

1 The O-chain core region of the lipopolysaccharide is required for cellular cohesion
2 and compaction of *in vitro* and root biofilms developed by *Rhizobium*
3 *leguminosarum*

4

5 Daniela M. Russo^a, Patricia L. Abdian^{a*}, Diana M. Posadas^{ab##}, Alan Williams^c, Nicolás
6 Vozza^a, Walter Giordano^d, Elmar Kannenberg^e, J. Allan Downie^c and Angeles
7 Zorreguieta^{ab}

8

9 ^aFundación Instituto Leloir and IIBBA CONICET, Buenos Aires, Argentina

10 ^b Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos
11 Aires, Argentina

12 ^c John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom

13 ^d Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina

14 ^e Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA

15 # Present address: Department of Molecular Biosciences, Northwestern University,
16 Evanston, Illinois, USA

17

18 *PLA and DMP contributed equally to this work

19 Address correspondence to Angeles Zorreguieta, azorreguieta@leloir.org.ar

20

21

22 Key words: *Rhizobium*, biofilm, lipopolysaccharide, cellular interactions

23 Running Title: LPS function in rhizobial cell-cell interactions

24

25 **SUMMARY**

26 The formation of biofilms is an important survival strategy allowing
27 rhizobia to live on soil particles and plant roots. Within the microcolonies of the
28 biofilm developed by *Rhizobium leguminosarum*, rhizobial cells interact tightly
29 through lateral and polar connections forming organized and compact cell
30 aggregates. These microcolonies are embedded in a biofilm matrix, whose main
31 component is the acidic exopolysaccharide (EPS). Our work shows that the O-
32 chain core region of the *R. leguminosarum* lipopolysaccharide (LPS) (which
33 stretches out of the cell surface) strongly influences bacterial adhesive properties
34 and cell-cell cohesion. Mutants defective in the O-chain or O-chain core moiety
35 developed premature microcolonies in which lateral bacterial contacts were
36 greatly reduced. Furthermore, cell-cell interactions within the microcolonies of
37 the LPS mutants were mediated mostly through their poles, resulting in a biofilm
38 with an altered three-dimensional structure and increased thickness. In addition,
39 on the root epidermis and on root hairs, O-antigen core-defective strains showed
40 altered biofilm patterns with the typical microcolony compaction impaired. Taken
41 together, these results indicate that the surface exposed moiety of the LPS is
42 crucial for proper cell-to-cell interactions and for the formation of robust biofilms
43 on different surfaces.

44

45 **INTRODUCTION**

46

47 During legume-rhizobial interactions, bacteria invade the legume plant roots
48 leading to the formation of nodules in which atmospheric nitrogen is reduced to
49 ammonia that is ultimately used by the host to grow in nitrogen-depleted soils. Only a

50 fraction of soil rhizobia infect and colonize host plants (1, 2) suggesting that they must
51 have alternative strategies, such as biofilm formation, to survive in different
52 environments and conditions (3, 4).

53 Biofilms are structures in which microorganisms are encased in a matrix of
54 polymeric substances and grow attached to biotic or abiotic surfaces. Biofilm formation
55 requires initial attachment to a surface, microcolony formation, maturation, dispersion
56 and migration (5-7). Structured microbial communities attached to plant roots and the
57 surrounding soil particles can be viewed as biofilm communities (3, 8). Rhizobia and
58 the closely-related agrobacteria develop structured biofilms *in vitro* consisting of layers
59 of bacteria in contact with each other and interlaced with water channels (9, 10). Within
60 curled root hairs, *Sinorhizobium meliloti* cells form small biofilm-type aggregates that
61 provide the inoculum for root invasion (1). In *S. meliloti* strain 1021, attachment to
62 polystyrene and growth as a biofilm depends on the environmental conditions (11) and
63 biotic and abiotic surfaces colonization is affected by succinoglycan production (12).
64 Establishment of a three dimensional biofilm structure and autoaggregation depend on
65 the production of another exopolysaccharide, termed EPS II (13, 14) and also on core
66 nodulation (Nod) factor (15).

