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Abstract. The deposits of the Chorrillo Formation (Maastrichtian) were accumulated during a 30 

‘continental window’ that occurred during the Late Cretaceous in the Austral-Magallanes 31 

foreland basin, southern Patagonia, Argentina. The aim of the present contribution is to describe 32 

the depositional conditions as well as new vertebrate and plant fossils from this unit. The 33 

analysis of these deposits resulted in the definition of five architectural elements: Complex 34 

sandy narrow sheets channels (SS), Complex gravelly narrow sheets channels (GS), Sandstone 35 

lobes (SL), Thick fine-grained deposits (GF) and Thin dark fine-grained deposits (DF). These 36 

were separated into channelized and non-channelized units and represent the accumulation in a 37 

fine-grained dominated, fossil rich fluvial depositional system. Vertebrates fossil records 38 

include two species of frogs of the genus Calypteocephalella (representing the southernmost 39 

record of Pipoidea),  snakes belonging to Madtsoiidae and Anilioidea (the latter ones being the 40 

first records for the basin), chelid turtles similar to Yaminuechelys-Hydromedusa, meiolaniiform 41 

turtles, titanosaur sauropods, megaraptoran theropods, new remains of the elasmarian 42 

Isasicursor santacrucensis (including the first cranial remains available for this species), 43 

hadrosaur ornithischians, enantiornithine birds. Sharks and elasmosaurs are also recorded and 44 

may possibly derive from the overlying marine Calafate Formation. These new taxa, together 45 

with previous findings from the Chorrillo Formation, are included into a stratigraphic column, 46 

thus providing valuable information that sheds new light on faunistic composition and 47 

paleobiogeography of high-latitude biotas of Gondwana. 48 

 49 

Keywords: foreland basin, fluvial system, paleobotany, fossil vertebrates, continentalization, 50 

Maastrichtian. 51 

 52 
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1. INTRODUCTION 56 

The onset of the retroarc foreland phase of the Austral-Magallanes Basin caused an important 57 

flexural deeping of the foredeep depocenter (Natland et al., 1974) and is characterized by a thick 58 

deep-marine sedimentation that took place during the early Late Cretaceous (~101 Ma; Fildani 59 

and Hessler, 2005; Romans et al., 2009; Fosdick et al., 2011; Malkowski et al., 2015, 2017; 60 

Daniels et al., 2018). The migration of the shoreline toward the southeast resulted in the 61 

installation of deltaic shorelines that marked the end of the deep-marine accumulation during 62 

the Santonian-Campanian (Moyano-Paz et al., 2018, 2020; Ghiglione et al., 2021). This 63 

progressive advance towards the southeast of the coastline triggered a complete 64 

continentalization of the foredeep main depocenter of the basin (Fig. 1a; Cuitiño et al., 2019; 65 

Varela et al., 2019), in the Lago Argentino region, from the Campanian to the Maastrichtian 66 

(Sickmann et al., 2018; Tettamanti et al., 2018; Cuitiño et al., 2019; Ghiglione et al., 2021). 67 

The Maastrichtian Chorrillo Formation is the youngest of the units that accumulated during the 68 

period of complete continentalization of the basin at this latitude. This unit has been the focus of 69 

paleontological studies since the 1940s (Feruglio, 1945; Bonaparte, 1996; Bonaparte et al., 70 

2002), but its paleontological content was not analyzed in some detail until recent years (Novas 71 

et al., 2019; Chimento et al., 2020, 2021; Rozadilla et al., 2021). Moreover, in spite of the 72 

paleontological importance of the Chorrillo Formation, there have been no detailed 73 

sedimentological studies that would provide insights into the depositional conditions under 74 

which it was accumulated. 75 

The first fossil vertebrates from the Chorrillo Formation were mentioned by Feruglio (1945), 76 

who named this unit as “Dinosaur-bearing strata” because of the abundance of large bones of 77 

reptiles within these beds. Lately, an unnamed titanosaur was mentioned and illustrated in a 78 

popular book (Bonaparte, 1996). This specimen was commented in more detail by Bonaparte et 79 

al. (2002) who considered that because of its gracile proportions, it should be related to the 80 

genus Aeolosaurus (Powell, 2003). More recently Novas et al. (2019) described and analyzed 81 
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the fossiliferous content of Chorrillo Formation describing freshwater and terrestrial snails, 82 

silicified woods, palynomorphs, and a diverse vertebrate assemblage composed by fishes, 83 

anurans, snakes, turtles, indeterminate mammals, megaraptoran and unenlagiid theropod 84 

dinosaurs, the new sauropod Nullotitan glaciaris, the new ornithopod Isasicursor 85 

santacrucensis, and the ornithurine bird Kookne yeutensis. Afterwards, Chimento et al. (2020, 86 

2021) reported the presence of the gondwanatherian mammal Magallanodon baikashkenke 87 

found in roughly coeval beds from Chile (Goin et al., 2020). More recently, Rozadilla et al. 88 

(2021) added the occurrence of ankylosaur and hadrosaurid remains from the Chorrillo 89 

Formation. In sum, the vertebrate record of the Chorrillo Formation includes indeterminate 90 

teleosts, calyptocephalellid frogs, indeterminate and madtsoiid snakes, chelid turtles, theropod 91 

and sauropod eggshells, the titanosaur sauropod Nullotitan glaciaris, and ornithischians 92 

including indeterminate ankylosaurs, the elasmarian ornithopod Isasicursor santacrucensis and 93 

hadrosaurs. There were also found megaraptorid and unenlagiid theropods, the ornithurine bird 94 

Kookne yeutensis, indeterminate mammals and the gondwanatherid Magallanodon 95 

baikashkenke. 96 

These contributions indicate that the Chorrillo Formation exhibits early Maastrichtian vertebrate 97 

faunas associated with terrestrial environments that are similar to those extensively documented 98 

in northern and central Patagonia (e.g., Casamiquela, 1978; Leanza et al., 2004; Gasparini et al., 99 

2015). 100 

The goals of the present contribution are to define the paleoenvironmental conditions where the 101 

sediments of the Chorrillo Formation accumulated, to describe new vertebrate and plant remains 102 

and to include these, and previous findings within a stratigraphical frame, in order to give an 103 

integrated perspective of the sedimentology and paleontology of the lower Maastrichtian 104 

continental deposits of the Austral-Magallanes Basin at the Lago Argentino region. 105 

Furthermore, a detailed characterization of the sedimentology and paleontology of the Chorrillo 106 

Formation allow us to identify some regional stratigraphic correlations and make comparisons 107 

with other stratigraphic units of the basin.  108 
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2. GEOLOGICAL SETTING 109 

The Austral-Magallanes Basin (AMB) is located on the southern part of Patagonia, including 110 

the most austral extension of both Argentina and Chile (Fig. 1). The tectonic history of the basin 111 

is divided into three main stages (Biddle et al., 1986; Arbe, 1989; Pankhurst et al., 2000; Fildani 112 

et al., 2003; Fosdick et al., 2011; Varela et al., 2012, 2019; Ghiglione et al., 2014; Malkowski et 113 

al., 2015; Calderón et al., 2016; Sickmann et al., 2018, 2019): i) An initial rifting stage, related 114 

with the onset of the Gondwana break-up, which took place from middle through Late Jurassic, 115 

resulting in the development of isolated grabens and half-grabens filled with volcaniclastic, 116 

volcanic and siliciclastic deposits of the El Quemado Complex (known as Serie Tobífera in 117 

Chile; Biddle et al., 1986); ii) a postrift, thermal subsidence stage that took place during the 118 

Tithonian-Albian, characterized by the transgressive and then regressive deposition of the 119 

Springhill and Río Mayer formations, (Biddle et al., 1986; Arbe, 1989; Rodriguez and Miller, 120 

2005; Richiano et al., 2012, 2013, 2015, Poiré et al., 2017; Cuitiño et al., 2019); and finally iii) 121 

a compressional phase that took place during the Albian-Cenomanian times (~100 Ma) resulting 122 

in the development of a retroarc foreland system (Wilson, 1991; Fildani et al., 2003; Fosdick et 123 

al., 2011; Varela et al., 2012, 2019; Ghighlione et al., 2015; Malkowski et al., 2015, 2016, 2017; 124 

Sickmann et al., 2018).  125 

During the beginning of the foreland stage the northern part of the AMB was divided into two 126 

main depocenters separated by the Piedra Clavada High (sensu Varela et al., 2019; Cuitiño et 127 

al., 2019): i) the main foredeep depocenter with a central axis orientated north-south from El 128 

Chaltén (Argentina) to Última Esperanza Region (Chile); and ii) the northeast-southwest 129 

oriented Cardiel-Tres Lagos depocenter (Varela et al., 2019). 130 

The main foredeep depocenter is characterized by a clear overall regressive pattern. The onset 131 

of the foreland phase in the foredeep is marked by the deep-marine coarse-grained clastic 132 

turbiditic deposits of the Cerro Toro Formation (Kraemer and Riccardi, 1997; Cuitiño et al., 133 

2019), which are overlain by the fine-grained slope system deposits of the Alta Vista Formation 134 

(also known as the Tres Pasos Formation in Chile; Romans et al., 2009; Hubbard et al., 2010; 135 
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Daniels et al., 2018; Auchter et al., 2020). Slope system deposits are overlain by the Campanian 136 

to Maastrichtian deltaic deposits of the La Anita Formation (equivalent to the lowermost 137 

interval of the Dorotea Formation in Chile; Macellari et al., 1989; Schwartz and Graham, 2015; 138 

Sickmann et al., 2018, 2019; Mánriquez et al., 2019; Moyano-Paz et al., 2018, 2020; 139 

Santamarina et al., 2020; Ghiglione et al. in press). During the late Campanian to Maastrichtian, 140 

the foredeep depocenter suffered a complete continentalization of the basin at the Lago 141 

Argentino region (Fig. 1) characterized by fluvial deposits grouped as the Upper Cretaceous 142 

Continental Deposits (UCCD sensu Tettamanti et al., 2018) which includes the Cerro Fortaleza, 143 

La Irene and Chorrillo formations (Moyano-Paz et al., 2018; Tettamanti et al., 2018; Sickmann 144 

et al., 2018, 2019; Ghiglione et al., in press). These fluvial deposits are overlain by the upper 145 

Maastrichtian deposits of the Calafate Formation across an erosive marine transgression surface 146 

(Macellari et al., 1989; Tettamanti et al., 2018; Odino-Barreto et al., 2018; Cuitiño et al., 2019; 147 

Rivera et al., 2020). 148 

The Chorrillo Formation (Fossa Mancini et al., 1938; Feruglio, 1945), constituting the case 149 

study of this paper, crops out in the southern margin of the Lago Argentino. It overlies the 150 

braided fluvial deposits of the La Irene Formation and it is overlain by the marine transgressive 151 

deposits of the Calafate Formation (Fig. 1b; Macellari et al., 1989; Tettamanti et al., 2018; 152 

Odino-Barreto et al., 2018). The Chorrillo Formation consists mainly of reddish, greenish and 153 

grayish siliciclastic fine-grained sediments which alternate with greenish and yellowish 154 

conglomerate, pebbly-sandstone and sandstone bodies, and subordinate heterolithic deposits.  155 

3. STUDY AREA AND METHODS 156 

The study area is located southwest of the Santa Cruz province, southern Patagonia, Argentina, 157 

and it is known as the Lago Argentino region of the Austral-Magallanes Basin. The exposures 158 

of the Chorrillo Formation are restricted to the southern margin of the Lago Argentino and they 159 

constitute continuous outcrops for almost 30 km with a SW-NE orientation, from the gullies 160 

located at the south of the Alta Vista and Anita farms, until continuing its extension in 161 
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subsurface near the Calafate hill (Fig. 2). Toward the SW, the continuation of these deposits in 162 

Chile are known as part of the Dorotea Formation (Schwartz and Graham, 2015; Schwartz et al., 163 

2017) 164 

In order to carry out a general characterization and interpretation of the paleoenvironment 165 

involved in the deposition of the Chorrillo Formation, and to stratigraphically locate the recently 166 

discovered fossil content, this research included the measurement and description of a high-167 

resolution stratigraphic section of ~500 m of the sediments that constitute the Chorrillo 168 

