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Abstract 

Polymerization processes are highly non-linear systems that require strict control of their 

dynamic operation to be competitive. The unscented Kalman filter is a filtering strategy that 

has shown a rewarding performance for non-linear state estimation. Besides, filters based on 

robust statistics have been proposed to deal with the presence of outliers. However, reported 

robust filters have employed only the Huber M-estimator as the loss function of the estimation 

problem. This work presents a new state-estimation procedure based on the unscented 

transformation and robust statistics concepts. When outliers are present, estimates are more 

accurate than when using the conventional filter. In contrast to previous research, our 

methodology is also efficient when there are no outliers. The performances of different loss 

functions for solving the estimation problem are presented. The results show that redescending 

M-estimators outperform the Huber function. The behaviour of the technique is analyzed for a 

copolymerization process. 
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1 INTRODUCTION 

Process control is important in polymer manufacturing. Polymers are a "product by process," 

ie, the microstructure of the material, and therefore its application properties are strongly 

dictated by process operating conditions. In consequence, it is necessary to monitor and control 

quality variables associated with the polymer product. However, this is a difficult task due to 

the high non-linearity of polymerization processes, the infeasibility to measure some variables, 

and the presence of uncertainty; the latter may enter through noise sources that continuously 

affect the process and the available measurements. 

State estimators are widely used for the implementation of monitoring and control strategies.[1] 

Ali et al[2] provided a comprehensive survey of different types of estimators applied to chemical 

process systems, and classified them into six classes. Most of these estimators need an accurate 

knowledge of the process dynamics. Bayesian estimator is one of those six classes; this 

approach uses the available measurements of a system to obtain the probability distribution of 

state estimates. 

The availability of first-principles mathematical models in the literature that describe the 

behaviour of polymerization processes, and the report of successful applications of state 

estimators, have motivated the development of non-linear state-estimation methods for 

polymerization processes.[3,4] 

Filtering methods are estimators based on Bayesian approach, which estimate unmeasurable 

properties from available measurements. Commonly, these methods use a recursive algorithm 

that assumes uncertainty as an additive white noise with a Gaussian distribution.[5] The extended 

Kalman filter (EKF) is a widespread filtering method for non-linear systems. This technique 

works fairly well only if the non-linearity is not severe.[5] Some contributions regarding the 

application of EKF to polymerization processes can be found in the literature.[6,7] 

A more recent filtering method suitable for non-linear systems is the unscented Kalman filter 

(UKF). This approach makes use of the unscented transformation (UT) proposed by Julier and 

Uhlmann,[8] which estimates the statistics of a random variable when it undergoes a non-linear 

transformation. This technique uses a deterministic set of sample points, called sigma points, 

to represent the stochastic distribution of the states. The UKF has provided better results than 

EKF for the monitoring of polymerization processes.[9,10] Moreover, control strategies that use 

the UKF for non-linear state estimation have shown very good performance for those 

processes.[11,12]  



 
 

Recently, particle filtering (PF) has also been applied to polymerization processes. This is a 

Monte Carlo simulation-based method that, unlike the EKF and UKF, does not assume the 

presence of Gaussian noise. This approach recursively estimates the conditional probability 

density function (pdf) of the states given the measurements using a set of random samples called 

particles, which have associated weights. If the number of particles increases to infinity, the 

approximated conditional pdf converges to the true one. Several works analyzed the 

performance of the EKF, UKF, and PF for the state estimation in polymerization processes, 

showing that both PF and UKF attained more accurate estimates than the EKF.[13–16] Besides, 

the PF is less accurate than the UKF when uncertainty is present, such as plant-model mismatch 

in polymerization processes.[17]  

The previous discussion indicates that strategies based on both non-linear UT filters and PF are 

attractive for state estimation in polymerization processes. However, certain drawbacks are 

remarked for the second approach in the aforementioned works: strong computational 

complexity and the necessity of good approximations for the initial pdf of the states.  

Several UKF algorithms have been proposed that mainly differ in how the noise is injected into 

the system, how the set of sigma points is selected, and how the weights are calculated.[18] These 

algorithms usually model uncertainty as an additive and random noise. However, these two 

assumptions may not always be appropriate. A more rigorous approach than additive noise is 

to include noise into the non-linear functions. The augmented UKF (AUKF) is a filtering 

strategy that joins together the states and both process and measurement noises in a single 

augmented state vector, and then proceeds as the conventional UKF. Kolås et al[19] applied the 

AUKF in considering different noise models to represent the uncertainty in control inputs, 

auxiliary variables, and time-varying parameters, and showed improvements in the estimation 

performance.  

With respect to the assumption of random noise, some samples of the process and 

measurements noises may not follow a random Gaussian distribution. In this context, atypical 

observations are called outliers, and even a single outlier can have a large distorting influence 

on the statistical method. Different types of M-estimators, which are generalizations of the 

maximum likelihood estimator, have been proposed for developing robust estimation 

techniques that avoid the detrimental effect of outliers.[20]  

The advantages and drawbacks of the M-estimators have been analyzed in the literature.[21] 

However, applications of the robust conventional UKF are limited to the monotone Huber M-

estimator.[22] Besides, the AUKF strategies that include noise into the non-linear functions do 

not use M-estimators to deal with the presence of outliers. Furthermore, it should be remarked 



 
 

that the trade-off between efficiency and robustness of filtering methods based on robust 

statistics has not been previously addressed.  