67 Mutants of *Rhizobium leguminosarum* bv. *viciae* strain A34, defective in the
68 production of the acidic EPS and the capsular polysaccharide (CPS), were unable to
69 develop typical microcolonies and a structured biofilm *in vitro* (9). Two EPS- β -1,4
70 glycanases and several proteins from the Rap (*Rhizobium* adhering protein) family,
71 secreted by the PrsDE system, were proposed to be involved in the maturation of an
72 organized biofilm structure (9, 16). One of the Rap proteins, RapA2, is a calcium-
73 dependent lectin that specifically interacts with the EPS/CPS of *R. leguminosarum*,
74 supporting a role of Rap(s) in the development of the biofilm matrix (17). Recently,

75 overexpression of several Rap(s) was observed in a mutant defective in the
76 transcriptional repressor PraR, resulting in enhanced root attachment and nodule
77 competitiveness (18). The development of an *in vitro* biofilm by the sequenced strain
78 3841 requires EPS, but not cellulose, glucomannan or gel forming polysaccharide,
79 whereas glucomannan and cellulose were required for biofilm formation on root hairs
80 (19). In addition, calcium seems to play an important role in the adhesion of *R.*
81 *leguminosarum* to hydrophilic abiotic surfaces by remodeling higher-order structures of
82 polysaccharides. It was proposed that calcium influences surface roughness and the
83 hydrophilic character that will ultimately affect cell adhesion properties (20).

84 The external leaflet of the outer membrane of Gram-negative bacteria is built of
85 lipopolysaccharide (LPS), which is in rhizobia as in other bacteria a key determinant of
86 the bacterial cell surface antigenicity. LPS is made up of the lipid A, which anchors the
87 molecule to the external membrane, the connecting core oligosaccharide and the distal
88 O-chain polysaccharide. The LPSs from *R. leguminosarum* and *R. etli* share a common
89 lipid A-core structure and vary in their O-chain structures (21). The lipid A structure of
90 rhizobial LPSs differs from those of enteric bacteria, in that it lacks phosphate groups
91 and it is acylated with hydroxylated fatty acids of variable lengths, one of which is an
92 unusual very-long-chain fatty acid, 27-hydroxyoctacosanoic (21-23). The core
93 oligosaccharide of *R. leguminosarum* species and *R. etli* consists of an octasaccharide of
94 mannose (Man), galactose (Gal), galacturonic acid (GalA) and 3-deoxy-d-manno-2-
95 octulosonic acid (Kdo) residues in a 1:1:3:3 molar ratio, arranged in the structure: lipid
96 A-(Kdo)2-Man-Gal-Kdo-[O antigen] with two GalA residues linked to an internal Kdo
97 and another to the Man residue (21, 23, 24). In *Rhizobium* spp., neutral O-antigen
98 polysaccharides which are relatively hydrophobic are favored; residues imparting net
99 negative charge are either absent or, when present, they are blocked by esterification or

100 neutralized with a positive substituent (21). The main glycosyl residues present are
101 deoxyhexoses and methylated glycosides (25). The O-antigen of *R. leguminosarum*
102 strain 3841 is formed by a branched tetraheteroglycan consisting of three or four
103 repeating units of 6-deoxy-3-O-methyltalose (3Me-6dTal), 2-acetamido-2-deoxy-L-
104 quinovosamine (QuiNAc), 3-acetimidoylamino-3-deoxy-D-gluco-hexuronic acid
105 (Glc3NAmA, rhizoaminuronic acid) and fucose (Fuc) residues with endogenous O-
106 methylation and O-acetylation (26).

107 An intact LPS plays an important role in infection of both determinate and
108 indeterminate nodules in legumes (21, 27-29). Rhizobial LPS exhibits considerable
109 heterogeneity in different plant microhabitats and soil environments (30) and several
110 factors induce modifications in LPS structure (28, 31-35). This suggests that variation in
111 the LPS may have a role in survival and adaptation to local microenvironments. A role
112 for LPS in biofilm structures has been shown in several pathogenic or opportunistic
113 pathogenic bacteria (36-39). In *R. leguminosarum* the participation of the lipid A
114 component of the LPS in desiccation tolerance, biofilm formation and motility has been
115 reported (34). In this work we show that the O-antigen core region of LPS of *R.*
116 *leguminosarum* is essential for the establishment of lateral and intimate cell-to-cell
117 interactions and is required for the formation of a compact biofilm structure. Besides,
118 the outermost part of the LPS influences adhesion properties on both abiotic and root
119 surfaces.