Formation, in the gullies of the Anita farm (Fig. 3). This methodology included the bed-by-bed 169 

description of thicknesses, mean grain size, sorting, and sedimentary structures present in the 170 

succession, as well as the survey of the position of paleontological findings. Then, a detailed 171 

analysis of sedimentary facies was carried out, allowing the interpretation of depositional 172 

processes (Table 1). 173 

A detailed architectural analysis was performed, including the recognition and description of 174 

recurring appearance of facies groups, with characteristic vertical and lateral variations, 175 

contained within depositional bodies; as well as the detailed characterization of lithosomes 176 

geometries and dimensions, and their bounding surfaces. This allowed the definition of five 177 

architectural elements (e.g., Friend et al., 1979; Bridge, 1993; Gibling, 2006) interpreted as 178 

different sub-environments of the depositional paleoenvironment. The architecture of the 179 

studied deposits was determined by direct measurement, and by tracing of key stratal surfaces 180 

on scaled photopanels, and some parameters such as the width (W) / thickness (T) ratio were 181 

corrected for the obliquity of paleocurrents respect to the orientation of the outcrop belt. The 182 

external geometries of the channelized elements were described following the W/T criteria 183 

proposed by Gibling (2006). Finally, the fossil remains that were found within these deposits 184 

were stratigraphically located in the measured section. 185 
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The detailed description and interpretation of the different architectural elements and their 186 

spatial arrangement, together with the paleontological material provided valuable information 187 

about the sedimentary environment where these deposits accumulated. 188 

Megafloristic remains were studied using a Nikon SMZ800 binocular microscope, 189 

photographed using a Canon Powershot SX540 HS digital camera, and assigned to different 190 

morphotypes. Terminology used for describing features of the leaves follows Ellis et al. (2009). 191 

Institutional abbreviations. MPM-MIC, Colección Microfósiles, Museo Padre Molina, Río 192 

Gallegos, Santa Cruz province, Argentina; MPM-PB, Colección Paleobotánica, Museo Padre 193 

Molina, Río Gallegos, Santa Cruz province, Argentina; MPM-PV, Colección Paleontología de 194 

Vertebrados, Museo Padre Molina, Río Gallegos, Santa Cruz province, Argentina.  195 

4. ARCHITECTURAL ELEMENTS 196 

The Chorrillo Formation shows a maximum thickness of ~500 m in the study area (Fig. 3). Ten 197 

different lithofacies types were recognized in the Chorrillo Formation and are interpreted as 198 

having arisen via subaqueous unidirectional processes (confined and unconfined) or by 199 

pedogenic processes (Table 1). Sedimentary facies have been grouped into five facies 200 

associations representative of channelized and unchannelized fluvial deposition. Within these 201 

five facies associations, five architectural elements were recognized, each consisting of facies 202 

that occur in predictable vertical successions and geometric arrangements. 203 

4.1 Complex sandy narrow sheets channels (SS) 204 

Description: Architectural element SS displays forming lenticular sandstone bodies with 205 

conspicuous irregular concave-up lower boundaries and flat tops, and are up to 6 m thick and 206 

hundreds of meters of lateral continuity (Fig. 4A and B). The W/T ratios of SS elements range 207 

between 15 and 100 (narrow sheets channels sensu Gibling, 2006). Internally, it shows a 208 

complex organization defined by the vertical and lateral amalgamation of individual lenticular 209 

units, or storeys, up to 2 m thick and up to 30 meters wide (Fig. 4C). These storeys are 210 
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composed of medium- to coarse-grained sandstones with trough cross-bedding sets (St facies; 211 

Fig. 4.d). Storeys may show mudstone rip-up clasts and wood fragments mantling the scouring 212 

surface, conforming basal lags (Fig. 4D). Eventually, they may show fining-upward trends with 213 

cross-bedded conglomerate facies (Gt) in the lower intervals of each storey. 214 

Interpretation: This architectural element is interpreted as multistory fluvial channel deposits 215 

where bedload was primarily transported as three-dimensional dunes at the bottom of the 216 

channels and without the development of major cross-channel or marginal bars (Gibling, 2006; 217 

Miall, 2006). The amount of amalgamated storeys inside these units suggests the development 218 

of non-fixed channels that wandered across an alluvial plain, probably with a pattern of multiple 219 

shallow channels and without the preservation of fine-grained floodplain facies due to 220 

continuous lateral reworking (Veiga et al., 2007; Varela, 2015). 221 

4.2 Complex gravelly narrow sheets channels (GS) 222 

Description: Architectural element GS is characterized by external lenticular geometry with 223 

erosional concave-up lower boundaries and flat tops. GS bodies are up to 6 m thick and 224 

hundreds of meters of lateral continuity. The W/T ratios of the bodies of this architectural 225 

element ranges between 15 and 100 (narrow sheets channels sensu Gibling, 2000). GS is 226 

characterized by a complex internal organization defined by the cyclic alternation between thin 227 

sandy up to 0.2 m thick and gravelly beds which are up to 1.5 m thick, limited to each other by 228 

net boundaries (Fig. 5). Sandy beds may show trough cross-bedding (St) or ripple lamination 229 

(Sr) structures, while masive to trough cross-bedding gravelly layers consist of Gm or Gt facies 230 

(Fig. 5). 231 

Interpretation: This architectural element (GS) is interpreted as sandy-gravel bed-load 232 

multistory fluvial channels, infilled by migration and downstream accretion of three-233 

dimensional dunes and bars. Bars can be simple (formed by sets) or compound (formed by 234 

cosets) and both suggest downstream direction of accretion (Bridge, 2003; DA downstream 235 

accretion bars sensu Miall, 1996, 2006). It ss interpreted that these bars were not attached to a 236 

Jo
urn

al 
Pre-

pro
of



 

 

channel margin, because no lateral accretion component was recognized. GS architectural 237 

element reflects deposition of gravel and sand in diluted conditions from multiple channels 238 

within a main channel belt (Bridge et al., 2000; Tettamanti et al., 2018). 239 

4.3 Sandstone lobes (SL) 240 

Description: The deposits that constitute this architectural element are characterized by an 241 

external lenticular geometry with a faint basal surface, given by the gradual increase in grain 242 

size from the fine-grained deposits of FG element (Fig. 6A), and a convex-up top (Fig. 6B). The 243 

thickness of these lens-shaped units ranges between 2 and 4 m and their lateral extent is in the 244 

order of tens to few hundred meters. These bodies usually define coarsening and thickening 245 

upward trends composed of fine- to very coarse-grained sandstones. Each sandstone layer can 246 

reach up to 1 m thick, and internally shows horizontal lamination which grades upward into 247 

trough cross-bedding or ripple lamination structures (Sh, St and Sr facies, respectively). 248 

Convolute laminated sandstones and massive sandstone beds were also recorded within these 249 

bodies. Within the architectural element SL, crocodile and Megaraptoridae fossil remains were 250 

found (Fig. 3). 251 

Interpretation: These lobate bodies with coarsening and thickening upward trends, closely 252 

related to floodplain deposits (FG architectural element) can be interpreted as the result of the 253 

progradation of crevasse splays, related to overbank flows close to main fluvial channel margins 254 

(Smith et al., 1989; Clemente and Pérez-Arlucea, 1993; Veiga et al., 2007); while the horizontal 255 

laminated sandstones (Sh) indicate upper flow regime conditions during splay flood events. The 256 

overlying lithofacies St and/or Sr suggest a subsequent reduction in flow energy (Bristow et al., 257 

1999; Yeste et al., 2020). The occurrence of syn-sedimentary deformation and massive beds 258 

reflect rapid sediment accumulation onto a water-saturated substrate (Rossetti and Santos, 2003; 259 

Owen and Santos, 2014; Burns et al., 2017; Yeste et al., 2020). 260 

4.4 Thick reddish fine-grained deposits (FG) 261 
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Description: This architectural element is composed of reddish and greenish massive mudstones 262 

that occasionally intercalate with sandstone beds (Fig. 7A). The geometry of these deposits is 263 

tabular, with horizontal and sharp bounding surfaces. Facies packages range in thickness from a 264 

few centimeters up to 30 m and may be up to 1000 m in lateral extent. Mudstone deposits (Fm 265 

facies) are characterized by abundant pedofeatures such as rhizoliths (Fig. 7B), mottles, cutans, 266 

and slickensides (Fig. 7C); and by granular and subangular to angular blocky peds as the main 267 

pedogenic structures (Fig. 7D). Sandstone deposits form tabular or lenticular thin beds up to 0,5 268 

m thick and tens of meters of lateral extent which are eventually intercalated. Tabular sandstone 269 

beds consist of Sh facies; while lenticular beds may show Sh, St, and Sr facies. Within the 270 

architectural element FG, abundant plant debris, chondrichthyan, Hydromedusinae, 271 

Meiolaniformes, Isasicursor santacrusensis, hadrosaur, ankylosaur, titanosaur, Megaraptoridae, 272 

Enantiornithine, Kookne yeutensis and Gondwanatheria fossil remains were found (Fig. 3). 273 

Interpretation: These deposits are interpreted to record sedimentation of mud by suspension 274 

fallout, and via deposition of mud traction load sand-grade and silt-grade aggregates of mud-275 

sized particles that, through later compaction, were restructured into a mudstone texture (Wright 276 

and Marriot, 2007; Wakelin-King and Webb, 2007; Dasgupta et al., 2017; Coronel et al., 2020). 277 

Therefore, this architectural element is interpreted as a deposition in a floodplain sub-278 

environment characterized by widespread paleosol development; where the greenish colored 279 

deposits with hydromorphic pedofeatures (gley mottles and rhizoliths) indicates seasonal poor 280 

drainage conditions (Retallack, 2001; Varela et al., 2012b). While the reddish ones suggest good 281 

drainage conditions (Varela et al., 2012, 2019). Episodic unidirectional tractive flows with 282 

variable degree of channeling are interpreted to be responsible for deposition of sandstone beds, 283 

and could be related to the distal expression of crevasse-splays deposits and small scale 284 

floodplain channel deposits (Yeste et al., 2020). 285 

4.5 Thin dark fine-grained deposits (DF) 286 
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Description: The deposits that constitute this architectural element form tabular geometries with 287 

horizontal and sharp bounding surfaces. These deposits thicknesses may range from several 288 

centimeters up to 10 m and may reach up to 100 m of lateral extension. Internally, these 289 

elements are composed of organic-rich grey, dark grey to dark purple thin-laminated mudstones 290 

(Fl; Fig. 7E) with abundant well preserved plant remains (Fig. 7F and G). Sporadic, thin, 291 

massive limestones and massive mudstone lamina also occur without pedofeatures. Within the 292 

architectural element DF, Pipoidea, Calyptocephalella sp, Anilioidea, Rionegrophis sp., 293 

Hydromedusinae, Enantiornithine, Gondwanatheria and titanosaur fossil remains were found 294 

(Fig. 3). 295 

Interpretation: Deposits of this architectural element reflect deposition by settling from 296 

suspended load in a low-energy environment. The grey, dark grey and dark purple colors, as 297 

well as the abundant poorly decomposed organic matter and the absence of biogenic structures, 298 

suggest reducing and anoxic conditions (Everett, 1983; Yeste et al., 2020; Varela et al., 2021). 299 

This architectural element is interpreted as accumulated in a water-logged, swamp-like 300 

environment (Yeste et al., 2020; Varela et al., 2021). 301 

5. PALEONTOLOGICAL CONTENT 302 

The Chorrillo Formation deposits carry several beds with abundant fossil content including 303 

megafloristic remains, palynomorphs, vertebrate and invertebrate remains. Novas et al. (2019) 304 

presented the first descriptions of these materials. In this work, we locate stratigraphically the 305 

described fossils by Novas et al. (2019) and incorporate descriptions of newly collected  306 

materials (Fig. 3).  307 

5.1 Paleobotany 308 

Continental plant remains have been recovered from Chorrillo Formation beds. The first report 309 

came from the lowermost interval of the unit, near the stratigraphic contact with the La Irene 310 