This work presents a new efficient and robust state-estimation procedure based on the AUKF, 

called efficient and robust augmented UKF (ERAUKF), which deals with the presence of 

atypical measurements using the concepts of robust statistics. Unlike previously reported 

robust-statistics based filters, the procedure proposed in this work improves the efficiency using 

a critical value of the weight function to switch between a conventional AUKF and the 

ERAUKF approach. In addition, modifications of the filter update step are introduced to 

enhance estimates accuracy. Process noises are related to uncertainties in auxiliary variables 

and time-varying parameters, which enter into the non-linear process model. The performance 

analysis of different M-estimators allows selecting the most appropriate estimator function. The 

behaviour of the estimation technique is analyzed for the copolymerization of methyl 

methacrylate (MMA) and vinyl acetate (VA) in a continuous stirred-tank reactor (CSTR) with 

a recycle loop.[23]  

The paper is structured as follows. In section 2, the features of the M-estimators are briefly 

revisited. In section 3, the proposed methodology is presented. Section 4 describes the 

application example. Results are presented and discussed in section 5. Finally, the conclusions 

are given in section 6.  

 

2 M-ESTIMATORS 

Robust statistics aims at providing reliable estimates, not only when data follow a given 

distribution exactly but also when this happens approximately. This involves a trade-off 

between efficiency and robustness. 

Let us assume that 𝑥𝑥�  is a location M-estimate of 𝑥𝑥  obtained by solving the following 

optimization problem: 

 

𝑥𝑥� = arg min
𝑥𝑥
�𝜌𝜌�

𝑦𝑦𝑖𝑖 − 𝑥𝑥
𝜎𝜎

�
𝑛𝑛𝑠𝑠

𝑖𝑖=1

= arg min
𝑥𝑥
�𝜌𝜌(𝑟𝑟𝑖𝑖)
𝑛𝑛𝑠𝑠

𝑖𝑖=1

 (1)  

 

where 𝑦𝑦𝑖𝑖 is a measurement of variable 𝑥𝑥; 𝜎𝜎 is a known dispersion estimate; 𝑟𝑟𝑖𝑖 is the i-th residue; 

𝑛𝑛𝑠𝑠 is the number of samples; and 𝜌𝜌(.) represents the loss function (LF) of an M-estimator. It 

has been demonstrated that the distribution of 𝑥𝑥�  is approximately N(𝑥𝑥𝑜𝑜 , 𝜐𝜐 𝑛𝑛𝑠𝑠⁄ ) when 𝑛𝑛𝑠𝑠 

increases. Then, 𝑥𝑥� is asymptotically normal with asymptotic value 𝑥𝑥𝑜𝑜 and asymptotic variance 



 
 

𝜐𝜐.[20] The asymptotic efficiency of 𝑥𝑥� is defined as the ratio 𝜐𝜐𝑜𝑜 𝜐𝜐⁄ , where 𝜐𝜐𝑜𝑜 is the asymptotic 

variance of the maximum likelihood estimate, and indicates how near 𝑥𝑥� is to the optimum.  

To date, only the Huber (Hub) M-estimator has been used for all robust UKF algorithms 

reported in the literature. It is a convex function, sensitive to very large values of 𝑟𝑟; therefore, 

it presents low efficiency for heavy-tailed error distributions. This can be seen as follows: 

 

𝜌𝜌Hub(𝑟𝑟) = �
𝑟𝑟2                                     if     |𝑟𝑟| ≤ cHub

2cHub|𝑟𝑟| − cHub 
2             if     |𝑟𝑟| > cHub

   (cHub = 1.4) (2)  

 

Another type of robust estimators is the so-called redescending M-estimator. These can be made 

efficient for heavy-tailed data, but require a good starting point to ensure the “good” solution. 

Redescending M-estimators can be of two types. The first one is unbounded, but the first 

derivative of the LF, 𝜓𝜓(.) = 𝜌𝜌′(.), called influence function (IF), tends to zero at infinity. The 

Welsch (Wel) and correntropy (Cor) M-estimators have the following features: 

 

𝜌𝜌Wel(𝑟𝑟) = cWel
2 �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−�

𝑟𝑟
cWel

�
2
��    (cWel = 2.98) 

 

(3)  

𝜌𝜌Cor(𝑟𝑟) = �
1

cCor√2𝜋𝜋
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−�

𝑟𝑟2

2cCor
2 ��    (cCor = 2.05) 

(4)  

 

The second type of redescending estimators are bounded, but their IFs are strictly equal to zero 

for |𝑟𝑟| greater than a certain parameter value. The biweight (Biw) M-estimator belongs to the 

following kind: 

 

𝜌𝜌Biw(𝑟𝑟) = �1 − �1 − �
𝑟𝑟

cBiw
�
2
�
3

         if     |𝑟𝑟| ≤ cBiw

1                                           if     |𝑟𝑟| > cBiw

   (cBiw = 4.68) (5)  

 

To compare the estimation capabilities of different M-estimators, they should behave in the 

same way under the presence of random errors. That is, the asymptotic efficiencies of all M-

estimators should be equal. It is a common practice to set them at 95% and then tune the 

parameter of each LF using the jackknife procedure to satisfy that asymptotic efficiency. The 

values of parameters cHub, cWel, cCor, and cBiw in Equations (2)-(5) are obtained in this way.  



 
 

The weight function ω is defined as follows: 

 

ω(𝑟𝑟) = � 
𝜓𝜓(𝑟𝑟)
𝑟𝑟

         if     𝑟𝑟 ≠ 0

𝜓𝜓′(0)         if     𝑟𝑟 = 0
 (6)  

 

It is a non-increasing function of |𝑟𝑟|; therefore, the weights of the residuals, ω(𝑟𝑟), associated 

to atypical observations are smaller. This behaviour will be applied in the next section. 

 

3 EFFICIENT AND ROBUST AUGMENTED UKF 

Let us consider a dynamic system that is represented by the following non-linear and discrete 

state-space model: 

 

𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1,𝑤𝑤𝑘𝑘−1) 

 

(7)  

𝑦𝑦𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘 , 𝑣𝑣𝑘𝑘) (8)  

 

where 𝑥𝑥𝑘𝑘 and 𝑦𝑦𝑘𝑘 are the n-dimensional state vector and the m-dimensional measurement vector, 

respectively, at the time step k (k = 1,…, K); 𝑓𝑓(.) is the process model function; ℎ(.) is the 

measurement model function; 𝑢𝑢𝑘𝑘−1 is the vector of deterministic control inputs; 𝑤𝑤𝑘𝑘−1 is the 

process noise vector of dimension q ≤ n; and 𝑣𝑣𝑘𝑘 is the measurement noise vector of dimension 

m. It is assumed that 𝑤𝑤𝑘𝑘 ~ N(0, 𝑄𝑄𝑘𝑘) and 𝑣𝑣𝑘𝑘 ~ N(0, 𝑅𝑅𝑘𝑘). 