120

121 **EXPERIMENTAL PROCEDURES**

122 **Microbiological techniques and phenotypic analysis**

123 Bacterial strains and plasmids are described in Table 1. *R. leguminosarum*
124 strains were grown at 28 °C in tryptone-yeast extract (TY) medium (40) or Y-minimal

125 medium (41) containing mannitol (0.2%, wt/vol) as carbon source. *Escherichia coli*
126 cultures were grown at 37°C in LB medium (42). Bacterial growth was monitored at
127 600 nm using an Amersham Pharmacia spectrophotometer. Plasmids were mobilized
128 into *Rhizobium* by triparental mating using a helper strain of *E. coli*. Cellulose
129 production was detected using Y-mannitol minimal medium agar plates containing
130 0.001% (w/v) Congo red. *R. leguminosarum* strains were inoculated using a toothpick
131 and cultured for three days at 28°C. Red or pink colonies are indicative of cellulose
132 production in *Rhizobium leguminosarum* (19, 43). Swimming motility was assayed (10)
133 by inoculating bacteria from cultures (OD_{600nm} adjusted to 1.0) on Y-mannitol minimal
134 medium containing 0.3% agar and measuring the colony diameters after 4 days growth.
135 Statistical analysis was done using GraphPad Prism 5 software.

136

137 **Tn5 mutagenesis and screening of the LPS mutants**

138 A suicide plasmid pJB4JI containing Tn5 was conjugated from *E. coli* into *R.*
139 *leguminosarum*. bv. *viciae* A34 by filter mating as described (44). The *lpcA* mutant was
140 identified by screening for colonies with a rough morphology on TY agar. To determine
141 the Tn5 insertion site, an EcoRI fragment containing the transposon from genomic DNA
142 of the mutant was cloned in pBluescript. A BamHI fragment was subcloned in
143 pBluescript and PCR amplified using primers from the end of IS50
144 (TTCCGTTCAAGGACGCTA) and the T7 (GTAATACGACTCACTATAGGGC) site
145 from pBluescript. The PCR product was sequenced to identify the transposon insertion
146 point. The *lpcB* and *lpsD* mutant derivatives of strain 3841 were isolated by gene-
147 specific PCR amplification using pools of Tn5 mutants as previously described (19) and
148 the insertion sites confirmed by DNA sequencing using products amplified by Tn5 and
149 gene-specific primers.

150

151 **Complementation of mutant strains**

152 To clone the *lpcA-lpcB* and *lpsD* genes, the regions indicated in Fig. 1 were
153 amplified by PCR using specific oligonucleotide below. Primers were designed using
154 gene sequences of the *R. leguminosarum* 3841 strain (45). The *lpcA-lpcB* locus was
155 amplified from 3841 DNA using sense and antisense primers containing a BamHI
156 restriction site (bold): *lpcAB*for: **CAGGATCCTCTAAGTTCACGTTCCGATT**C and
157 *lpcAB*rev: **AGGGATCCGCCACGTAGCGTCAACTCAAAG**. A PCR product of
158 2074 bp, including the complete coding sequence of *lpcA* (RL3440) and *lpcB* (RL3439)
159 and the upstream putative regulatory sequences was cloned into BamHI digested
160 pLAFR3 to generate pFC222. The *lpsD* gene was PCR amplified from 3841 DNA
161 using sense and antisense primers containing BglII restriction sites (bold): *lpsD*for
162 **CAAGATCTGAAGGTTCGACACGCCATATTG** and *lpsD*rev
163 **CAAGATCTCGAGCCAATACGGCTACCTCAG**. A PCR product of 1600 bp,
164 including the coding and regulatory sequences of *lpsD* (pRL90053), was cloned into
165 pGEMTeasy (pGEMTeasy Cloning kit -Promega) to generate pFC219. The 1600 bp
166 BglII fragment from pFC219 was subcloned in the BamHI site of the pLAFR3 cosmid
167 to make pFC224.

168

169 **Analysis of biofilms in vitro**

170 To analyze biofilms, bacteria grown in TY medium containing appropriate
171 antibiotics (OD₆₀₀ of about 1.5) were inoculated at 1:1000 dilution into 100 ml of Y-
172 mannitol medium in a 300 ml conical glass flask with shaking at 250 rpm in an orbital
173 shaker (9). Rings of biofilms at the air-liquid interface were qualitatively scored after 5
174 days of growth. For quantification of biofilms in microtitre plates, rhizobia were