Formation (Novas et al., 2019). Reports include conifer fossil woods (Podocarpoxylon dusenii 311 

Krausel 1924) and palynological assemblages showing moderate specific diversity, represented 312 
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by lycopods, different fern families (e.g., Dicksoniaceae, Osmundaceae, Gleicheniaceae), 313 

Podocarpaceae, and some angiosperm taxa (e.g., Peninsulapollis gilli (Cookson) Dettmann et 314 

Jarzen 1988, Clavatipollenites sp., Tricolpites reticulatus Cookson 1947 ex Couper 1953; 315 

Novas et al., 2019). Here we present descriptions of two new beds with plant remains in order to 316 

improve the knowledge of the Late Cretaceous vegetation of the basin. 317 

Within the architectural element FG deposits at 215 m in the stratigraphic column (Fig. 3) 318 

abundant plant debris preserved as impressions/compressions was found. The most conspicuous 319 

element are fragments of leaves with parallel veins showing two ranked (major and minor) veins 320 

(Morphotype 6; Fig. 8A), which are probably related to monocots. Small fragments of 321 

dicotyledonous leaves (~5 mm) were also recognized. A single specimen shows a stout midvein 322 

with lateral veins diverging that produce several dichotomies at the same level (Fig. 8B) before 323 

reaching the margin. Several specimens lack a midvein, presenting radiating veins that 324 

dichotomize 3-4 times at comparable levels, being the last dichotomies located near the margin 325 

and ending in a loop (Fig. 8C and D). Both types of elements, with and without midveins, show 326 

a regular reticulum of low rank veins present between principal veins. 327 

The similar patterns of dichotomies in the lateral/major veins, and the irregular reticulum 328 

suggest that they may be part of the same type of leaf. Venation patterns are closely comparable 329 

with the ones observed in Nymphaeales (Taylor and Gee, 2014; Gee and Taylor, 2019), a clade 330 

of aquatic plants present in the fossil record since the Early Cretaceous (Taylor and Gee, 2014; 331 

Gee and Taylor, 2019). The interpretation of seasonally waterlogged, temporary swamp-like, 332 

environment of the architectural element FG is consistent with the aquatic nature of these plants. 333 

Additional plant impressions were collected from the architectural element FG at 295 m in the 334 

stratigraphic column (Fig. 3). Within these deposits five different morphotypes were 335 

recognized, including dicots (Morphotypes 1, 2, 3 and 4; Fig. 8E-J) and monocots (Morphotype 336 

5; Fig. 8K), along with root remains (Fig. 8L). The most abundant element is defined here as 337 

Morphotype 1 (Fig. 8E-G), and comprises elliptic asymmetric leaves with pinnate primary 338 

venation and brochidodromous secondary venation and looped exterior tertiaries. 339 
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A leaf similar to Morphotype 1 was illustrated by Ortuya et al. (2016), who found it at the base 340 

of the coeval Dorotea Formation (Chile), and that was referred as Coccoloba? sp. However, this 341 

specimen has not been described yet, and detailed comparisons are still needed. Moreover, 342 

similar leaves were reported by Berry (1938) for the Eocene Pichileufu assemblage of the 343 

Huitrera Formation, and were referred to Coccoloba ruizianiformis, in reference to the 344 

similarities with the extant species Coccoloba ruiziana of the Polygonaceae. However, beyond 345 

the gross similarities in external morphology, it is important to note that in absence of more 346 

informative remains (e.g., flowers, fruits), a conclusive referral to the modern genus is not 347 

certain. Additionally, age estimates for the divergence of the Coccolobeae clade place its origin 348 

during the latest Paleocene-earliest Eocene (Schuster et al., 2013). 349 

The remaining leaf morphotypes are very fragmented. Morphotype 2 is the only recognized 350 

morphotype having palmate primary venation, but given its fragmentary nature, few anatomical 351 

traits can be recognized (Fig. 8H). Leaves with palmate venation have been reported from the 352 

Dorotea and Tres Pasos Formations at Chile, and were referred to the genus Brachychiton, and 353 

to “Sterculia'' sehuensis Berry (Ortuya et al., 2016; Yabe et al, 2006; Lobos et al., 2018; 354 

Manríquez et al., 2019), and some fragmentary remains (Kurtz, 1899; Hunicken, 1971). 355 

Morphotype 3 consists of a partial leaf which preserves its acute apex and primary vein with 356 

decurrent secondaries (Fig. 8I). Morphotype 4 shows a straight midvein with a pinnate pattern, 357 

with non-decurrent secondaries arising in acute angles (Fig. 8J). Finally, Morphotype 5 includes 358 

fragments of leaves with one-ranked parallel veins (Fig. 8K), that may fall within the broad 359 

fossil genera Eolirion Schenk 1869 or Palmophyllum Conwentz 1886, both of unclear 360 

taxonomic affinities. 361 

 362 

5.2 Vertebrate fossils 363 
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The preliminary vertebrate faunal list offered in previous papers (Novas et al., 2019; Chimento 364 

et al., 2020, 2021; Rozadilla et al., 2021) is here expanded with the addition of new fossil 365 

remains of already reported taxa as well as the first record for some clades. 366 

 367 

6. SYSTEMATIC PALEONTOLOGY 368 

Chondrichthyes Huxley 1880 369 

Lamniformes Berg 1958 370 

Genus and species indeterminate 371 

Referred material. MPM-PV-22839, isolated upper lateral tooth lacking the roots (Fig 9A).  372 

Provenance: MPM-PV-22839 was found at the Isasicursor II Site related with the architectural 373 

element FG deposits (Fig. 3).  374 

Description: MPM-PV-22839 is represented by a subtriangular crown, devoid of serrations and 375 

lacking additional cusplets. The crown is slightly mesially oriented and lacks striations.  The 376 

labial face is slightly convex transversely. The cutting edges extend along the mesial and distal 377 

margins of the crown. In labial view, there exists a poorly defined concavity separating the 378 

crown from the root. In mesial and distal views, the crown shows a poorly defined sigmoid 379 

curvature (Fig. 9A).  380 

Comments: MPM-PV-22839 shows a simple crown with a large subtriangular cusp, with 381 

extended mesial and distal cutting edges and a sigmoidal survature when viewed from the sides, 382 

a combination of characters typical of lamniform sharks (Cappetta, 2012). The specimen here 383 

described is too incompletely preserved and precludes a referral to generic level. The shape of 384 

the crown is reminiscent to the genera Carcharias and Cretalamna, the latter reported from the 385 

Latest Cretaceous Calafate and Cerro Fortaleza Formations at Santa Cruz province (Schroeter et 386 

al., 2014; Bogan et al., 2017). 387 
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This constitutes the first finding of a chondrichthyan from the Chorrillo Formation. The 388 

incomplete and eroded nature of this specimen may indicate that it belongs to beds of the 389 

overlying Calafate Formation that previously yielded several shark teeth (Bogan et al., 2016, 390 

2017). Previous reports of fishes from Chorrillo Formation include crushing teeth of 391 

indeterminate teleosts (Novas et al., 2019). This tooth is lanceolate in shape, with a translucent 392 

cap having acute mesial and distal carinae. However, this combination of characters is also 393 

present in other fish clades (e.g., lepisosteiforms), and thus, the specimen should be regarded as 394 

an indeterminate actinopterygian.  395 

 396 

Anura Fischer von Waldheim, 1813 397 

Pipoidea Gray, 1825 398 

Genus and species indeterminate 399 

Referred material. MPM-PV-22840, distal end of right humerus (Fig. 10A-C).  400 

Provenance: the specimen was found at Magallanodon Site, from deposits of the architectural 401 

element DF (Fig. 3). 402 

Description: MPM-PV-22840 has a prominent humeral ball, which is subspherical in shape and 403 

is relatively small, with a transverse diameter that is a little more than half of the maximum 404 

width (0.52 mm) of the distal end of the humerus (Fig. 10C). The proximodistal axis of the 405 

articular ball coincides with the proximodistal extent of the humeral shaft. The ventral cubital 406 

fossa is poorly defined and is centrally located (Fig. 10A). The olecranon fossa is crescent-407 

shaped, transversely wider than proximodistally long, and with well-defined margins. It is 408 

centrally located with respect to the main transverse axis of the distal end of humerus. 409 

Epicondyles are subtriangular in shape and extend distally, resulting in a roughly symmetrical 410 

distal end of the bone (Fig. 10B). The medial epicondyle is slightly longer than the lateral one, 411 

and both reach the level of the distal margin of the humeral ball. The medial epicondyle is 412 
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separated from the humeral ball by a notch and in posterior view shows a proximal ridge that 413 

reaches the olecranon fossa. The shaft walls are thick and the medullary cavity is very small.  414 

Comments: MPM-PV-22840 may be referred to Pipoidea on the basis of relatively thick 415 

humeral walls, a roughly symmetrical distal end with distally extended epicondyles, a crescent-416 

shaped, proximodistally short and centrally located olecranon fossa, a prominent, relatively 417 

small and subspherical humeral ball, and a prominent lateral epicondyle (Estes and Reig, 1973; 418 

Baez, 1987; Gao and Wang 2001; Worthy et al., 2013; Gómez, 2016). The well-defined ventral 419 

fossa and roughly symmetrical distal end distinguishes this specimen from species of the extant 420 

pipoid genus Xenopus (Baez, 1987). However, the incomplete nature of MPM-PV-22840 421 

forbids detailed comparisons with other extinct or extant pipoids.  422 

 423 

Neobatrachia Reig 1958 424 

Calyptocephalellidae Reig 1960 425 

Calyptocephalella Duméril and Bibron 1841 426 

Calyptocephalella sp. 427 

Referred material. MPM-PV-22841, incomplete left maxilla (Fig. 10D-E); MPM-PV-22842, 428 

incomplete right maxilla (Fig. 10F-G); MPM-PV-22843, incomplete right ilium (Fig. 10J-K); MPM-429 

PV-22844, proximal right radioulna (Fig. 10H-I); MPM-PV-22845, left proximal end of tibiofibula 430 

(Fig. 10L-M); MPM-PV-22846, proximal half of urostyle (Fig. 10).  431 

Provenance: the specimens were found at Magallanodon Site, from deposits of the architectural 432 

element DF (Fig. 3). 433 

Description: MPM-PV-22841 and MPM-PV-22842 are poorly preserved maxillae and show 434 

incomplete anterior and posterior ends (Fig. 10D-E). Most of the external surface of the bones is 435 
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ornamented by deep subcircular pits separated by bony ridges, with the exception of MPM-PV-22842 436 

in which the alveolar margin is smooth.  437 

The lateral surface of the bone is strongly convex. In the case of MPM-PV-22842 (Fig. 10F-G) 438 

this surface is separated from the alveolar margin by a longitudinal ridge. The smooth alveolar 439 

margin is anteriorly tall and becomes lower towards the posterior end of the bone. In medial 440 

view the palatine shelf is step-like, robust and prominent, well separated from the maxillary 441 

body. 442 

The pars dentalis is dorsoventrally deep and shows the preserved base of the teeth that are 443 

subvertically oriented and are subparallel to each other. The bases indicate that each tooth root 444 

was ankylosed to the maxilla, conforming typically pedicellate dentition, as is diagnostic for 445 

Neobatrachia (Reig 1958). 446 

MPM-PV-22843 is an incomplete right ilium (Fig. 10J-K) belonging to a very small individual. 447 

In medial view it shows a very deep and well defined oblique groove and crista (sensu Rocek. 448 

2013). The contact for the opposite ilium is relatively wide, subcircular in contour and notably 449 

concave. In spite of deficient preservation the supracetabular and subacetabular expansions were 450 

well-developed. The dorsal tubercle is represented by an elongate protuberance forming an 451 

anteriorly extended dorsal crest. This crest barely reaches the level of the anterior margin of the 452 

acetabulum and is laterally concave. The acetabulum is prominent with a well-defined and acute 453 

delimiting edge. The iliac shaft-subacetabular extension forms an angle greater than 90º.  454 