In this section, a new procedure to achieve robust state inferences under the presence of atypical 

measurements, denoted as ERAUKF, is presented. Initially, the methodology uses the AUKF 

to predict the states and their covariance matrix using the information gathered until time step 

(k-1).[18,24,25] Then, and in contrast to previous robust-statistics-based filters, the strategy checks 

the presence of atypical observations when 𝑦𝑦𝑘𝑘  is obtained. If outliers are detected a robust 

update estimation technique is applied. If not, the AUKF is executed because it provides optimal 

estimates when only random errors are present. The presence of atypical observations is 

detected using a critical value of the weight function, ω𝑐𝑐, as described below. 

The ERAUKF uses an augmented state vector 𝑥𝑥𝑘𝑘−1𝐴𝐴  of dimension L, which is defined by 

incorporating the noise vectors 𝑤𝑤𝑘𝑘−1  and 𝑣𝑣𝑘𝑘−1  to the state vector. The augmented state 

covariance matrix 𝑃𝑃𝑘𝑘−1𝐴𝐴  is formulated in terms of the state covariance matrix 𝑃𝑃𝑘𝑘−1  and the 

noises covariance matrices, denoted as 𝑄𝑄𝑘𝑘−1 and 𝑅𝑅𝑘𝑘−1, respectively. Then, the predicted state 



 
 

vector 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 and its associated covariance 𝑃𝑃𝑘𝑘|𝑘𝑘−1 are calculated in the same way as the AUKF 

algorithm.[5] 

When 𝑦𝑦𝑘𝑘 is obtained, the predicted estimations are updated using the new information. This 

work endeavours to detect the presence of outliers in vector 𝑦𝑦𝑘𝑘 before the estimations update. 

Assuming 𝑥𝑥�𝑘𝑘|𝑘𝑘−1  is a good approximation of 𝑥𝑥𝑘𝑘 , an estimation 𝜈̂𝜈𝑘𝑘  is obtained and then 

standardized as 𝑟𝑟𝑘𝑘,𝑦𝑦 by the following: 

 

𝑟𝑟𝑘𝑘,𝑦𝑦 = 𝑅𝑅𝑘𝑘−1 �𝑦𝑦𝑘𝑘 − ℎ�𝑥𝑥�𝑘𝑘|𝑘𝑘−1�� = 𝑅𝑅𝑘𝑘−1𝑣𝑣�𝑘𝑘 (9)  

 

To determine if the j-th measurement of 𝑦𝑦𝑘𝑘 (j = 1,…,m) is atypical, ω𝑗𝑗 is calculated by replacing 

the j-th element of 𝑟𝑟𝑘𝑘,𝑦𝑦  in Equation (6). If ω𝑗𝑗  < ω𝑐𝑐𝑐𝑐 , the j-th measurement is considered an 

outlier. Let us recall that ω(𝑟𝑟) diminishes in the presence of atypical observations. 

To set ω𝑐𝑐, 10 000 simulations of the prediction step and Equation (9) are run offline (for k = 

1,…, K) considering that measurements are subject only to random errors. The values of ω are 

calculated by Equation (6) using the LF of the selected M-estimator for all the generated 

measurements. Then the empirical cumulative distribution function of ω is obtained, and ω𝑐𝑐 is 

selected as the weight value, for which the cumulative probability is 𝛼𝛼. This parameter is the 

probability of wrongly identifying an observation as atypical, and it is set equal to 0.05. 

If no measurements of 𝑦𝑦𝑘𝑘 are outliers, the update step of the classic AUKF is run. In contrast, 

if at least one measurement of 𝑦𝑦𝑘𝑘 is identified as an outlier, the update of the predicted estimates 

is performed, taking advantage of the ω features. The procedure is explained below. 

Assuming the true value of 𝑥𝑥𝑘𝑘 = 𝑥𝑥�𝑘𝑘|𝑘𝑘−1, let us define the error vector 𝑒̅𝑒𝑘𝑘 as follows:  

 

𝑒̅𝑒𝑘𝑘 = 𝑧𝑧𝑘̅𝑘 − 𝑔𝑔(𝑥𝑥𝑘𝑘) (10)  

 

and each term of Equation (10) can be seen as follows: 

 

𝑒̅𝑒𝑘𝑘 = �
 𝑒𝑒𝑘𝑘|𝑘𝑘−1
𝑣𝑣𝑘𝑘 � = � 𝑥𝑥�𝑘𝑘|𝑘𝑘−1

𝑦𝑦𝑘𝑘
� − �

𝑥𝑥𝑘𝑘
ℎ(𝑥𝑥𝑘𝑘)� (11)  

 

where 𝑒𝑒𝑘𝑘|𝑘𝑘−1 is the error between the true state vector and its prediction.  