175 inoculated as above and cultured in 96 well flat bottom polystyrene (PE)-culture plates
176 (Greiner, CellStar #655180) for three days without shaking. Unbound bacteria were
177 removed by gently washing with 0.9% NaCl and attachment was quantified by staining
178 with 0.1% crystal violet (46). To analyzed the biofilm structures, bacteria carrying the
179 plasmid pRU1319, which expresses the green fluorescent protein (GFPuv) (47) were
180 cultured for three days at 28 °C in 5 ml of TY medium. After centrifugation, bacteria
181 were washed and suspended in Y-mannitol medium at 1:1000 dilution; 0,5 ml of this
182 bacterial suspension was cultured statically in chambered glass-coverslides (Nunc, Lab
183 Tek #155411) at 28°C (9). Observation of biofilm formation in a four day time course
184 experiment was done as previously described using Plan-Apochromat 100X/1.40 oil or
185 C-Apochromat 40X/1.2 W objectives from a Carl Zeiss Pascal LSM 5-Axioplan 2 laser
186 scanning confocal microscope (488 nm Argon laser excitation and 500 nm long pass
187 emission filter) (9). Representative horizontal projections of CSLM image-stacks taken
188 from five independent experiments are shown. To quantify the biofilm structures
189 developed in the chambers, at least five 40X-image stacks taken from three independent
190 experiments were analyzed by COMSTAT software (48). Movies enclosed in
191 supplementary files are representative image stacks of biofilms developed after four
192 days in chambered coverslides from A34 and *lpcA* strains observed from the base to the
193 top using a Plan-Apochromat 100X/1.40 oil objective.

194

195 **Preparation and analysis of LPS**

196 LPS was extracted by the hot-phenol method (49) modified for rhizobia (28).
197 Briefly, *R. leguminosarum* strains were cultured for 72 h in TY medium, harvested and
198 washed with 0.9% NaCl. The pellet (1 g wet cells) was suspended in sterile milliQ
199 water and phenol (1:1) at 70 °C as described (28). After mixing with LAEMLI's

200 solubilization buffer, the LPS suspension was analyzed by SDS-PAGE (12%) in Tris-
201 Glycine Running buffer and visualized by carbohydrate-specific periodate oxidation and
202 Silver staining as described previously (50). Immunochemical analysis of the LPS was
203 performed by immunoblots on nitrocellulose membranes using *R. leguminosarum* O-
204 antigen monoclonal antibodies MAC 57 and MAC 114 as previously reported (51, 52)
205 and anti-rat horseradish peroxidase-conjugated secondary antibody (SIGMA). The ECL
206 Plus Western Blotting Detection reagents (GE Healthcare, UK) were used to detect the
207 signals using a Storm 840 Imager (Amersham Pharmacia Biotech) following
208 manufacturer's instructions.

209

210 **Quantification of EPS and CPS production**

211 To obtain the EPS and CPS, rhizobia were cultured for five days at 28 °C in
212 100 ml Y-mannitol minimum medium and centrifuged at 8000 x g for 1 hour at 4 °C
213 (53). The supernatants were re-centrifuged to remove remaining cells and then the EPS
214 was precipitated with two volumes of cold ethanol, dissolved in water and quantified by
215 the *meta*-hydroxy-diphenyl-sulfuric acid method (54). The bacterial pellets were washed
216 twice with 10 mM PBS pH 7.4 containing 1 mM MgSO₄ and centrifuged at 10000 x g
217 for 15 minutes at 4 °C. The cells were suspended in PBS containing 1 mM MgSO₄ and
218 0.5 M NaCl and stirred vigorously for 1 hour at room temperature. After centrifugation,
219 the CPS was precipitated with 3 volumes of cold ethanol, dissolved in water and
220 quantified by the *meta*-hydroxy-diphenyl-sulfuric acid method (54). Mean and standard
221 error of replicated samples of EPS and CPS polysaccharides from two independent
222 experiments are shown.

223

224 **Autoaggregation assay**

225 To monitor differences in auto-aggregation, each rhizobial strain from a TY
226 medium-starter culture of four days was diluted to 1:100 in 5 ml of Y-mannitol or TY
227 medium (inoculum $OD_{600nm} = 0.01$) and shaken (200 rpm) at 28°C. After five days, the
228 cultures were mixed vigorously for 15 seconds and the suspensions were left standing to
229 start the assay. At regular time intervals, a 150 μ l-sample was taken at 0.5 cm from the
230 liquid surface and the OD_{600nm} quantified in a microtiter plate in a Multimode Detector
231 DTX880 Beckman Coulter as previously described (55). The results of two independent
232 experiments using replicated cultures of each strain are shown.