MPM-PV-22844, is an incomplete proximal end of a right radioulna (Fig. 10H-I). The bone is stout, 455 

with a transversely compressed shaft. The preserved portion indicates that it was a short and robust 456 

element with expanded distal end (as shown by the distally divergent anterior and posterior margins). 457 

The bone shows a tall, and thick olecranon process. In lateral view there is a conspicuous nutritive 458 

foramen close to the proximal articular surface. 459 
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The proximal end of tibiofibula (MPM-PV-22845) is relatively robust (Fig. 10L-M). The anterior and 460 

posterior grooves are poorly defined and relatively narrow. The proximal end of tibia is convex and 461 

prominent, and is separated from the lateral fibular process by a concave surface. The fibular process 462 

is relatively narrow and proximodistally extensive.  463 

The preserved portion of urostyle (MPM-PV-22846) indicates a robust element that was relatively 464 

short, judging by the degree of convergence of the margins of the bone. As in other neobatrachians 465 

the urostyle lacks transverse processes and exhibits a bicondylar proximal articulation (Gómez et al. 466 

2011). The proximal articular surfaces are dorsoventrally tall and suboval in contour. The dorsal 467 

longitudinal crest of the urostyle is represented by a transversely thickened base. Ventrally, the 468 

urostyle shows a poorly defined longitudinal crest. 469 

Comments: The maxillae MPM-PV-22841 and MPM-PV-22842 are referred to Calyptocephalellidae 470 

by having an external ornamentation composed by pits and ridges, dorsoventrally tall pars dentalis, 471 

well-developed and laminar pterygoid process, alveolar margin and step-like palatine shelf, and 472 

ascending process subvertically oriented and laminar in cross-section (Casamiquela 1958; Báez and 473 

Gasparini 1977; Gómez et al. 2011; Agnolín 2012). Because of the incomplete nature of the 474 

specimens, we refer to the material as Calyptocephalella sp. (Fig. 10D-G).  475 

The ilium MPM-PV-22843 (Fig. 10J-K) shows a combination of characters present in 476 

Calyptocephalella, including dorsal prominence that extends anteriorly as a dorsal crest, the later one 477 

rising from the shaft and showing a longitudinal concavity in lateral view, the angle between the 478 

subacetabular process and the iliac shaft is wider than 90º, and presence of prominent oblique groove 479 

and crest in medial view (Báez, 1987). Consequently, the specimen is here referred to the genus 480 

Calyptocephalella.  481 

The available postcranial bones are notably robust and stout, as also occurs in Calyptocephalellidae 482 

(Reig, 1960). All are congruent in morphology with extant Calyptocephalella gayi. The robustness 483 

and the anteroposterior shortening of the urostyle (MPM-PV-22846) are features typical of 484 

Calyptocephalellidae (Reig 1960; Agnolín 2012). The specimen differs from Gigantobatrachus by 485 
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being much smaller, and by having roughly symmetrical proximal articular surfaces (Casamiquela 486 

1963).  487 

Available calyptocephalellid material indicates the coexistence of two different-sized taxa, based on 488 

morphological differences noted in the maxillae. as well as body size (a species very small in size and 489 

another form close in size to extant species Calyptocephalella gayi). Because of the incomplete and 490 

isolated nature of the material, it is uncertain if they belong to different taxa or to different 491 

ontogenetic stages. However, the differences noted between the available maxillae indicate that they 492 

may pertain to specifically different taxa. 493 

 494 

Squamata Oppel, 1811 495 

Serpentes Linnaeus, 1758 496 

Anilioidea Fitzinger, 1826 497 

Genus and species indeterminate 498 

Referred material. MPM-PV-22847, possible mid-precloacal vertebra (Fig. 11A-D). 499 

Provenance: the specimen was found at Magallanodon Site, from deposits of the architectural 500 

element DF (Fig. 3). 501 

Description: The specimen is poorly preserved and shows incomplete anterior surface and neural 502 

arch. However, the preserved portion of the neural arch indicates that it was notably depressed and 503 

exhibited a transversely wide neural canal (Fig. 11C). The postzygapophyseal process is short and 504 

transversely narrow.  505 

In ventral view the centrum is subtriangular in contour, with a well-defined haemal keel separated by 506 

deep and wide subcentral depressions (Fig. 12A). A pair of subcentral foramina is present. The 507 

subcentral depressions are delimited by well-developed and straight subcentral ridges. 508 
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Remarks: This vertebra may be referred to Anilloidea on the basis of the following combination of 509 

characters: depressed vertebrae with low neural arch, vertebral centra subtriangular in contour when 510 

viewed ventrally, being notably broader anteriorly than posteriorly (Rage, 1998; Gómez et al., 2008). 511 

Poor preservation of the vertebra precludes a taxonomic assignment beyond Anilioidea. In any case, 512 

the element differs from the Maastrichtian anilioid Australophis from Rìo Negro province in having 513 

vertebral centrum that is notably broader anteriorly (Gómez et al., 2008). 514 

Anilioidea have been traditionally considered a distinct lineage to comprise the most basal forms 515 

among living snakes (Rieppel, 1988). The extant South American Anilius Oken, 1816 and Asian 516 

Anomochilus Berg, 1901, Cylindrophis Wagler, 1828 and the uropeltids, as well as several extinct 517 

taxa, have been referred to this lineage (Rage, 1984). However, in recent morphology-based 518 

phylogenetic analyses of snakes (e.g., Rieppel, 1988; Kluge, 1993; Cundall et al., 1993; Tchernov et 519 

al., 2000; Lee and Scanlon, 2002; Vidal and Hedges, 2002, 2004; Wilcox et al., 2002; Gower et al., 520 

2005), the taxa traditionally recognized as anilioids are interpreted as basal to all other 521 

alethinophidians, and not always recovered as a monophyletic.  522 

To date four extinct genera based on isolated vertebrae, have been ascribed to Anilioidea in South 523 

America: Coniophis and Hoffstetterella from the Palaeocene of northern South America, 524 

Colombophis from the middle Miocene of Colombia (Hoffstetter and Rage, 1977; Rage, 1998), and 525 

Australophis from the Maastrichtian of northern Patagonia (Gómez et al. 2008). Present discovery 526 

constitutes the southernmost for the entire group and also the first Anilioidea for the Austral-527 

Magallanes basin.  528 

 529 

 “Madtsoiidae” Hoffstetter, 1961   530 

cf. Rionegrophis sp. 531 

Referred material. MPM-PV-22848, incomplete centrum of trunk vertebra (Fig. 11E-F). 532 
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Provenance: the specimen was found at Magallanodon Site, from deposits of the architectural 533 

element DF (Fig. 3). 534 

Description: MPM-PV-22848 consists of a fragmentary vertebral centrum including most of the 535 

posterior articular ball. It corresponds entirely in size and shape to an incomplete vertebra 536 

previously described by Novas et al. (2019). The articular ball is prominent, sub-circular shaped 537 

in posterior view, and slightly dorsally pointed. The ventral surface of the centrum exhibits a 538 

haemal keel on its posteriormost region, being flanked by two small concavities representing the 539 

posterior end of the subcentral depressions. Subcentral ridges are present.  540 

Remarks: The specimen is very similar in size and shape to with that reported from the Chorrillo 541 

beds cf. Rionegrophis madtsoioides by Novas et al. (2019). Due to the fragmentary nature of 542 

MPM-PV-22848, comparisons are limited. However, its relatively large size and robust 543 

proportions resemble Rionegrophis. It shares with Rionegrophis madtsoioides, the type species 544 

of the genus coming from Maastrichtian beds at northern Patagonia (Albino,1987, 1995), a 545 

well-developed and narrow haemal keel, well-defined subcentral ridges and a roughly 546 

subtriangular-shaped centrum when viewed dorsally or ventrally (Novas et al., 2019). However, 547 

the fragmentary nature of specimens coming from Chorrillo Formation makes a generic referral 548 

tentative. In this way we regard all specimens from this unit as cf. Rionegrophis. 549 

 550 

Testudines Linnaeus 1758 551 

Pleurodira Cope 1865 552 

Chelidae Gray 1825 553 

Hydromedusinae Georges et al. 1998 sensu Joyce et al. 2021 554 

Genus and species indeterminate 555 

Jo
urn

al 
Pre-

pro
of



 

 

Referred specimens: MPM-PV-22849, left peripheral 3 or 4 (Fig. 12A–D); MPM-PV-22850, 556 

bridge peripheral (Fig. 12E, F); MPM-PV-22851, fragment indet. (Fig. 12G–I); MPM-PV-557 

22852 bridge peripheral (Fig. 12J, L); MPM-PV-22853, right hypoplastron (Fig. 12M,N); 558 

MPM-PV-22854, buttress (Fig. 12O); MPM-PV-22856, plastral fragment (Fig. 12P–Q); MPM-559 

PV-22855, ?plastral fragment (Fig. 12R).  560 

Provenance: the specimens were found within the deposits of the architectural elements DF and 561 

GF, exposed at theMagallanodon Site, Isasicursor I Site, and Isasicursor II Site (Fig. 3). 562 

Description: All the plates described herein show similar ornamentation patterns formed by 563 

irregular polygons of different sizes. This ornamentation pattern is known in the South 564 

American long-necked lineage Hydromedusinae formed by Hydromedusa spp.-Yaminuechelys 565 

spp. Usually, Hydromedusa spp. do not exceed the carapace size of 30–40 cm, while adult 566 

Yaminuechelys spp. are 40 cm to 80 cm long. 567 

MPM-PV-22849 (Fig. 12A–D) is identified as a peripheral 3 or 4 because in the ventral surface 568 

the scar for the axillary buttress is preserved. In dorsal view, the sulcus delimiting consecutive 569 

marginal scutes and the sulcus between marginals and pleural scutes indicate that, at least 570 

anterior marginal scutes were restricted to peripheral bones. MPM-PV-22850 and MPM-PV-571 

22851 (Fig. 12E,F, J-L) represent a bridge peripheral. Two sockets for the ribs (dorsal) and two 572 

or three sockets for the pegs of the hyo-hypoplastron are preserved in medial view in MPM-PV 573 

22852, indicating that the connection between the carapace and plastron was through ligaments.  574 

MPM-PV-22853 (Fig. 13M-N) preserves the base of the inguinal buttress and in ventral view, 575 

the abdomino-femoral sulcus is preserved.  576 

Remarks: As indicated previously (Novas et al., 2019) most available turtle material from the 577 

Chorrillo Formation is congruent with the presence of a single chelid taxon along the 578 

stratigraphical column. The specimens here described may be identified as belonging to 579 

Chelidae by having the combined presence of pelvic scars in the carapace, free peripheral plates 580 
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which lack of firm contact with costal plates, and external surface decoration consisting of 581 

dichotomizing sulci and polygones (Broin and de la Fuente, 2001; Lapparent de Broin, 2003). 582 

The material is too incompletely preserved to allow a clear generic referral. The ornamentation 583 

is very similar to that described for the Hydromedusinae, which includes the genera 584 

Yaminuechelys and Hydromedusa (see Alarcón-Muñoz et al. 2020). Both genera share with the 585 

specimens here described the ornamentation made up by polygons having three or more well-586 

defined sides and many of them are markedly elongated (see Alarcón-Muñoz et al. 2020). The 587 

specimens here described are indistinguishable from those described from the coeval Dorotea 588 

Formation as belonging to Yaminuechelys (Alarcón-Muñoz et al., 2020). However, a generic 589 

referral is not clear, and the available material from the Chorrillo Formation represents a taxon 590 

much smaller in carapace length than the known Yaminuechelys species, being similar in this 591 

aspect to the genus Hydromedusa. Consequently, they are referred here as Hydromedusinae gen. 592 

et sp. indet., until more material becomes available.   593 

 594 

Meiolaniiformes Sterli and de la Fuente 2013 595 

Genus and species indeterminate 596 

Referred specimens: MPM-PV-22858, distal end of a left humerus (Fig. 13). 597 

Provenance: the specimen was recovered from deposits with architectural element FG, exposed 598 

in Isasicursor II Site (Fig. 3). 599 

Description: The distal end of humerus is expanded, preserving both the ectepicondyle and 600 

entepicondyle (Fig. 13A). The ectepicondyle bears an enclosed ectepicondylar foramen in 601 

dorsal view. In ventral view, the condyles for the articulation with the radius (capitellum) and 602 

with the ulna (trochlea) are well-defined (Fig. 13C). The trochlea is bigger than the capitellum 603 

as occurs in Peligrochelys (Sterli and de la Fuente, 2019).  604 
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Remarks: The Cretaceous record of continental turtles in Southern South America is represented 605 

by the basal meiolaniforms and two main pleurodiran clades, the chelids and the pelomedusoids 606 