The impact of events that do not correspond to the normal system behaviour can be reduced by 

generating a pseudo-measurement vector 𝑧̃𝑧𝑘𝑘 used as input of the update-estimation step. For 



 
 

this purpose, first 𝑒̅𝑒𝑘𝑘 is standardized. Let us consider 𝑀𝑀𝑘𝑘 as the error covariance matrix of 𝑒̅𝑒𝑘𝑘, 

as follows: 

 

𝑀𝑀𝑘𝑘 = 𝐸𝐸 ��
𝑒𝑒𝑘𝑘|𝑘𝑘−1
𝑣𝑣𝑘𝑘 � �

𝑒𝑒𝑘𝑘|𝑘𝑘−1
𝑣𝑣𝑘𝑘 �

𝑇𝑇
� = �

𝑃𝑃𝑘𝑘|𝑘𝑘−1 0
0 𝑅𝑅𝑘𝑘

� (12)  

 

and the Cholesky decomposition of 𝑀𝑀𝑘𝑘 is represented by 𝑆𝑆𝑀𝑀𝑘𝑘. Multiplying Equation (10) by 

the inverse of 𝑆𝑆𝑀𝑀𝑘𝑘, (𝑆𝑆𝑀𝑀𝑘𝑘
−1), the following residual vector 𝑟𝑟𝑘𝑘 is obtained: 

  

𝑟𝑟𝑘𝑘 = 𝑆𝑆𝑀𝑀𝑘𝑘
−1 ∗ 𝑒̅𝑒𝑘𝑘 = 𝑆𝑆𝑀𝑀𝑘𝑘

−1 ∗ �
𝑒𝑒𝑘𝑘|𝑘𝑘−1
𝑣𝑣𝑘𝑘 � (13)  

 

whose covariance matrix is the identity matrix as result of the error decorrelation performed 

using 𝑆𝑆𝑀𝑀𝑘𝑘
−1. 

For the selected M-estimator, 𝜔𝜔(𝑟𝑟𝑘𝑘) is calculated by applying Equation (6). Vector 𝑒̃𝑒𝑘𝑘, which 

contains the weighted elements of 𝑒̅𝑒𝑘𝑘, is obtained as follows: 

 

𝑒̃𝑒𝑘𝑘 = �
 𝑒̃𝑒𝑘𝑘|𝑘𝑘−1
𝑣𝑣�𝑘𝑘

� = diag(𝜔𝜔(𝑟𝑟𝑘𝑘)) ∗ �
𝑒𝑒𝑘𝑘|𝑘𝑘−1
𝑣𝑣𝑘𝑘 � (14)  

 

Finally, vector 𝑧̃𝑧𝑘𝑘  that involves the modified predicted states and measurement vectors is 

evaluated by the following: 

 

𝑧̃𝑧𝑘𝑘 = 𝑔𝑔(𝑥𝑥𝑘𝑘) + 𝑒̃𝑒𝑘𝑘 (15)  

 

and each term of Equation (15) can be seen as follows: 

 

𝑧̃𝑧𝑘𝑘 = �
 𝑥𝑥�𝑘𝑘|𝑘𝑘−1

 𝑦𝑦�𝑘𝑘
� = �

𝑥𝑥𝑘𝑘
ℎ(𝑥𝑥𝑘𝑘)� + �

 𝑒̃𝑒𝑘𝑘|𝑘𝑘−1
𝑣𝑣�𝑘𝑘

� (16)  

 

The modified vectors, 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 and 𝑦𝑦�𝑘𝑘 , are used instead of 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 and 𝑦𝑦𝑘𝑘 , respectively, in the 

update step of the ERAUKF algorithm. 



 
 

In contrast to previous works that consider 𝑒𝑒𝑘𝑘|𝑘𝑘−1 = 0, an iterative procedure is used until 

stopping criteria are satisfied regarding the accuracy of 𝑥𝑥�𝑘𝑘 .[22] The ERAUKF algorithm is 

shown in detail in the Appendix. 

The main advantages of the ERAUKF are: (i) the robust procedure is only run if outliers are 

detected; (ii) robustness is incorporated in the update step of the filtering technique, using 

information modified by the weight function of the M-estimator; and (iii) the solution is attained 

using few iterations because the solution procedure uses a good starting point. 

 

4 CASE STUDY 

Dynamic operation of polymerization reactors is a complex task. Some of the reasons for this 

complexity are the extreme sensitivity of the steady state to small changes in parameter values 

or operating conditions, and the highly interactive non-linear dynamic behaviour often 

exhibited by these reactors. The process selected as the case study for this work is the 

copolymerization of MMA and VA in a CSTR with a recycle loop. This process has been 

chosen in several works dealing with non-linear state-estimation and process-control 

applications.[9,23] Figure 1 shows a diagram of the copolymerization reactor. 

The fresh stream (F1) contains the monomers MMA and VA, the initiator azoisobutyronitrile 

(AIBN), the solvent benzene (B), and the chain transfer agent (CTA), acetaldehyde. Besides, 

an inhibitor (INH) could be present. Stream F1 is combined with a recycle stream (F2) to form 

the reactor feed stream (F3). The reactor outlet stream (F4) goes to a separator. In this equipment, 

unreacted monomers and solvent continue to the purge point (F8). After the purge, the remaining 

unreacted monomers and solvent in the recycle stream (F9) are stored in a holding tank.  

The mathematical model includes a comprehensive description of the generally accepted kinetic 

steps of this system. It is a generalization of models that have appeared in the literature and 

validated experimentally, which have proven to capture the essential dynamics of the 

system.[23,26–28] Details about the model equations, such as algebraic equations for stream 

connections, reaction rates, global concentration of radicals, and parameters can be found 

elsewhere.[23]  

The mathematical model of this process comprises a set of differential algebraic equations for 

the mass and energy balances of the system. The state vector 𝑥𝑥 involves the following variables:  

 

𝑥𝑥 = �𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀,𝐶𝐶𝑉𝑉𝑉𝑉,𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ,𝐶𝐶𝐵𝐵 ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝑖𝑖𝑖𝑖ℎ,𝑇𝑇𝑟𝑟 ,𝛤𝛤𝑀𝑀𝑀𝑀𝑀𝑀,𝛤𝛤𝑉𝑉𝑉𝑉, 𝛾𝛾0, 𝛾𝛾1, 𝛾𝛾2,𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀,𝑠𝑠,𝐶𝐶𝑉𝑉𝑉𝑉,𝑠𝑠, 

                   𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑠𝑠,𝐶𝐶𝐵𝐵,𝑠𝑠,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑠𝑠,𝐶𝐶𝑖𝑖𝑖𝑖ℎ,𝑠𝑠,𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀,ℎ,𝐶𝐶𝑉𝑉𝑉𝑉,ℎ,𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,ℎ,𝐶𝐶𝐵𝐵,ℎ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,ℎ,𝐶𝐶𝑖𝑖𝑖𝑖ℎ,ℎ� 
(17)  



 
 

 

where 𝐶𝐶𝑗𝑗 is the molar concentration of species j; 𝑇𝑇𝑟𝑟 is the reactor temperature; 𝛤𝛤𝑗𝑗 is the molar 

concentration of monomer j in the copolymer; 𝛾𝛾𝑗𝑗 is the j-th order moment of the copolymer 

molecular weight distribution (MWD); and subscripts s and h stand for separator and hold tank, 

respectively. 