233

234 **Initial attachment, biofilm formation and nodulation tests on pea roots**

235 To evaluate initial attachment to root surfaces, ten days post-germination *Pisum*
236 *sativum* variety Frisson (pea) plantlets were dissected and roots sectioned in 1 cm-
237 segments. Root sections were placed on a Fahræus chamber containing 0.5 ml of 0.3%
238 Fahræus Plant Medium (FP)-agar and incubated for 45 minutes in 20 ml of GFP-tagged
239 bacterial suspension ($OD_{600nm} 0.06$) in darkness at room temperature (56). The pea roots
240 sections were observed by scanning different focal planes of the root-surface using a C-
241 Apochromat 40X/1.2 W objective from a Carl Zeiss Pascal LSM 5-Axioplan 2
242 microscope (see above). The estimation of the total number of bacteria associated to the
243 root section per square centimeter was calculated using Carl Zeiss Browser software by
244 counting total bacteria in each layer of at least six Z-stack images obtained from two
245 independent experiments. The proportion of the number of bacteria that are in direct
246 contact with the epidermis in relation to the total number of bacteria associated to the
247 epidermis in the same image was calculated as the root attachment index (AI).

248 To analyze biofilm development on root surfaces, pea plantlets were inoculated
249 with a suspension of GFP-labeled bacteria. *Rhizobium* strains cultured in TY medium

250 were centrifuged and pelleted bacteria were washed and suspended in FP. Ten milliliters
251 of the bacterial suspension ($OD_{600nm}=0.06$) were used to inoculate each plantlet grown
252 in FP and incubated at 22°C in a plant growth chamber (16 h light/ 8 h darkness). After
253 five days, the entire plant was removed and the roots were washed twice in FP liquid
254 medium under shaking to remove loosely associated cells. Then, roots were weighed
255 and crushed to estimate root-associated bacteria by plating serial dilutions of smashed
256 roots on TY agar containing streptomycin and counting the colony-forming units (CFU)
257 per gram of root tissue. At least four whole-pea roots per strain from two independent
258 experiments were analyzed. To visualize the biofilms, roots were washed and dissected
259 in 1 cm-sections and placed on a slide containing 0.5 ml of 0.5% FP-agar. CSLM-stack
260 images were obtained by scanning different focal planes of the root-surface. At least six
261 whole-pea roots per strain from five independent experiments were analyzed. Images
262 were projected and processed using Carl Zeiss confocal image browser software and
263 Adobe Photoshop CS 8.01.

264 Nodulation tests were done using pea plants (*Pisum sativum* variety Frisson) in
265 at least two independent experiments as previously described (57).

266

267 **RESULTS**

268 **Genetic and phenotypic characterization of LPS mutants**

269 To analyze the contribution of the LPS in the formation of an organized
270 biofilm, we isolated mutants impaired in LPS biosynthesis in two different *R.*
271 *leguminosarum* bv. *viciae* genetic backgrounds: one mutant (B772) is a derivative of
272 strain A34, which has been used for related studies in our laboratory, and two mutants
273 (A950 and A951) are derivatives of the genome sequenced strain 3841. The gene
274 mutated in B772 is 99% similar to *lpcA* from *Rhizobium leguminosarum* bv. *phaseoli*

275 8002 (X94963.1) and is 90% similar to RL3440 from *R. l. bv. viciae* 3841. The *lpcA*
276 gene encodes a galactosyl transferase that adds a galactose residue to the mannose
277 residue of the core oligosaccharide (58, 59). In 3841, *lpcA* (RL3440) is upstream of and
278 probably co-transcribed with *lpcB* (Fig. 1A), which encodes a putative CMP Kdo
279 transferase that adds the most external Kdo residue of the core region to the galactose
280 residue. A951 carries Tn5 in *lpcB* (RL3439) (Fig. 1A). The *lpcA* and *lpcB* genes were
281 previously described as *locus δ* involved in the biosynthesis of the core region of the
282 LPS in *R. leguminosarum* (58-60).

283 A950 carries Tn5 in pRL90053, a gene encoding a putative O-antigen ligase that
284 shares 81% identity with the gene of a putative O-antigen polymerase from *R. etli*
285 CFN42 (RHE_PB00003). The pRL90053 gene (*lpsD* in the new annotation
286 http://bacteria.ensembl.org/rhizobium_leguminosarum_bv_viciae_3841) is on plasmid
287 pRL9 and adjacent to and transcribed divergently from *lpsB1* (pRL90051) and *lpsB2*
288 (pRL90052) (Fig. 1A). LpsB1 (RHE_PB0001) and LpsB2 (RHE_PB0002) from *R. etli*
289 CFN42 are implicated in O-chain synthesis and localized in *locus β* from the p42b
290 symbiotic plasmid (61, 62).