(Vlachos et al. 2018). Based on the fossil record and on the morphology observed in the 607 

humerus described herein (e.g., enclosed ectepicondylar foramen, well-developed condyles for 608 

radius and ulna), we assign it to the clade Meiolaniformes. The morphology of this humerus is 609 

reminiscent of unpublished humeri from La Colonia Formation of Chubut Province (JS pers. 610 

obs.). The meiolaniiform specimen described above currently represents the southernmost 611 

record for the clade in South America. 612 

 613 

Sauropterygia Owen, 1860 614 

Plesiosauria de Blainville, 1835 615 

Elasmosauridae Cope, 1869 616 

Genus and species indeterminate 617 

Referred material: MPM-PV-22859 incomplete cervical centrum and the lateral half of a very 618 

fragmentary dorsal vertebra (Fig 11G-J). 619 

Provenance: the isolated and heavily weathered centra were collected come from upper terms of 620 

Chorrillo Formation, but they almost probably fell from the underlying marine deposits of the 621 

Calafate Formation (Fig. 3). 622 

Description: MPM-PV-22859 includes an incomplete centrum from the anterior region of the 623 

neck (Fig 11G-H) and a dorsal centrum (Fig 11I-J). The ventral surface of the cervical centrum 624 

shows paired subcentral foramina. These are subcircular in shape and approximately 5 mm long. 625 

There is a short longitudinal keel between the foramina. The cervical ribs are not fused to the 626 

centrum and the parapophyses are displaced towards the ventral region. The parapophysial 627 

articular face is bilobed and slightly concave. 628 
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The dorsal vertebra is represented only by an incomplete centrum. The neural arch was not 629 

fused to the center. In the ventral surface, a small subcircular nutritive foramen is observed. The 630 

centrum articular surfaces are nearly flat.  631 

Remarks: The presence of a concavity at the ventral surface of the cervical centrum and a 632 

ventral notch on the articular faces of the cervical vertebra, resulting in bilobed-contour is 633 

diagnostic of the clade Euelasmosaurida (O'Gorman, 2020). The presence of a pair of nutritive 634 

subcentral foramina is a character typical of plesiosaurs (Benson & Druckenmiller, 2014). The 635 

fragmentary and isolated nature of the specimens precludes a taxonomic referral beyond the 636 

family level. It is worth mentioning that the size of the cervical centrum indicates a plesiosaur of 637 

relatively small size, similar to Kawanectes (O’Gorman, 2016).  638 

The marine Calafate Formation, previously yielded plesiosaur specimens (Fig. 3; D´Angelo et 639 

al., 2016). Furthermore, plesiosaur remains have been recovered from the upper layers of the 640 

Chilean Dorotea Formation (Otero et al., 2015; Manríquez et al., 2019), which may be 641 

correlated with the Calafate Formation. 642 

 643 

Dinosauria Owen, 1842 644 

Ornithischia Seeley, 1887 645 

Ornithopoda Marsh, 1881 646 

Elasmaria Calvo et al., 2007 647 

Isasicursor santacrucensis Novas et al., 2019 648 

Referred materials: MPM-PV-22860 a fragmentary right maxilla with a complete maxillary 649 

teeth (Fig. 14A-B); MPM-PV-22861 the proximal end of a right ulna (Fig. 14C-G); MPM-PV-650 

22862 a left metatarsal III (Fig. 14H-L). 651 

Jo
urn

al 
Pre-

pro
of



 

 

Provenance: The specimens were found within the deposits of the architectural element FG 652 

referred as Isasicursor Site II (Fig. 3). 653 

Description: Many of the newly discovered materials overlap with those originally described by 654 

Novas et al. (2019), allowing us to determine the remains as belonging to Isasicursor 655 

santacrucensis. Therefore, we here describe some selected materials that shed new insights on 656 

the anatomy of this dinosaur.  657 

MPM-PV-22860 consists of an incomplete right maxilla, preserving several maxillary teeth 658 

(Fig15A-B). The lateral surface of the maxilla is smooth, and shows part of an ovoidal 659 

antorbital fossa on its dorsal half. Ventral to the antorbital fossa, the maxilla is laterally convex. 660 

In ventral view the dental row is straight and inset medially. There are 7 teeth tooth positions, 661 

only one preserving its crown. The maxillary tooth root is ovoidal in cross-section. The 662 

maxillary teeth crown has a rhomboidal outline. In labial view, it shows a primary ridge 663 

separating the crown asymmetrically, with a wider posterior portion. The primary ridge defines 664 

the apex of the maxillary teeth. Several secondary ridges run apicobasally in the anterior and 665 

posterior halves of the lingual surface. There is a single ridge in the anterior half and 3-4 ridges 666 

in the posterior half of the crown. The lingual surface of the crown is concave and lacks 667 

ornamentation.  668 

The proximal end of a right ulna (MPM-PV-22861) was recovered (Fig. 14C-G). In proximal 669 

view, the ulna is sub triangular in cross-section, with a convex lateral margin, and concave 670 

medial and anterior margins. The medial process is more developed than the lateral one. The 671 

medial process projects anteromedially; it is subrectangular in proximal view, and subtriangular 672 

in medial view. On the other hand, the lateral process is subtriangular in anterior proximal and 673 

lateral views. Between these processes there is a narrow depression for articulation with the 674 

radius. The posterior surface is posteriorly bowed and bears a thick ridge that ends proximally 675 

in the olecranon, which is subtriangular in cross-section. The lateral surface of the bone is flat, 676 

while the medial one is deeply concave. 677 
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A nearly complete left metatarsal III (MPM-PV-22862) is available (Fig. 15H-L). It lacks the 678 

proximal end and part of the shaft. The preserved proximal end is ornamented by longitudinal 679 

stripes. The bone shaft is subrectangular in cross section. Its anterior surface is concave, 680 

especially on its mid length. The anterior surface of the bone is delimited by sharp lateral and 681 

medial ridges that project anteriorly. In lateral view, the shaft tapers distally. The lateral surface 682 

bears an oblique ridge that runs anteroproximally to posterodistally. This oblique ridge divides 683 

the lateral surface in a proximal and concave half from a distal and convex half. The medial 684 

surface is flat and straight. The posterior surface is proximally distorted and shows a medial 685 

margin that is more posteriorly projected than the lateral one. Its distal end shows an 686 

asymmetrical distal trochlea. The articular surface is well defined by a sulcus. The distal 687 

condyles are separated by a well-developed intercondylar groove. In distal view, the condyles 688 

are asymmetrical, the medial one being larger than the lateral one. The lateral surface of the 689 

bone has a deep and sub-circular collateral pit, while the medial one is shallower. 690 

Remarks: We here describe the first cranial remains of Isasicursor santacrucensis. As in other 691 

Gondwanan elasmarians, such as Talenkauen, Anabisetia, and Gasparinisaura, the maxillary 692 

teeth are asymmetrical and with a well-defined primary and secondary ridges (Coria and 693 

Salgado, 1996; Coria and Calvo, 2002; Novas et al., 2004; Rozadilla et al., 2019). The ulna of 694 

Isasicursor has a concave medial margin in proximal view, being different from the straight 695 

condition present in Mahuidacursor and Anabisetia (Coria and Calvo, 2002; Cruzado-Caballero 696 

et al., 2019), but similar to Notohypsilophodon (Martinez, 1998; Ibiricu et al., 2014). On 697 

Isasicursor the medial process of proximal ulna is medially projected while in Mahuidacursor it 698 

is more anteriorly extended. The metatarsal III of Isasicursor is a long but stout element, being 699 

proportionally transversely wider than in Anabisetia and Morrosaurus (Coria and Calvo, 2002; 700 

Rozadilla et al., 2016), resembling the condition described for Talenkauen (Rozadilla et al., 701 

2019). 702 

Remains discovered of Isasicursor from Isasicursor Site II (Fig. 14) consist of several 703 

individuals corresponding to different ontogenetic stages (Fig. 15). They are represented by 704 
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diverse juvenile and adult individuals, including a notoriously big specimen (Fig. 15A). The 705 

same occurs with previous findings of this species at Isasicursor Site I (Fig. 3), previously 706 

reported by Novas et al. (2019). It is worth mentioning that most Isasicursor remains recovered 707 

at the Isasicursor Site I and Site II roughly represent the same elements: long bones of the 708 

hindlimb and sacral and caudal vertebral centra. Other bones of the skeleton are notably rare in 709 

the association, as for example skull bones, forelimb elements and cervical vertebrae, which are 710 

represented by few (or no) elements.  711 

 712 

Saurischia Seeley, 1887 713 

Sauropoda Marsh, 1878 714 

Titanosauria Bonaparte and Coria, 1993 715 

Indeterminate genus and species 716 

Referred material. MPM-PV-22863, four isolated titanosaurian teeth (Fig 10B-F).  717 

Provenance: These teeth were found within the deposits of the architectural element DF 718 

referred as Magallanodon Site, and within the architectural element GF referred as the 719 

Isasicursor II Site (Fig. 3). 720 

Description: All available teeth (Fig.9B-F) are relatively narrow and pencil-like, with high-721 

angled masticatory surfaces, as diagnostic for derived titanosaurs (Calvo, 1994; García and 722 

Cerda, 2010). Further, the absence of needle-like teeth and lack of strong enamel ornamentation, 723 

argue against rebbachisaurid affinities for the collected specimens (Salgado et al., 2004). 724 

However, in spite of its relative homogeneity, two different tooth morphotypes can be 725 

recognized among the available materials. A first morphotype includes teeth that are subcircular 726 

in cross-section and show smooth tooth enamel (Fig. 9E). A second group of teeth can be 727 

distinguished because they are slighlty labiolingual compressed, with gentle mesial and distal 728 

carinae and showing some rugosities on enamel surface (Fig. 9F).  729 
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Remarks:  Because no teeth are known from the only named titanosaur from the Chorrillo 730 

Formation (i.e., Nullotitan glaciaris; Novas et al., 2019), none of them can be referred to any 731 

previously known species with certainty.  732 

 733 

Theropoda Marsh, 1881 734 

Coelurosauria Huene, 1914 735 

Megaraptora Benson et al., 2010 736 

Megaraptoridae Novas et al., 2013 737 

Indeterminate genus and species 738 

Referred material: MPM-PV-22864, four incomplete and isolated teeth; MPM-PV-22865, 739 

nine isolated teeth (Fig. 9 G-I).  740 

Provenance: Thirteen isolated and fragmentary maxillary and dentary teeth were found, four of 741 

them in the Isasicursor Site I (MPM-PV-22864; Fig. 3), and other nine elements approximately 742 

50 meters below level of the same site (MPM-PV-22865; Fig. 3). 743 

Description: The size of the teeth is variable. Most of them are represented by crown fragments 744 

and only four elements by complete crowns (Fig. 9 G-I). All show an elliptical cross-section 745 

with distal and mesial carinae and none can be referred as to premaxillary teeth. As in 746 

megaraptorans, the crown is distally curved (Azuma and Currie, 2000; Novas et al., 2008, 2019; 747 

Porfiri et al., 2014). The crowns are more lingually than labially curved. The distal margin of 748 

the crown shows a sharp carina; which extends all along the apicobasal extension of the crown. 749 