The general expressions of the reactor mass and moment balances by the following: 

 
𝑑𝑑𝐶𝐶𝑗𝑗
𝑑𝑑𝑑𝑑

=
𝐶𝐶𝑗𝑗,𝑓𝑓 − 𝐶𝐶𝑗𝑗 

𝜃𝜃𝑟𝑟
+ 𝜙𝜙𝐶𝐶𝑗𝑗   (𝑗𝑗 =  MMA, VA, AIBN, B, CTA, inh) (18)  

 
𝑑𝑑𝛤𝛤𝑗𝑗
𝑑𝑑𝑑𝑑

=
𝛤𝛤𝑗𝑗,𝑓𝑓 − 𝛤𝛤𝑗𝑗
𝜃𝜃𝑟𝑟

+ 𝜙𝜙𝛤𝛤𝑗𝑗   (𝑗𝑗 =  MMA, VA) (19)  

 
𝑑𝑑𝛾𝛾𝑗𝑗
𝑑𝑑𝑑𝑑

=
𝛾𝛾𝑗𝑗,𝑓𝑓 − 𝛾𝛾𝑗𝑗

𝜃𝜃𝑟𝑟
+ 𝜙𝜙𝛾𝛾𝑗𝑗   (𝑗𝑗 =  0, 1, 2) (20)  

 

In Equations (18)-(20), subscript 𝑓𝑓 stands for feed stream; 𝜙𝜙𝐶𝐶𝑗𝑗, 𝜙𝜙𝛤𝛤𝑗𝑗, and 𝜙𝜙𝛾𝛾𝑗𝑗 are reaction rates; 

and 𝜃𝜃𝑟𝑟 is the reactor residence time. 

The separator and hold-tank balances are as follows: 

 
𝑑𝑑𝐶𝐶𝑗𝑗,𝑠𝑠

𝑑𝑑𝑑𝑑
=
𝐶𝐶𝑗𝑗,𝑠𝑠,𝑓𝑓 − 𝐶𝐶𝑗𝑗,𝑠𝑠

𝜃𝜃𝑠𝑠
  (𝑗𝑗 =  MMA, VA, AIBN, B, CTA, inh) (21)  

 

𝑑𝑑𝐶𝐶𝑗𝑗,ℎ

𝑑𝑑𝑑𝑑
=
𝐶𝐶𝑗𝑗,ℎ,𝑓𝑓 − 𝐶𝐶𝑗𝑗,ℎ

𝜃𝜃ℎ
  (𝑗𝑗 =  MMA, VA, AIBN, B, CTA, inh) (22)  

 

where 𝜃𝜃𝑠𝑠 and 𝜃𝜃ℎ are the residence time in the separator and in the hold tank, respectively. 

The following is the reactor energy balance: 

 

𝑑𝑑𝑇𝑇𝑟𝑟
𝑑𝑑𝑑𝑑

=
𝑇𝑇𝑟𝑟,𝑓𝑓 − 𝑇𝑇𝑟𝑟 

𝜃𝜃𝑟𝑟
+
�−∆𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝�𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀∗ + �−∆𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝�𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑉𝑉𝑉𝑉∗

𝜌𝜌𝑟𝑟𝐶𝐶𝑝𝑝,𝑟𝑟
 

        +
�−∆𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝�𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝑉𝑉𝑉𝑉𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀∗ + �−∆𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝�𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝑉𝑉∗

𝜌𝜌𝑟𝑟𝐶𝐶𝑝𝑝,𝑟𝑟
−
𝑈𝑈𝑟𝑟𝐴𝐴𝑟𝑟�𝑇𝑇𝑟𝑟 − 𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑉𝑉𝑉𝑉𝑟𝑟𝐶𝐶𝑝𝑝,𝑟𝑟
 

(23)  



 
 

 

where 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀∗  and 𝐶𝐶𝑉𝑉𝑉𝑉∗  are the global concentration of radicals with a MMA and a VA terminal 

unit, respectively; ∆𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝, ∆𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝, ∆𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝, and ∆𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝 are reaction enthalpies; 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝, 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝, 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝, 

and 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝 are kinetic parameters of the propagation reactions; a = MMA and b = VA; 𝜌𝜌𝑟𝑟 and 

𝐶𝐶𝑝𝑝,𝑟𝑟  represent the density and heat-capacity of the reaction mixture, respectively; 𝑈𝑈𝑟𝑟  is the 

overall heat-transfer coefficient; 𝐴𝐴𝑟𝑟 is the overall transfer area; 𝑉𝑉 is the reactor volume; and 

𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 is the temperature of the reactor jacket. 

