; ;1 # 0, 1,2, which is a contradiction.

Since d,dr_1 > 2, Proposition implies 7,51 # 0. Let us show that
rik—1 7 1. Otherwise there would be a homogeneous X € D, N Dj_1_; such
that rk(p; x—1(X)) = 1 and by Proposition we may assume as in (£.I). Since
dip_1 > 2 and X € Dy, it follows that

Djk—1—i14;(X) =0, forall j=2,...,1—1

and this implies that rk(p; x(ad(E)'(X))) = 1, a contradiction.

Let us show that 7,1 # 2. If 7,1 = 2 then, by induction hypothesis on
we have r;_; ; = 0. This implies that r;, = 71 ,—1 = 1 and thus we have
a homogeneous X € D; N Dy_; such that rk(p; x(X)) = 1, but since r;_1 5 = 0,
Proposition implies that rk(p;—1 x-1(X)) = 1 and p;—1x([X,E])) = 0. By
Proposition we may assume that p; (X) and p;_1 x—1(X) are as in . Now
ad' "' (E)(X) # 0 which is absurd.

Proof of part , we have ry ;1 = 1: If dy # dj, it follows from Proposition m
and part that 71, = 1. Therefore, we assume from now on d; = dj. Let us
consider now 71 —1 and o k.

If rip—1 = ro = 0, then 71 = 0 and the induction hypothesis on part
implies (this does not depend on the parity of k) that d; = 1, for all 1 < i < k
which in turn implies 75 ;1 = 0, and this can not happen unless k = 4.

The cases r1 -1 =0, r21 # 0 and 71 y,—1 # 0, 72 = 0 imply that 1, = 1 by
Proposition [.7]

The case 71 ;-1 = 2 implies that r1 ; can not by 2 by Proposition @ and that
r1,% can not by 0 by part , and thus r; ; = 1. Similarly, ry = 2 then ry = 1.

Therefore, we can assume ry ;1 = rop = 1 and thus (di,...,d;) # (1,...,1).
If dg_1 > 1 and dy > 1 then, by Proposition (a), 1, = 1. Let i < j be such
that di,dj > 1 and

(4.5) dy=1forj<l<kand1l<I[<i.

We have r; ; # 0 by Proposition

Assume first r; ; = 1. This implies that we have a homogeneous X € D; N @j_i
such that rk(p; ;(X)) = 1 and, by Proposition we may assume p; ;j(X) as in
. Since d;, d; > 1, we have

Pi-aiip—g(ad(E)* (X)) = (~1)°~ <§)
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and this implies that r; ; = 1.
Now assume r; ; = 2. By the induction hypothesis on part we have j+1—14
odd and

(4.6) (diydig1...,dj;) is odd-symmetric.

Also, the induction hypothesis on part , implies 71 j4+1 = 0 and thus ;1 ; =
r;j+1 = 1. This implies that we have a homogeneous X € D; N D;jq1_; such

that rk(p;—1;(X)) = 1, but since r,_1 ;41 = 0, Proposition implies that
tk(p; j4+1(X)) =1 and p;—1 ;41([X, E])) = 0. By Proposition may assume
that

x

0
pi—l,j(X) = (0 e 0 1) and pi,j+1(X) =

but since p;_1 j4+1([X, E])) = 0 we have x = 1. This implies that

Pi—qj+1+8-q(ad(E)* (X)) = & (<§> - (qﬂ 1)>

when i —q > 1l and j+ 1+ 8 — ¢ < k (in all these cases the size of block
Pi—qj+1+—q(ad(E) (X)) is 1 x 1) and

e k—j+i—2\ [(k—j+i—2
paed ()00 =+ (7T < (P17
If this number is not zero, then rk(py,z(ad(E)*~9772(X))) = 1 and thus ryj = 1.

Otherwise
k—j+i—2\  [(k—j+i—2
i—1 N i—2
and hence j = k 4+ 1 — 4. This, together with (4.5) and (4.6)), imply & odd and
(do,ds...,dr—1) is odd-symmetric.

Now, Proposition [.2] implies 72 1 = 0, a contradiction.

Proof of parts and , we have ry j, # 1: It follows from part that ro 1 # 1.
We now apply the induction hypothesis on parts and and we consider the
cases k even and k odd.

If k is even, then (da,...,dx—1) = (1,...,1) (in particular 74 ;_1 = 0). We may
assume dy > dy, we will show that dy = di = 1.

Let X = ad(D)®~1(E) € Dy, N D1, we have

1

0
p12(X) =

0
If di > di then papi4a(X) = 0 for all 2 < a < k — 1 and it is clear that

rk(ad(E)*71(X)) = 1 and hence r; j, = 1, a contradiction. Therefore d; = dy.
If di = di > 1 then pyat+1(X)=0forall 2< o <k—2and

pr—1x(X)=(0 -+ 0 (=1)%&-1).
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Now
0 ... (=1)k+dr 0
0 ... 0 (—1)de—1
prx(ad(D + E)F-DHE=D (X)) = | . .
0o ... 0 0

and since k is even, we obtain rk (pl,k(ad(D + E)(k_1)+(dk_1)+1(X))> =1, a con-
tradiction. Therefore di = d, = 1.

If k£ is odd, then the induction hypothesis on parts and implies that
(da,...,dk—1) is odd-symmetric. If r1 z_1 # 1, the induction hypothesis on parts
and () implies (dy,...,dx—1) = (1,...,1) and thus dy = 1 (otherwise we would
obtain 71, = 1). Hence 71 1 = 1 and similarly 7o, = 1. Now ry ; # 1, part
and Propositionimply dy = dj and thus (dy, . . ., d) is odd-symmetric. Finally,
Proposition and item imply that ry , = 2 if and only if d; = dj, > 1. O

Summarizing, we have proved the following theorem.
Theorem 4.13. Let k > 2 and d = (di,...,dx). Then the nilpotency degree of
n(C) is k — 1 except when 11, = 0. This occurs if and only if

(1) d=(1,...,1), in which case n is 1-dimensional abelian.
(2) k is odd, d is odd-symmetric with dy = d = 1, in which case the nilpotency
degree is k — 2.
In addition, r1 1 = 2 if and only if k is odd, d is odd-symmetric with dy = dj > 1.
Corollary 4.14. Ifl <k and r;;4; =0 fori=1,...,k —1, then d= (1,...,1).
Proof. By hypothesis, all sequences (dy,...,d;+1), (da,...,di+1), up to (dg—i, . .., dg),
fall in the cases of parts and of Proposition O
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