The number of denticles on the distal carina is about 2-3 per mm. This value is slightly lower 750 

than that observed in other megaraptorans such as Fukuiraptor, Megaraptor and Orkoraptor, in 751 

which 3-4 denticles per mm are present (Azuma and Currie, 2000; Novas et al., 2008; Porfiri et 752 

al., 2014). Moreover, MACN-PV 19066 shows 5 denticles per mm (Novas et al., 2019). The 753 
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denticles are mesiodistally high, apicobasally short and become progressively smaller towards 754 

the root. Depending on the specimen, the main axis of the denticles is orthogonally or apically 755 

oriented, as reported for other megaraptorans (Azuma and Currie, 2000; Novas et al., 2008; 756 

Porfiri et al., 2014). The interdenticular sulci are short and do not extend as blood grooves as 757 

occurs in other megaraptorids (e.g., Australovenator, Megaraptor, Orkoraptor, Murusraptor; 758 

Hocknull et al., 2009; Porfiri et al., 2014; Novas et al., 2008, 2019; Coria and Currie, 2016) but 759 

contrasting with the basal megaraptoran Fukuiraptor (Azuma and Currie, 2000; Novas et al., 760 

2019). Teeth preserving their tip are devoid of mesial denticles. The teeth are labiolingually 761 

much wider mesially than distally. A mesiolingual carina, that is also observed in other 762 

megaraptoran specimens (Fukuiraptor, Australovenator, Megaraptor, Orkoraptor, 763 

Murusraptor, MACN-PV 19066), has a weak and distally concave carina that runs along the 764 

mesial margin of the lingual side. This mesiolingual carina lacks denticles and is as high as the 765 

half of the length of the crown but does not reach the base and tip of the same. Another short 766 

carina is observed on the mesial side of the tip of the crown. The tooth crown is almost smooth, 767 

lacking enamel wrinkles, as occurs in other megaraptoran taxa (such as Australovenator, 768 

Orkoraptor, Fukuiraptor and MACN-PV 19066). Wear facets are present on the tip of the 769 

crown, and in one of the elements the facet extends almost along a third of the entire height of 770 

the crown. The base of the crown is eight-shaped in cross-section as is diagnostic for 771 

megaraptorans. However, this constriction is weaker than in other megaraptorans (Novas et al., 772 

2008, 2013; Porfiri et al., 2014; Coria and Currie, 2016) but stronger than in other megaraptoran 773 

teeth previously described from the Chorrillo Formation (Novas et al., 2019). 774 

Remarks: Teeth here described are referred to Megaraptoridae on the basis of the presence of a 775 

strongly distally curved crown with the apex placed distally placed from the root, mesial 776 

denticles absent or present on the tip of the crown, and presence of 2-3 denticles per mm (Novas 777 

et al., 2013; Aranciaga Rolando et al., 2019). The total absence of mesial denticles observed in 778 

the teeth from the Chorrillo Formation (MPM-PV-22864-5 and MACN-PV 19066) is observed 779 

in other South American megaraptorids, such as Megaraptor, Orkoraptor, Murusraptor and 780 
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MACN-PV 19066. By contrast, Fukuiraptor shows denticles all along its mesial margin and 781 

Australovenator (Hocknull et al., 2009), retains denticles on crown tips. 782 

The presence of a mesiolabial carina is absent in the basal megaraptoran Fukuiraptor (Azuma 783 

and Currie, 2000), but it is present in Megaraptoridae, as it is in Megaraptor, Murusraptor, 784 

Orkoraptor and Australovenator (Novas et al., 2008, 2019; Hocknull et al., 2009; Benson et al., 785 

2012; Porfiri et al., 2014; Coria and Currie, 2016). However, the isolated tooth from the 786 

Strzelecki Group of Australia (Barremian-Aptian strata) shows an intermediate condition 787 

between Fukuiraptor (Barremian) and more derived megaraporids (Cenomanian-Maastrichtian 788 

rocks). In these materials, the mesiolingual carina is more mesially placed, apicobasally higher 789 

and shows smooth denticles. This suggests that the mesiolingual carina apparently constitutes a 790 

vestige of the mesial carina and that this latter has been reducing through the evolution of 791 

Megaraptora. 792 

The Chorrillo Formation has previously provided an isolated tooth referred to Megaraptoridae 793 

(Novas et al., 2019). This element differs from MPM-PV-22864-5 on the basis of a higher 794 

number of denticles (5 per mm) but shares the presence of a poorly developed eight-shaped 795 

constriction. Nevertheless, MACN-PV 19066 comes from old collections made by Bonaparte in 796 

the 1980 decade and therefore, its exact stratigraphic position is uncertain. The isolated nature 797 

of teeth described for the Chorrillo Formation precludes a determination beyond the family 798 

level.  799 

 800 

Avialae Gauthier, 1986 801 

Enantiornithes Walker, 1981 802 

Indeterminate genus and species 803 
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Referred material. MPM-PV-22866 the distal fragment of a pedal phalanx (Fig. 16A-D) and 804 

two isolated ungual pedal phalanges (MPM-PV-22867; MPM-PV-22868; Fig. 16 E-O). 805 

Provenance: These remains were found within the deposits of the architectural element FG 806 

referred as Isasicursor I and Magallanodon Sites (Fig. 3). 807 

Description: The proximal articular surface is dorsoventrally higher than transversely wide, 808 

being notably narrower in specimen MPM-PV-22867. Its articular surface is separated into two 809 

concave surfaces by a central ridge. The ventral edge of the phalanges is transversely wider than 810 

the dorsal edge. The extensor tubercle is short and subtriangular in dorsal view, and in specimen 811 

MPM-PV-22868 shows an anterior concavity forming a proximal lip. The flexor tubercle is 812 

poorly developed and is teardrop shaped in ventral view, with the apex anteriorly oriented. It is 813 

anteriorly delimited by a “V” shaped groove with an anteriorly oriented apex (Fig. 16). 814 

Remarks: The isolated nature of the phalanges here described, together with some subtle 815 

anatomical differences precludes referring them to a single taxon or considering them as 816 

belonging to different digits of the same species. Furthermore, the stronger curvature of MPM-817 

PV-22867, may indicate that it belongs to the hallux. Ungual phalanges are referred to 818 

enantiornithine birds by virtue of having poorly developed flexor tubercles, a ventral “V” 819 

shaped groove delimiting the flexor tubercle and dorsoventrally high and subrectangular-shaped 820 

proximal articular surface (Fig. 16; Chiappe, 1993; Chiappe and Calvo, 1994; Kurochkin, 1995; 821 

Sanz et al., 2002; Chiappe et al. 2006). 822 

Enantiornithine birds have been discovered in different Upper Cretaceous units in northern 823 

Patagonian (Chiappe and Calvo, 1994; Schweitzer et al., 2002; Agnolín and Martinelli, 2009; 824 

Lawver et al., 2011), but their diversity is notably surpassed by the ornithuromorph birds (e.g., 825 

Patagopteryx, Alamitornis, Lamarqueavis; Limenavis; Alvarenga and Bonaparte, 1992; Clarke 826 

and Chiappe, 2001; Agnolín et al. 2006; Agnolín and Martinelli, 2009; Agnolín, 2010). Kookne 827 

yeutensis (Novas et al., 2019) is a derived neornithine bird previously reported from the 828 

Chorrillo Formation. Agnolín et al., (2017) noted that during the Late Cretaceous, 829 
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Enantiornithes were more diverse in continental and equatorial regions, while Ornithuromorpha 830 

were taxonomically more diverse in circumpolar areas, but the discovery of enantiornithine 831 

remains in the same geological unit (Chorrillo Formation) that yielded Kookne indicates a more 832 

complex ecological scenario.  833 

7. DISCUSSION 834 

7.1 Depositional Conditions of the Chorrillo Formation 835 

The Chorrillo Formation shows a maximum thickness of ~500 m toward the southwest of the 836 

study area, near the international limit between Argentina and Chile, and it decreases 837 

considerably toward the east due to the erosional nature of the overlying marine deposits. The 838 

exceptional exposures of this succession allowed a detailed description of the architectural 839 

elements of the unit. From these descriptions the deposits of the Chorrillo Formation can be 840 

divided into channelized units (SS and GS; Fig. 17) and non-channelized units (SL, FG and DF; 841 

Fig. 17). Based on the measurement and description of these elements and the interpretation of 842 

photopanels it is important to highlight that the Chorrillo Formation is dominated by non-843 

channelized units, especially by fine-grained deposits of the architectural element FG (Figs. 3 844 

and 17). The dominance of fine-grained deposits provides the key to distinguish the Chorrillo 845 

Formation from the underlying gravel-dominated La Irene Formation (Macellari et al., 1989; 846 

Tettamanti et al., 2018) and the overlying sand-dominated Calafate Formation (Odino-Barreto et 847 

al., 2018). 848 

Channelized units are relatively thin in relation with the whole measured thickness and are 849 

homogeneously distributed (Figs. 3 and 17). These channels are complex narrow sheets (sensu 850 

Gibling, 2006) encased within fine-grained floodplain deposits. The presence of mudstone 851 

deposits laterally attached to the channelized units (Fig. 18) and the absence of lateral migration 852 

elements within the channels, suggest channel abandonment through avulsion mechanism as a 853 

common process.   854 
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The overall fine-grained dominance of the unit suggests the accumulation in a low-gradient, low 855 

net-to-gross and high-accomodation fluvial depositional system (Varela, 2015; Yeste et al., 856 

2020, 2021; Varela et al., 2021). No changes in the fluvial style are interpreted within this unit 857 

for two reasons, first because of the constant dominance of fine-grained deposits and second, as 858 

no significant erosion surface was recorded in the studied area. The alternation of channelized 859 

SS and GS elements was probably related to small fluctuations in the sediment 860 

supply/accommodation space ratio (Varela, 2015; Tettamanti et al., 2018).  861 

7.2 Continentalization of the Austral-Magallanes Basin 862 

7.2.1 Paleogeographic implications  863 

The onset of the foreland system of the Austral-Magallanes Basin in the foredeep main 864 

depocenter of the basin (Varela et al., 2019), in the Lago Argentino region, is characterized by a 865 

thick deep-marine sedimentation that started ~101 ma and includes the evolution from turbiditic 866 

to slope deposits (Romans et al., 2011; Malkowski et al., 2017; Daniels et al., 2018; Sickmann 867 

et al., 2019). This deep-marine succession was capped on top by a continental expansion of the 868 

basin during the Santonian-Campanian (Ghiglione et al., 2021) where deltaic shorelines 869 

prograded toward the southeast (Schwartz and Graham, 2015; Schwartz et al., 2017; Moyano-870 

Paz et al., 2018, 2020). The progressive migration of the shoreline toward the southeast 871 

produced variations in the distribution of the sedimentary environments triggering the total 872 

continentalization of the main depocenter of the Austral-Magallanes Basin at the Lago 873 

Argentino region during the latest Campanian-Maastrichtian evidenced by the installation of 874 

fluvial systems (Tettamanti et al., 2018; Cuitiño et al., 2019, this study). The sedimentary record 875 

of these depositional systems reflects variations between high and low accommodation fluvial 876 

systems and does not record the influence of marine processes or transgressions (Tettamanti et 877 

al., 2018, this study).  878 

Recent maximum depositional ages from detrital zircons from the underlying La Anita and 879 

Cerro Fortaleza formations and from the overlying Calafate Formation (Sickmann et al., 2018, 880 
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Ghiglione et al., 2021), in addition to the paleontological content (Novas et al., 2019, this study) 881 

suggest an early Maastrichtian age for the Chorrillo Formation. The Maastrichtian deposits of 882 

the Chorrillo Formation represent the youngest Cretaceous continental deposits of the foreland 883 

stage of the basin in the Lago Argentino region and are bounded on top by the marine 884 

transgression of the Calafate Formation (Odino-Barreto et al., 2018). 885 

7.2.2 Paleobiogeographic implications 886 

The development of this ‘continental window’ that took place during the Late Cretaceous, 887 

triggered not only in the development of the fluvial depositional systems but it also provided 888 

new ecological niches for colonization by both continental plants, and vertebrates.  889 