The measurement vector 𝑦𝑦 considered for this work is as follows: 

 

𝑦𝑦 = [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,𝑇𝑇𝑟𝑟 ,𝑀𝑀�𝑊𝑊] (24)  

 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the total conversion of the two monomers and 𝑀𝑀�𝑊𝑊 is the weight-average 

molecular weight. It is assumed that 𝑇𝑇𝑟𝑟 , 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , and 𝑀𝑀�𝑊𝑊  are on-line measurements 

available from the process. Measurement 𝑇𝑇𝑟𝑟  is acquired by a thermocouple; and data of 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑀𝑀�𝑊𝑊 could be obtained from on-line sensors that use empirical correlations. For 

instance, on-line sensors can be directly plugged in the reacting mixture to get 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

through ultrasound propagation velocity measurements.[29] Besides, an on-line sensor based on 

the liquid viscosity measurements can be installed at the outlet of the reactor to estimate 𝑀𝑀�𝑊𝑊.[30] 

On-line viscosity measurement is a typical approach used in polymer control to estimate the 

weight-average molecular weight of the polymer,[31,32] with errors normally lying within the 

error bounds of direct experimental measurements of 𝑀𝑀�𝑊𝑊 .[33] The on-line sensor provides 

estimates of 𝑀𝑀�𝑊𝑊  immediately after receiving the viscosity measurements, which can be 

obtained with a frequency up to 1 Hz for typical vibrating rod viscosimeters.[30] 

The expressions of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑀𝑀�𝑊𝑊 in terms of the state variables are the following: 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝛾𝛾1

(𝛾𝛾1 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝑉𝑉) (25)  

 

𝑀𝑀�𝑊𝑊 = 𝛾𝛾2 𝛾𝛾1⁄  (26)  

 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑉𝑉𝑉𝑉 are the molecular weights of MMA and VA monomers, respectively. 

 

5 RESULTS AND DISCUSSION  



 
 

The analysis considers that the process is initially at steady state and that on-line measurements 

are continuously available, with a sampling interval of 5 min. At time t = 1 hour, a perturbation 

occurs in the reactor feed stream leading to a transition to a new steady state. Table 1 shows the 

values of the relevant variables for this scenario.  

Three case studies are considered for analyzing the performance of different filtering 

techniques: 

Case 1. There is uncertainty in all process states, which are regarded as additive noises.  

Case 2. There is uncertainty in the reactions rates 𝜙𝜙𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀, 𝜙𝜙𝐶𝐶𝑉𝑉𝑉𝑉, 𝜙𝜙𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝜙𝜙𝛾𝛾0, 𝜙𝜙𝛾𝛾1, and 𝜙𝜙𝛾𝛾2. This 

uncertainty is regarded as process noise that enters the non-linear model.  

Case 3. Process noise enters, as in Case 2, but affects the kinetic parameters of the 

aforementioned reactions rates, which are time-varying parameters. In addition, these 

parameters are unknown and estimated. 

The variables and parameters suffering from uncertainty in Cases 2 and 3, respectively, were 

selected after performing a sensitivity analysis of the process model to choose the most sensitive 

ones. Uncertainty in the process and in the measurements was assumed as white noise, mean-

zero, and normal distribution, ie, 𝑤𝑤𝑘𝑘 = N(0, 𝑄𝑄𝑘𝑘) and 𝑣𝑣𝑘𝑘 = N(0, 𝑅𝑅𝑘𝑘), respectively.  

For each case study, the performances of three different filtering techniques are compared with 

and without outliers. These strategies are the AUKF, robust AUKF (RAUKF), and ERAUKF. 

The RAUKF is a version of the ERAUKF that does not check the presence of atypical 

observations; therefore, it always runs a robust update procedure. In addition, different types of 

M-estimators (Hub, Wel, Cor, Biw) are considered for RAUKF and ERAUKF. The filtering 

algorithms of these strategies were implemented in MATLAB, noises were generated using the 

MATLAB randn function, and the Equations (18)-(23) are a set of differential-algebraic 

equations that were integrated numerically using a solver function ode15s. This solver allows 

the computation of both dynamic and steady state values for the state vector in Equation (17). 

The mean square error (MSE) was used as performance measure. It was calculated as the 

average of the square differences between the true values of the state variables and 

measurements and the estimated ones for 10 000 simulation trials of the dynamic system. When 

outliers are included, they are randomly generated in the range from 10 to 15 times the standard 

deviation for measurements 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, T𝑟𝑟, and 𝑀𝑀�𝑊𝑊 .  

The critical values of ω𝑐𝑐𝑐𝑐  (j=1,…, m) were calculated using the empirical cumulative 

distribution function (ecdf) in MATLAB. For each ω𝑗𝑗, the sample is formed by K × 104 values 



 
 

obtained running RAUKF for different M-estimators without including outliers. The ecdf  

returns the value of ω𝑗𝑗, for which the cumulative distribution is 5%, and this is set as ω𝑐𝑐𝑐𝑐.  

Comparison results are displayed in Tables 2-9. For measurement 𝑀𝑀�𝑊𝑊, Tables 2 and 3 show the 

MSE reduction achieved using RAUKF (expressed in percentage) in comparison to the method 

proposed by Chang et al,[22] when only random errors are considered and when outliers are 

present, respectively. 

Results in Table 2 and 3 indicate the accuracy of the estimations increases (the MSE diminishes) 

when using an iterative robust technique in comparison to the method that sets 𝑒𝑒𝑘𝑘|𝑘𝑘−1 = 0 and 

does not perform an iterative solution scheme. It should be remarked that the proposed 

procedure is fast; only three to five iterations are sufficient to achieve convergence given that 

the predicted estimates provide a good initial point.  

Tables 4 and 5 display the MSE of 𝑀𝑀�𝑊𝑊 attained using AUKF, RAUKF, and ERAUKF, with 

random errors and atypical measurements, respectively. Table 6 shows the MSE reduction 

percentages of RAUKF and ERAUKF with respect to AUKF in the presence of outliers. In a 

similar manner, Table 7 shows the MSE reduction percentages of the ERAUKF regarding 

RAUKF. 

When outliers are not present, AUKF provides the best estimates in comparison with robust 

methodologies for the three cases (Table 4), because AUKF uses the least square estimator that 

satisfies a set of optimality conditions when there are only random errors. However, an 

improvement of the trade-off between efficiency and robustness is noticed for ERAUKF-Biw 

since it attains MSEs similar to the ones obtained using AUKF for the analyzed scenarios.  