291 Thus the LPS mutants we used have mutations in two different regions
292 associated with LPS biosynthesis; one is on the chromosome and the other on a plasmid.
293 The *lpcA* and *lpcB* mutants would be expected to produce LPS lacking the O-chain and
294 with an incomplete core oligosaccharide. On the other hand, the *lpsD* mutant would be
295 predicted to have a complete core oligosaccharide that should lack the O-antigen repeat
296 units.

297 The LPS obtained by hot phenol/water extraction from cultured *lpcA*, *lpcB* and
298 *lpsD* mutants lacked LPS-I but a band of higher mobility corresponding to LPS II was
299 observed (Fig. 1B). By immunoblot using MAC 114 or MAC 57 antibodies, we

300 confirmed that the O-antigen is absent in the LPS fraction of the *lpcA*, *lpcB* and *lpsD*
301 mutants (Fig. 1B). Silver-periodate staining and immunoblot analysis showed that *lpcA*
302 and *lpcB* cloned in pFC222 complemented the LPS pattern of both the *lpcA* and *lpcB*
303 mutants (Fig. 1B) and *lpsD* cloned in pFC224 restored LPS-I in the *lpsD* mutant (Fig.
304 1B).

305 Since LPS mutations may affect the production or stability of other surface
306 polysaccharides, the EPS, CPS and cellulose contents of the mutants were assayed.
307 Similar amounts of EPS, referred as glucuronic acid equivalents, were obtained from
308 the supernatant of the *lpcA*, *lpcB* and *lpsD* mutants compared with isogenic wild type
309 (WT) strains grown in Y-mannitol-minimal medium (Table 2). In Y-mannitol semisolid
310 medium in the presence of Congo red (43), the colony phenotype observed was also
311 indistinguishable between the mutants and the isogenic WT strains (Fig. S1). These
312 observations suggest that neither the production of EPS nor that of cellulose was greatly
313 altered in the LPS mutants.

314 *R. leguminosarum* strains are surrounded by the acidic CPS, whose structure and
315 genetic determinants are shared with the EPS, and only differ in their degree of non-
316 carbohydrate substitutions (53, 63). A defective LPS could affect the interaction of CPS
317 with the cell surface. We observed a reduction of 30-40% in the amount of glucuronic
318 acid equivalents extracted from the cell surface of the LPS mutants compared with the
319 isogenic WT strains (Table 2). These observations suggest that absence of the outermost
320 region of the LPS decreases the amount of CPS associated with the rhizobial surface.

321 Alterations in flagellar motility have been observed with some rhizobial LPS
322 mutants (64, 65), but the swimming halo diameters of the *lpcA*, *lpcB* and *lpsD* mutants
323 were similar to those of the isogenic WT strains (Fig. S2), suggesting that flagellum
324 integrity and functionality were unaffected.

325

326 **Role of the LPS O-chain core region in surface attachment and biofilm
327 development in *R. leguminosarum***328 In liquid TY cultures, the *lpcA*, *lpcB* and *lpsD* mutants showed an increased
329 sedimentation rate, suggesting that the absence of the surface-exposed moiety of the
330 LPS enhances autoaggregation (Fig. 2). In Y-mannitol minimal medium, no significant
331 differences in sedimentation kinetics were observed between the mutants and the
332 isogenic WT strains (Fig. S3). The high carbon/nitrogen ratio of the Y-minimal medium
333 stimulates CPS and EPS synthesis (66), which increases the viscosity of bacterial
334 cultures. This effect may prevent differential sedimentation phenotypes in the LPS
335 mutants and wild type strains.336 The absence of the hydrophobic O-chain in rhizobial LPS may result in a
337 reduction in cell surface hydrophobicity (26) causing a decrease in initial attachment to
338 hydrophobic surfaces. After three days, the *lpcA*, *lpsD* and *lpcB* mutants showed 63%,
339 62% and 52% reductions, respectively, in the biofilms attached to polystyrene (PE)
340 compared with the isogenic WT strains (Fig. 3); the biofilms were restored to normal by
341 complementation with pFC222 (*lpcA lpcB*) or pFC224 (*lpsD*) (Fig. 3). The influence
342 of the O-chain core region in the attachment to glass (a hydrophilic surface) was
343 analyzed using shaking-flask cultures in Y-mannitol medium (9). Under these
344 conditions, the *lpcA*, *lpcB* and *lpsD* showed thicker rings of biofilms (Fig. S4) than WT
345 strains while pFC222 (*lpcA* and *lpcB*) or pFC224 (*lpsD*) complemented the mutants to
346 normal (not shown).347 A possible interpretation of these results is that absence of the outermost part
348 of the LPS makes rhizobia more proficient to attach to hydrophilic surfaces but less
349 capable to attach to hydrophobic surfaces. Other possibility is that cell-cell interactions
350 in biofilms grown with aeration could be particularly favored in the mutants compared

351 with the wild type. Alternatively, the attachment phenotypes could be explained by a
352 combination of several effects.