Paleobotanical remains reported from the Chorrillo Formation (Novas et al., 2019; this study) 890 

do not suggest the same provincialism observed in the vertebrate fauna. Nevertheless, the 891 

ongoing study of more megafloristic and palynological assemblages obtained from this unit may 892 

provide new sources of evidence for making comparisons with other Patagonian coeval units. 893 

The batrachofauna from the Chorrillo Formation beds sheds some light on anuran diversity and 894 

distribution during the Cretaceous in Patagonia. The Mesozoic record of anurans in South 895 

America is patchy. Basal anurans of the clade Pipoidea have been recorded from the Early 896 

Cretaceous of Brazil (Carvalho et al., 2019) and from mid to Late Cretaceous localities of Brazil 897 

and Argentina (Báez, 2000). The record of neobatrachians is also restricted, they being currently 898 

represented by nearly complete specimens from the Early and Late Cretaceous of Brazil (e.g., 899 

Báez and Perí, 1990; Báez et al., 2009, 2012), and disarticulated specimens from Campanian-900 

Maastrichtian localities in the Chubut and Río Negro provinces of Argentina (i.e., Báez, 1987; 901 

Martinelli and Forasiepi, 2004; Muzzopappa and Báez, 2009; Agnolín, 2012). Some incomplete 902 

specimens belonging to Calyptocephalellidae were reported from the Dorotea Formation, Chile 903 

(Suazo-Lara et al., 2017, 2018).  904 

Fossil calyptocephalellids from the Cretaceous have been assigned to (or related with) the genus 905 

Calyptocephalella (Báez, 1987; de la Fuente et al., 2007; Agnolín, 2012), the only extant 906 
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member of Calyptocephalellidae. Calyptocephalella gayi is the only living species of this genus, 907 

which is endemic to the temperate regions of south-central Chile (Otero et al., 2014). However, 908 

in the past, Mesozoic and Cenozoic calyptocephalellids were geographically widespread, 909 

including possible reports from Late Cretaceous of India, Africa and Madagascar (Agnolín, 910 

2012). Because of their great antiquity, calyptocephalellids were considered as being part of the 911 

“ancient assemblage” or “Andean-Antarctic” batrachofaunas that populated the southern end of 912 

South America during the Mesozoic, up to Miocene times (Vuilleumier, 1968; Cei, 1980; 913 

Agnolín, 2012).  914 

In South America, calyptocephalellids are found from Upper Cretaceous to Miocene beds, in 915 

several localities along the Patagonia of Argentina and Chile (Agnolín, 2012; Otero et al., 2014, 916 

Muzzopapa et al., 2021), whereas reports of other anurans are very scarce and restricted to a few 917 

isolated findings (Cione and Baez 2007; Nicoli 2017; Aranciaga-Rolando et al., 2019). Fossil 918 

remains from the Eocene and determined as Calyptocephalella were recently reported from 919 

Antarctica (Mörs et al., 2020). However the poor preservation of the material, as well as, its 920 

particular morphology precludes a clear taxonomic identification. 921 

As is the case in most previously known Patagonian localities, anurans from the Chorrillo 922 

Formation are represented solely by calyptocephalellids and pipoids. We are not certain if this 923 

low diversity reflects the relative isolation of southern Patagonian freshwater basins with 924 

respect to the rest of the continent throughout the Cenozoic, and/or a bias in the fossil record. In 925 

this regard, it is noteworthy that, in spite of the several climatic changes that occurred during the 926 

Cretaceous, Patagonia fossil frogs are mostly represented by two widespread lineages with 927 

ancient roots in the continent.  928 

Regarding the chelonian record, the chelid-meiolaniiform association described here, the same 929 

is also reported from different localities in Patagonia from the Early Cretaceous (e.g., Cerro 930 

Barcino Formation) until the mid-Eocene (e.g., Sarmiento Formation), and in Australasia from 931 

the mid-Eocene (e.g., Rundle Formation) until the Pleistocene (Gaffney, 1981; Sterli, 2015; 932 

Maniel et al., 2016). The chelid-meiolaniform association from the Chorrillo Formation would 933 
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represent the southernmost record of this association worldwide. Yaminuechelys is a chelid 934 

genus known from the Late Cretaceous and Paleocene of Patagonia (La Colonia, Allen, 935 

Anacleto, Loncoche, Dorotea, Salamanca, and Roca formations; Maniel et al., 2016). The 936 

finding of this genus or a closely related form at the Chorrillo and Dorotea Formations (Novas 937 

et al., 2019; Alarcón-Muñoz et al., 2020) demonstrates that this genus was present in the 938 

Austral-Magallanes Basin at the end of the Cretaceous and is a key taxon to correlate these two 939 

stratigraphic units. It is worth noting that the meiolaniform humerus found in the Chorrillo 940 

Formation would represent the southernmost meiolaniform record in South America. 941 

Fossil snakes from Chorrillo Formation previously described (Novas et al., 2019) and the new 942 

records reported here include indeterminate ophidians, anilioid and madtsoiids similar to 943 

Rionegrophis. This composition is very similar to other snake faunas reported from late 944 

Cretaceous Allen and Los Alamitos Formations at Northern Patagonia (Neuquén Basin; Albino, 945 

1987, 1995; Gómez et al., 2008). 946 

The dinosaur fauna of the Chorrillo Formation is diverse, encompassing the colossosaurian 947 

titanosaur Nullotitan glaciaris, and theropods represented by megaraptorans, unenlagiids and 948 

birds. The latter ones include the neornithine Kookne yeutensis (Novas et al., 2019) and 949 

indeterminate enantiornithines. Furthermore, present findings demonstrate that the Chorrillo 950 

Formation has yielded one of the most taxonomically diverse ornithischian faunas from South 951 

America, with ankylosaurus, hadrosaurs, and two different kinds of basal euiguanodontians 952 

including Isasicursor santacrucensis (Novas et al., 2019; Rozadilla et al., 2021, this study). This 953 

ornithischian abundance and diversity supports previous claims suggesting that they were far 954 

more abundant and diverse in southern Patagonia, Antarctica and Australasia (Novas and 955 

Cambiaso, 2004; Novas et al., 2004; Novas, 2009; Agnolín et al., 2010; Rozadilla et al., 2016, 956 

2021) than in northern parts of South America and Africa.  957 

The finding of hadrosaurid and ankylosaurian dinosaurs, pipid and calyptocephalellid frogs, 958 

ferugliotheriid gondwanatherians, and chelid turtles related to Yaminuechelys constitute a 959 

faunistic assemblage that roughly correspond to Maastrichtian faunistic assemblages yielded in 960 
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La Colonia Formation (San Jorge Basin, Chubut, central Patagonia; Gasparini et al., 2015), 961 

Allen Formation (Neuquén Basin; Leanza et al., 2004; Martinelli and Forasiepi, 2004) and Los 962 

Alamitos Formation (Neuquén Basin; Bonaparte et al., 1987). However, as indicated above, the 963 

faunistic remains reported so far from the Chorrillo Formation exhibit some differences with 964 

northern faunal assemblages, namely, a notable diversification and abundance of ornithischians 965 

(particularly elasmarians) and relative abundance of megaraptorans, which is in contrast with 966 

northern Patagonia (Novas et al., 2013). This is consistent with previous ideas suggesting some 967 

kind of biotic provincialism in Patagonia during the latest Cretaceous times.   968 

Paleobotanical remains reported from the Chorrillo Formation are yet scarce, and do not mirror 969 

the provincialism described above for the vertebrate fauna. Nevertheless, new discoveries of 970 

megafloristic remains and collecting of palynological assemblages is required to know better the 971 

composition and diversity of paleofloristic elements from this sedimentary unit. 972 

7.3 Stratigraphic correlation and comparison with the Dorotea Formation 973 

The lithostratigraphic units that crop out in the Argentinian and Chilean sectors of the basin are 974 

named differently (Cuitiño et al., 2019). This issue commonly favored local interpretations for 975 

these units, and considerably restricted comparisons between the stratigraphic successions that 976 

crop out in both regions. Despite the different names, the successions reflect the same 977 

stratigraphic evolution, and some considerations can be made in order to unify evolutionary 978 

criteria for the Alta Vista-La Anita-UCCD-Calafate (Argentina) and the Tres Pasos-Dorotea 979 

(Chile) successions. It should be noted that the following comparison has no sequence 980 

stratigraphic implications. 981 

The Dorotea Formation is a shallowing upward, sandstone dominated unit (Romans et al., 2011; 982 

Schwartz and Graham, 2015, Schwarzt et al., 2017) that crops out southern of the study area, in 983 

the Magallanes sector of the basin (Chile). It vertically grades from the slope deposits of the 984 

Tres Pasos Formation and is overlain by the Man Aike Formation deposits (Romans et al., 2011, 985 

Schwarzt and Graham, 2015; Schwartz et al., 2017; Manríquez et al., 2019; George et al., 2020). 986 
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The lowermost interval of the Dorotea Formation reflects deposition in a tidal influenced delta 987 

front environment that vertically grades into delta plain deposits (Schwartz and Graham, 2015; 988 

Schwartz et al., 2017). Recently, Manríquez et al. (2019) presented a stratigraphic analysis for 989 

these deposits, dividing the Dorotea Formation and the underlying and overlying units into 6 990 

depositional sequences. In these sequences, the paleontological content is mentioned, proving 991 

key elements that allowed a comparison with the stratigraphic succession outcropping in 992 

Argentina (Fig. 18).  993 

A prograding fine-grained, large-scale, slope depositional system is recorded in both sectors and 994 

is known as the Alta Vista Formation in Argentina and Tres Pasos Formation in Chile (Fig. 18; 995 

Romans et al., 2011; Malkowski et al., 2017; Daniels et al., 2018). The slope system deposits 996 

are covered by sandstone-dominated, deltaic-coastal deposits of the La Anita Formation in 997 

Argentina (Moyano-Paz et al., 2018, 2020) which are correlated with the lowermost interval of 998 

the Dorotea Formation (Schwartz and Graham, 2015; Schwartz et al., 2017; Manríquez et al., 999 

2019). The La Anita and Dorotea formations set the end of the deep-marine sedimentation in 1000 

both regions and the beginning of the continentalization event (Fig. 18; Ghiglione et al., press). 1001 

These deltaic deposits are covered in theArgentinian region by the UCCD, including the 1002 

deposits of the Cerro Fortaleza, La Irene and Chorrillo formations. In Chile, there are no 1003 

lithostratigraphic units associated with continental deposits. However, the medial and upper 1004 

intervals of the Dorotea Formation, referred as depositional sequences 3, 4 and the lowermost 1005 

section of sequence 5 (sensu Manríquez et al. 2019), are interpreted as a delta plain environment 1006 

(Schwartz and Graham, 2015), or as fluvial deposits with marine influence (Manríquez et al., 1007 

2019).  1008 

The vertebrate paleontological content of the Dorotea Formation includes, frogs, turtles, 1009 

sauropods, theropods, and ornithischians, birds, and mammals (Soto-Acuña et al., 2014; 1010 

Manriquez et al., 2019; Alarcón-Muñoz et al., 2020; Goin et al., 2020; Martinelli et al., 2021). 1011 

This faunistic association is very similar to that present at the Chorrillo Formation (Novas et al., 1012 

2019; Chimento et al., 2020, 2021; Rozadilla et al., 2021, this study). Further, some taxa, such 1013 
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as the Magallanodon and Hydromedusinae are shared by both formations, and reinforce a biotic 1014 

correlation between both stratigraphic units. The presence of similar leaf fossils, in particular 1015 

the Morphotype 1 here presented, which seems closely comparable with the one illustrated by 1016 

Ortuya et al. (2016) as Coccoloba? sp. for the Dorotea Formation may also support this 1017 

correlation hypothesis. Although sequence stratigraphic analyses are needed, these intervals of 1018 

the Dorotea Formation could be associated with the Chorrillo Formation representing more 1019 

distal areas of accumulation in a subaerial part of a deltaic depositional system feed by the 1020 

fluvial system of the Chorrillo Formation. The uppermost interval of the Dorotea Formation 1021 

(depositional sequence 5) presents mosasaur and plesiosaur remains (Otero et al., 2015; 1022 