Under the presence of outliers, the robust techniques significantly outperform AUKF for the 

three cases (Table 5). Moreover, the performance of ERAUKF is better than the corresponding 

one to RAUKF. For the robust techniques, the MSEs attained using the redescending M-

estimators are lower than the ones obtained using the Hub function because this is sensitive to 

outliers. Besides, the second type of redescending M-estimators, eg, the Biw function, gives 

better results than those provided by the first type, which is represented by the Cor and Wel 

functions in this work. This occurs because the IF of the Biw estimator is equal to zero when 

the residual is greater than cBiw. Finally, RAUKF-Cor performs better than RAUKF-Wel 

because the IF of the Cor function approximates to zero faster than the Wel function does. 

Regarding the RAUKF-Biw, which gives better results than RAUKF methodology for other M-

estimators, the MSE reduction percentages with respect to AUKF is greater than 65% (Table 



 
 

6) for the three cases, and the MSE reduction percentages of the ERAUKF-Biw regarding 

RAUKF-Biw is approximately 20% (Table 7). 

The MSE reduction percentages of 𝑀𝑀�𝑊𝑊 achieved considering non-additive noise (Cases 2 and 

3) with respect to additive noise (Case 1) were: (a) 24.32% (Case 2) and 15.70% (Case 3) for 

random error; and (b) 24.00% (Case 2) and 10.16% (Case 3) in the presence of outliers. These 

reported values correspond to the MSE results of the ERAUKF-Biw technique.  

The MSEs obtained when uncertainty enters into the non-linear model (Cases 2 and 3) are better 

than those achieved for additive noise (Case 1), even when kinetic parameters are estimated 

(Case 3). Besides, the performance of Case 2 is better than that of Case 3, because in the latter 

the kinetic parameters are unknown and estimated as state variables. Furthermore, the MSE 

reduction percentages of the non-additive noise (Cases 2) with respect to additive noise (Case 

1) is approximately 25%, both in the absence and presence of outliers. 

Figures 2-4 depict the real and estimated values of measurement 𝑀𝑀�𝑊𝑊  for each case when 

atypical measurements are present and different state-estimation techniques are applied. The 

estimates obtained using AUKF are biased for the three cases, and show a greater detrimental 

effect for additive noise (Case 1). Regarding the robust techniques, the ERAUKF-Hub provides 

estimates that tend to the real values but outliers are still affecting the results. In contrast, the 

attained estimates are close to the real values when ERAUKF-Biw is applied.    

A similar behaviour of the proposed strategy is observed for the other measurements, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

and 𝑇𝑇𝑟𝑟. Results are not included here for the sake of space. 

 

6 CONCLUSIONS   

In this work, a new efficient and robust state-estimation methodology based on the augmented 

unscented Kalman filter, called efficient robust augmented unscented Kalman filter, which 

deals with the presence of atypical measurements using the concepts of robust statistics, is 

presented. The behaviour of the estimation procedure is analyzed for the copolymerization of 

MMA and VA monomers. 

The strategy shows a rewarding performance both when measurements are contaminated with 

outliers and when only random errors are present. This behaviour is achieved using the 

properties of the weigh function of the M-estimator. A critical value of this function allows 

switching between different estimate update methods, enhancing robustness and efficiency. If 

it is necessary to run a robust technique in the update step, an iterative solution scheme is 

applied that converges in few iterations, thanks to its good initial point. This iterative procedure 

increases the accuracy of estimates in comparison to previous existing techniques.  



 
 

As regards the robustness on the estimation, the procedures that use the redescending M-

estimators provide better results in comparison with those achieved using the monotone M-

estimator, commonly used in the literature. Moreover, the second type of redescending M-

estimators, which have bounded loss functions and influence functions equal to zero for residual 

values greater than their parameters (Biweight M-estimator), outperform all the other M-

estimators. 

The aforementioned conclusions are based on results obtained both for additive noise and for 

when uncertainty enters directly into the non-linear functions. As expected, better results were 

achieved for these case studies. 
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APPENDIX 

The ERAUKF algorithm 

Table A1 shows the algorithm of the ERAUKF. 
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Figure Captions 

 

FIGURE 1 Copolymerization reactor 

FIGURE 2 Real and estimated values of measurement 𝑀𝑀�𝑊𝑊 for Case 1 with outliers 

FIGURE 3 Real and estimated values of measurement 𝑀𝑀�𝑊𝑊 for Case 2 with outliers 

FIGURE 4 Real and estimated values of measurement 𝑀𝑀�𝑊𝑊 for Case 3 with outliers 
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Table Captions 

 

TABLE 1 Initial conditions and process perturbations 

TABLE 2 Mean square error reduction (%) of efficient and robust augmented unscented 
Kalman filter regarding the method by Chang et al[22] (random errors) 

TABLE 3 Mean square error reduction (%) of robust augmented unscented Kalman filter 
regarding the method by Chang et al[22] (outliers) 

TABLE 4 Mean square error of 𝑀𝑀�𝑊𝑊 (random errors)  

TABLE 5 Mean square error of 𝑀𝑀�𝑊𝑊 (outliers) 

TABLE 6 Mean square error reduction (%) of robust techniques regarding augmented 
unscented Kalman filter (outliers) 

TABLE 7 Mean square error  reduction (%) of efficient and robust augmented unscented 
Kalman filter regarding robust augmented unscented Kalman filter (outliers) 

TABLE A1 Efficient and robust augmented unscented Kalman filter algorithm 
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1

TABLE 1 Initial conditions and process perturbations 

Variable Value Unit

𝐶𝑀𝑀𝐴,0 0.254 (kmol ∙ m-3)

𝐶𝑉𝐴,0 5.839 (kmol ∙ m-3)

𝐶𝐴𝐼𝐵𝑁,0 2.012 × 10-3 (kmol ∙ m-3)

𝐶𝐵,0 2.758 (kmol ∙ m-3)

𝐶𝐶𝑇𝐴,0 0.366 (kmol ∙ m-3)

𝐶𝑖𝑛ℎ,0 0 (kmol ∙ m-3)