353

354 **Role of LPS in cell-to-cell interactions during biofilm formation**

355 Strains A34 and 3841 develop organized and compact microcolonies with
356 most bacteria attached to each other side by side in static cultures in Y-medium (9, 19).
357 CLSM of GFP-labeled *lpcA* mutant grown for one day in chambered glass slides
358 revealed premature formation of microcolonies, in which abnormal interactions between
359 bacteria occurred, with abundant chains of cells interacting through their poles (Fig. 4).
360 After two or three days, the *lpcA* mutant formed unusual nets of bacteria connected
361 mostly through their cell poles and after four days, loose and ramified structures were
362 observed in contrast with the typical compact honeycomb-like structure developed by
363 the WT (Fig. 4, Movies S1 and S2). The movies show the bacterial distribution in the
364 multiple layers from the base to the top of the structure. As expected, pFC222 restored
365 lateral cellular interactions and the typical biofilm in the *lpcA* mutant (Fig. 4). After one
366 day, the *lpcB* and *lpsD* mutants also showed the formation of premature microcolonies,
367 with most bacteria interacting through their poles and, after 4 days, biofilm structures
368 with branched chains of rhizobia were observed (Fig. 5). Complementation with
369 pFC222 or pFC224 restored lateral interactions and the formation of a compact biofilm
370 (Fig. 5). Formation of premature (and abnormal) microcolonies in the mutants could be
371 related with the augmented autoaggregation observed in the mutants in comparison with
372 the WT strains (Fig. 2).

373 To provide quantitative measurements of the three-dimensional biofilm
374 structures, CSLM images were analyzed with the *COMSTAT* software (48). The *lpcA*,
375 *lpcB* and *lpsD* mutants produced 3-fold thicker biofilm structures than the WTs (Table

376 3). The pronounced increment of the thickness was also evident by vertical (Z axis)
377 projection of several CSLM images stacks obtained with a C-Apochromat 40X/1.2 W
378 objective (Fig. S5). In addition, the mutants showed reduction of both the roughness
379 coefficient (Ra) and the surface to volume ratio in comparison to the isogenic WTs and
380 reflecting a tendency to form structures with impaired profiles (Table 3). Importantly,
381 the bacterial distribution in the multiple layers of the biofilm developed by the LPS
382 mutants was altered by means of the proportion of area covered by bacteria in each
383 layer (Table 3). The surface colonization and the overall bacterial density in the layers
384 near the substratum (layer 1 and layer 15) were significantly reduced in the *lpcA*, *lpcB*
385 and *lpsD* mutants compared with those of the WTs (Table 3). In both A34 and 3841 WT
386 strains, maximum coverage of the surface (of around 89%) was observed at an
387 intermediate layer (layer 15), while the mutants occupied a lower proportion of the area
388 (38-48%) in the same layer. In the WT biofilms, bacterial coverage showed a
389 pronounced reduction to 3-5% at layer 50 while in the mutants, a similar reduction was
390 observed at layer 150 (Table 3). Therefore, it seems that preponderance of polar
391 interactions between cells and reduction of tight lateral interactions in the LPS-mutants
392 leads to ramified and abnormal microcolony structures, which in turn results in thicker
393 biofilms.

394

395 **Attachment to pea roots**

396 As seen with other rhizobial LPS mutants (21, 52), the establishment of
397 symbiosis between the *lpcA*, *lpcB* and *lpsD* mutants and the host legume was impaired
398 with the mutants developing white nodules; using GFP-labeled rhizobia we confirmed
399 the absence of bacteria inside the pseudo-nodules induced by the *lpcA*, *lpcB*, *lpsD*
400 mutants (data not shown). This indicates that nitrogen fixation was not taking place

401 fitting with the observation that the plants showed signs of nitrogen deficiency (data not
402 shown).