Manríquez et al., 2019). These levels carrying marine fossils should be correlated with the 1023 

marine Calafate Formation where a diverse shark fauna is known (Bogan et al., 2016, 2017; 1024 

D’Angelo et al., 2016; Fig. 19.). 1025 

8. CONCLUSIONS 1026 

The stratigraphic record of the Chorrillo Formation has been divided into five different 1027 

architectural elements representing channelized and non-channelized units. Channelized units 1028 

are characterized by Complex sandy narrow sheet channels (SS) and Complex gravelly narrow 1029 

sheet channel (GS) elements, and non-channelized units by Sandstone lobes (SL), Thick fine-1030 

grained deposits (FG) and Thin dark fine-grained deposits (DF). The overall fine-grained 1031 

dominance of the succession is interpreted as due to deposition in a low-gradient, low net-to-1032 

gross and high-accommodation fluvial depositional system. These fine-grained, fossil-rich, 1033 

fluvial deposits are part of the UCCD proposed by Tettamanti et al. (2018) and are the youngest 1034 

continental deposits that accumulated during the Cretaceous in the Lago Argentino region. 1035 

The vertebrate fossils yielded by the Chorrillo Formation show clear similarities with roughly 1036 

coeval beds from northern Patagonia. However, in contrast with Late Cretaceous faunas from 1037 

Brazil and northern Patagonia, the one from the Chorrillo Formation beds is notable for its 1038 

diversity in ornithischians and abundance of megaraptorans, a situation more similar to other 1039 

southern landmasses, including Antarctica and Australasia. Furthermore, the vertebrate 1040 
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association of Chorrillo Formation matches that reported at the Dorotea Formation of Southern 1041 

Chile (e.g., hadrosaurs, titanosaurs, gondwanatherians as Magallanodon, Hydromedusinae 1042 

turtles). These similarities, together with sedimentological evidence suggest that these units are 1043 

equivalent and that they were roughly coeval in age. 1044 
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TABLE AND FIGURE CAPTION 1636 

Table 1. Sedimentary facies identified in the Chorrillo Formation. 1637 

Figure 1. A, Location map of the Austral-Magallanes Basin (modified from Moyano-Paz et al., 1638 

2020). B, Stratigraphic scheme of the sedimentary infill for the Austral-Magallanes Basin in the 1639 

Lago Argentino region (modified from Ghighlione et al., 2014; Sickmann et al., 2018; Moyano-1640 

Paz et al., 2018; Tettamanti et al., 2018).  1641 

Figure 2. Geological map of the study area showing the distribution of the stratigraphic units 1642 

(modified from Kraemer and Riccardi, 1997; Ghiglione et al., 2014; Moyano-Paz et al., 2018). 1643 

Figure 3. Detailed measured section of the Chorrillo Formation showing the main sedimentary 1644 

features, fossil content distribution and the vertical distribution of the architectural element 1645 

Figure 4. A-B, Outcrop photographs of the channel shaped, erosion-based bodies of the 1646 

architectural element SS. C, Detail of cross-bedded individual storeys bounded by erosion 1647 

surfaces. D, Detail of storey infill showing trough cross-bedding facies (St). E, Detail of wood 1648 

impressions toward the base of the channel constituting a basal lag. 1649 

Figure 5. A-B, Outcrop photographs of the channel shaped, erosion-based bodies of the 1650 

architectural element GS. 1651 

Figure 6. A-B, Outcrop photographs of the lobate bodies of the architectural element SL. A, 1652 

Detail of gradual increase in grain size from the fine-grained deposits of FG element. B, Detail 1653 

of irregular convex-up top. 1654 

Figure 7. A, Outcrop photograph of the reddish and greenish massive mudstones intercalated 1655 

with sandstone beds of the architectural element FG. B, Detail of rhizolith. C, Detail of 1656 
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slickensides. D, Detail of granular and subangular to angular blocky peds. E, Detail of the 1657 

organic-rich grey, thin-laminated mudstones of the architectural element DF. F-G, Detail of well 1658 

preserved plant remains. 1659 

Figure 8. A-D, Plant impressions collected from the architectural element FG at 215 m in the 1660 

stratigraphic column. A, Fragment of leaves probably related to monocots with parallel veins 1661 

(Morphotype 6), MPM-PB-22809. B, Specimen with a stout midvein (white arrows) and lateral 1662 

veins diverging that produce several dichotomies at the same level before reaching the margin, 1663 

MPM-PB-22810. C–D, Specimen without a midven, presenting radiating veins that dichotomize 1664 

3-4 times at comparable levels, being the last dichotomies located near the margin and ending in 1665 

a loop (white arrow), MPM-PB-22811. E–L, Plant impressions collected from the architectural 1666 

element FG at 295 m in the stratigraphic column. E–G, Specimens of elliptic asymmetric leaves 1667 

with pinnate primary venation and brochidodromous secondary venation and looped exterior 1668 

tertiaries (Morphotype 1). E, MPM-PB-22801. F, MPM-PB-22802. G, MPM-PB-22803. H, 1669 

Leaf that differs from the others recognized morphotypes in having palmate primary venation 1670 

(Morphotype 2), MPM-PB-22804. I, Specimen of partial leaf which preserves its acute apex and 1671 

primary vein with decurrent secondaries (Morphotype 3), MPM-PB-22806. J, Specimen with a 1672 

straight midvein with a pinnate pattern, with non-decurrent secondaries arising in acute angles 1673 

(Morphotype 4), MPM-PB-22807. K, Fragments of leaves with one-ranked parallel veins 1674 

(Morphotype 5), MPM-PB-22808. L, Root impressions, MPM-PB-22805. Scale bars: A-D:1 1675 

mm, E-L:10 mm.Figure 9. A, Indeterminate Lamniform tooth (MPM-PV-22839) in lingual and 1676 

mesial views; B-F, selected sauropod teeth (MPM-PV-22863) B,D,E, pencil-like morphotype; 1677 

C,F, thick morphotype; G-I, selected megaraptorid teeth (MPM-PV-22864 and MPM-PV-1678 

22865). Abbreviations: k, keel; mc, mesiolabial carina; wf, wear facet. Scale bar: 1 cm. 1679 

Figure 10. A-C, distal end of right humerus of an indeterminate pipoid (MPM-PV-22840) in A, 1680 

anterior; B, posterior; and C, distal views; D-M, Calyptocephalella sp.; D,E, incomplete left 1681 

maxilla (MPM-PV-22841) in D, lateral, and E, medial views; F,G, incomplete right maxilla 1682 

(MPM-PV-22842) in F, dorsolateral; and G, medial views; H,I, proximal end of right radioulna 1683 
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(MPM-PV-22844) in H, medial and I, lateral views; J,K, incomplete right ilium (MPM-PV-1684 

22843) in J, lateral; and K, medial views; L,M, proximal end of left tibiofibula (MPM-PV-1685 

22845) in L anterior; and M, posterior views. Abbreviations. ac, acetabulum; as, articular 1686 

surface for the humerus; ba, articular ball; coi, concavity for the opposite ilium; cs, concave 1687 

surface; cu, ventral cubital fossa; dt, dorsal tubercle/crest; fo, foramen; fp, fibular process; le, 1688 

lateral epicondyle; me, medial epicondyle; ogc, oblique groove and crest; ol, olecranal fossa; 1689 

ole, olecranon; sab, subacetabular process; sac, supracetabular process; sam, smooth alveolar 1690 

margin; tp, tibial process; pd, pars dentalis; ps, palatal shelf. Scale bar 5 mm.  1691 

Figure 11. A-D, Anilioidea, possible mid-precloacal vertebra (MPM-PV-22847) in A, ventral 1692 

view; B, lateral view; C, dorsal view; and D, posterior view. E-F, cf. Rionegrophis sp., 1693 

incomplete trunk vertebra (MPM-PV-22848) in E, ventral; and F right lateral views. G-J, 1694 

Indeterminate elasmosaurid vertebrae; G-H, cervical vertebra (MPM-PV-22859) in G, ventral 1695 

view; H, anterior view; I-J, dorsal vertebra (MPM-PV-22860) in I, lateral view; J, anterior view. 1696 

Abbreviations: hk, haemal keel; nc, neural canal; par, parapophyses; po, postzygapophyseal 1697 

process; scf, subcentral foramina; sd, subcentral depression; sr, subcentral ridge; vn, ventral 1698 

notch. Scale bar: A-F, 5 mm; G-J, 1 cm. 1699 

Figure 12. Selected carapace plates of an indeterminate Hydromedusinae (Chelidae). 1700 

A,B,E,H,K,M,P,R, external; C, J, ventral; F,I,L,N,Q, visceral; and D,G,O, side views. A–D, left 1701 

peripheral 3 or 4 (MPM-PV-22849); E, F, bridge peripheral (MPM-PV-22850); G–I 1702 

indeterminate fragment (MPM-PV-22851); J–L  bridge peripheral (MPM-PV-22852); M, N, 1703 

right hypoplastron (MPM-PV-22853); O, bridge buttress (MPM-PV-22854); P, Q, plastral 1704 

fragment (MPM-PV-22856); R, ?plastral fragment (MPM-PV-22855). Abbreviations: AB, 1705 

abdominal scute; FE, femoral scute; MA, marginal scute; PL, pleural scute; scar, scar of the 1706 

axillary buttress. Scale bar: 1 cm. 1707 
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Figure 13. Meiolaniiformes. Left humerus (MPM-PV-22858) in A, dorsal; B, anterior; C, 1708 

ventral; D, posterior; E, distal views. Abbreviations: cap, capitulum; ecf, ectepicondylar 1709 

foramen; ect, ectepicondyle; ent entepicondyle; tro, trochlea. Scale bar: 2 cm. 1710 

Figure 14. Selected bones of Isasicursor santacruscesis. A-B, right maxilla (MPM-PV-22860) 1711 

in A, medial; and B, lateral views. C-G, proximal end of right ulna (MPM-PV-22861) in C, 1712 

anterior; D, posterior; E, medial; F, lateral; and G, proximal views. H-L, left metatarsal III 1713 

(MPM-PV-22862) in H, anterior; I, posterior; J, medial; K, lateral; and L, distal views. 1714 

Abbreviations: aof; anterorbital fenestra; ap, maxillary ascending process; cp, collateral pit; eg, 1715 

extensor groove; fg, flexor groove; ig, intercondylar groove; lc, lateral condyle; lr; lateral ridge; 1716 

lp, lateral process; mc, medial condyle; mp, medial process; mr, medial ridge; ol, olecranon; pr, 1717 

primary ridge; sr, secondary ridges; tr; teeth root. Scale bar: 2 cm.     1718 

Figure 15. Distal end of Isasicursor santacrucensis femora showing size variation between the 1719 

specimens coming from the same spot at the Isasicursor II Site. 1720 

Figure 16. Indeterminate Enantiornithes. A-K, pedal ungual phalanges (MPM-PV-22867 and 1721 

MPM-PV-22868 respectively) in A,K, side; B,F, dorsal; C,J, ventral; and D,H, proximal views. 1722 

Abbreviations: et, extensor tubercle; ft, flexor tubercle; r, ridge; vg, ventral groove. Scale bar: 2 1723 

cm.Figure 17. Photopanel of the Chorrillo Formation showing the distribution of channelized 1724 

units (SS and SG; yellow) and non-channelized units (SL, FG and DF; white). 1725 

Figure 18. Stratigraphic correlation between Ultima Esperanza, Chile (Manriquez et al., 2019) 1726 

and south of Lago Argentino, Argentina (this study) showing the fossil content of the main 1727 

Upper Cretaceous to Paleogene formations of the Magallanes/Austral Basin. 1728 

 1729 

 1730 

 1731 
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HIGHLIGHTS 

*The depositional architectural elements and the paleontological content from the Chorrillo 

Formation are described. 

*The Chorrillo Formation is interpreted as accumulated in a fluvial depositional system 

dominated by fine-grained deposits. 

*The continentalization of the basin provided new ecological niches for plants and vertebrates. 

*The fossil vertebrates association matches with the one reported from the Dorotea 

Formation. 
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