𝑇𝑟,0 350.426 (K)

𝛤𝑀𝑀𝐴,0 0.822 (kmol ∙ m-3)

𝛤𝑉𝐴,0 0.418 (kmol ∙ m-3)

𝛾0,0 5.401 × 10-3 (kmol ∙ m-3)

𝛾1,0 119.705 (kg ∙ m-3)

𝛾2,0 4.177 × 106 (kg2/kmol ∙ m-3)

𝐶𝑀𝑀𝐴,𝑠,0 0.254 (kmol ∙ m-3)

𝐶𝑉𝐴,𝑠,0 5.839 (kmol ∙ m-3)

𝐶𝐴𝐼𝐵𝑁,𝑠,0 2.012 × 10-3 (kmol ∙ m-3)

𝐶𝐵,𝑠,0 2.758 (kmol ∙ m-3)

𝐶𝐶𝑇𝐴,𝑠,0 0.366 (kmol ∙ m-3)

𝐶𝑖𝑛ℎ,𝑠,0 0 (kmol ∙ m-3)

𝐶𝑀𝑀𝐴,ℎ,0 0.316 (kmol ∙ m-3)

𝐶𝑉𝐴,ℎ,0 7.266 (kmol ∙ m-3)

𝐶𝐴𝐼𝐵𝑁,ℎ,0 0 (kmol ∙ m-3)

𝐶𝐵,ℎ,0 3.432 (kmol ∙ m-3)

𝐶𝐶𝑇𝐴,ℎ,0 0 (kmol ∙ m-3)

𝐶𝑖𝑛ℎ,ℎ,0 0 (kmol ∙ m-3)

F1,0 4.99 × 10-5 (kmol ∙ s-1)

F3,0 3.04 × 10-7 (kmol ∙ s-1)

F1,perturbation 4.99 × 10-4 (kmol ∙ s-1)

F3,perturbation 4.57 × 10-7 (kmol ∙ s-1)
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TABLE 2 Mean square error reduction (%) of efficient and robust augmented unscented 

Kalman filter regarding the method by Chang et al[22] (random errors)

𝑴𝑾
Method

Case 1 Case 2 Case 3

RAUKF-Hub 10.36 9.59 8.69

RAUKF-Wel 8.86 8.74 8.85

RAUKF-Cor 9.72 8.76 9.70

RAUKF-Biw 10.54 10.25 8.93
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TABLE 3 Mean square error reduction (%) of robust augmented unscented Kalman filter 

regarding the method by Chang et al[22] (outliers)

𝑴𝑾
Method

Case 1 Case 2 Case 3

RAUKF-Hub 11.51 12.28 12.43

RAUKF-Wel 11.13 11.60 12.31

RAUKF-Cor 12.76 12.52 12.68

RAUKF-Biw 11.79 11.40 11.35
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TABLE 4 Mean square error of  (random errors) 𝑀𝑊

𝑴𝑾
Method

Case 1 Case 2 Case 3

AUKF 3.045 8 × 105 2.314 4 × 105 2.568 0 × 105

RAUKF-Hub 3.503 3 × 105 2.878 8 × 105 3.220 1 × 105

RAUKF-Wel 3.327 3 × 105 2.563 2 × 105 2.921 9 × 105

RAUKF-Cor 3.310 8 × 105 2.535 1 × 105 2.909 3 × 105

RAUKF-Biw 3.084 8 × 105 2.359 1 × 105 2.767 1 × 105

ERAUKF-Hub 3.061 0 × 105 2.334 7 × 105 2.582 1 × 105

ERAUKF-Wel 3.053 2 × 105 2.321 6 × 105 2.573 8 × 105

ERAUKF-Cor 3.049 5 × 105 2.320 2 × 105 2.571 1 × 105

ERAUKF-Biw 3.046 0 × 105 2.314 8 × 105 2.568 7 × 105
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TABLE 5 Mean square error of  (outliers)𝑀𝑊

𝑴𝑾
Method

Case 1 Case 2 Case 3

AUKF 1.070 1 × 106 8.028 5 × 105 9.261 3 × 105

RAUKF-Hub 4.015 8 × 105 2.933 7 × 105 3.498 1 × 105

RAUKF-Wel 3.754 9 × 105 2.858 4 × 105 3.298 9 × 105

RAUKF-Cor 3.676 1 × 105 2.798 1 × 105 3.267 1 × 105

RAUKF-Biw 3.460 4 × 105 2.641 0 × 105 3.162 4 × 105

ERAUKF-Hub 3.667 3 × 105 2.768 0 × 105 3.250 3 × 105

ERAUKF-Wel 3.436 0 × 105 2.627 0 × 105 3.033 7 × 105

ERAUKF-Cor 3.348 3 × 105 2.592 1 × 105 3.005 2 × 105

ERAUKF-Biw 3.209 1 × 105 2.427 5 × 105 2.883 1 × 105
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TABLE 6 Mean square error reduction (%) of robust techniques regarding augmented 

unscented Kalman filter (outliers)

𝑴𝑾
Method

Case 1 Case 2 Case 3

RAUKF-Hub 62.47 62.71 62.23

RAUKF-Wel 64.91 64.40 64.38

RAUKF-Cor 65.65 65.15 64.72

RAUKF-Biw 67.66 67.11 65.85

ERAUKF-Hub 65.73 65.52 64.90

ERAUKF-Wel 67.89 67.28 67.24

ERAUKF-Cor 68.71 67.71 67.55

ERAUKF-Biw 70.01 69.76 68.87
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TABLE 7 Mean square error  reduction (%) of efficient and robust augmented 
unscented Kalman filter regarding robust augmented unscented Kalman filter (outliers)

𝑴𝑾
Method

Case 1 Case 2 Case 3

ERAUKF-Hub 8.68 7.54 7.09

ERAUKF-Wel 14.44 12.25 13.28

ERAUKF-Cor 16.62 13.42 14.09

ERAUKF-Biw 20.09 18.91 17.58
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