403 Initial attachment to pea roots was evaluated after 45 minutes of incubation of 1
404 cm-root sections with rhizobia in FP medium using Fahræus chambers (19, 56). CSLM
405 visualization of root sections showed that both A34 and 3841 initially attached to the
406 root epidermis as single bacterium or groups of 2-3 bacteria (Fig. S6). In contrast, the
407 *lpcA*, *lpcB* and *lpsD* mutants were seen associated to the epidermal root surface as star-
408 like microcolonies (Fig. S6). This is probably related with the premature formation of
409 abnormal microcolonies in the mutants. Projections of Z-stack images from different
410 scanned root sections showed that these microcolonies were attached to the surface by a
411 limited number of bacteria. In line with this observation, the proportion of bacteria that
412 attach directly to the epidermis surface relative to total rhizobia counted in the same
413 image (attachment index: AI) was lower in all the mutants in comparison with the
414 isogenic WT strain (Fig. S7). We examined the total bacteria associated to the root
415 surface, i.e., observed in all focal planes, per square centimeter of root section using
416 Zeiss Image Browser software. Comparable amounts of WTs and mutant bacteria per
417 square centimeter of root section scanned were observed (Fig. S7). Therefore, although
418 the mutants deficient in the outermost part of the LPS were initially able to colonize the
419 root epidermis, anchoring of individual bacteria to the root surface seemed to be
420 impaired.

421 Biofilms associated to root surfaces at a later stage were examined five days
422 after inoculation of whole plantlets with the different strains. The WT strains developed
423 compact and robust patch-like bacterial aggregates mostly distributed on the epidermis
424 of the pea roots, whereas bacterial aggregates of the *lpcA*, *lpcB* and *lpsD* mutants were
425 scattered on the root epidermis and, in general, they were seen as star-like bacterial

426 aggregates or small ramified structures (Fig. 6A). The LPS mutant strains developed
427 root-hair-associated clumps of bacteria that persisted even after the washing steps (Fig.
428 6B). This pattern of colonization was less frequent in the WT strains where bacteria
429 were observed as small groups interacting with the hair root surface. The quantification
430 of root-associated bacteria as CFU per gram of root tissue showed similar values for the
431 WTs and the LPS mutants (Fig. S7), suggesting that differences between the parental
432 and mutant strains in the biofilm patterns observed on root epidermis and root hairs
433 somehow compensate total bacterial counts.

434

435 **DISCUSSION**

436 The exposed O-antigen of *R. leguminosarum* is built up of deoxyhexoses and
437 methylated deoxyhexoses, which confer hydrophobic character to the cellular surface
438 (25, 26). Strains such as the *lpcA*, *lpcB* and *lpsD* mutants that lack the O-antigen but
439 express lipid A attached to a complete or truncated core are expected to expose the most
440 hydrophilic portion of the core (nearest to the lipid bilayer surface) (21). Thus, the
441 bacterial surface would become more hydrophilic and, as observed here, this would be
442 predicted to make the mutants less proficient to bind hydrophobic surfaces. Absence of
443 the outermost part of the LPS also affected cell-cell cohesion. Analysis of the biofilm
444 structures using the COMSTAT program confirmed that the degree of microcolony and
445 biofilm compaction is strongly reduced in the LPS mutants. The simplest interpretation
446 for these observations is that the surface-exposed moiety of the LPS, i.e. the O-chain
447 core region itself, plays a direct role in cell-cell interactions between bacteria.

448 The possibility exists that the exposed portion of the LPS is required for the
449 correct localization or assembly of other surface structures involved in attachment to
450 abiotic or biotic surfaces and cell-cell interactions. It has been suggested that the O-

451 antigen together with the core oligosaccharide are involved in a tight attachment of the
452 CPS on the cell surface (26, 67). We observed a 30-40% reduction in the CPS fraction
453 extracted from the LPS-defective mutants that might be in part responsible for the
454 altered biofilm phenotypes of these strains. However, the reduction in the CPS of the
455 LPS mutants cannot account for the severe phenotype and the aberrant cell-to-cell
456 interactions displayed by the LPS mutants. In fact, the biofilm phenotype of EPS/CPS
457 defective mutants differs from that of the LPS-mutants analyzed in this work since they
458 were completely unable to form microcolonies and polarly attached cells were not
459 observed (9). Therefore, it seems that aberrant interactions between bacteria are caused
460 mainly by the defect in the O-chain core region of the LPS.

461 Although lateral interactions between bacteria were impaired in the LPS
462 mutants, chains of cells attached mostly through their poles were formed. Hence, the
463 question arises as to what molecules are responsible for these polar interactions. One
464 possibility is that in the wild type strains, the LPS structure exposed on the cell surface
465 is not identical all around the cell. In this case, defective O-antigen core structures in the
466 mutants could somehow affect to a greater extent side-to-side interactions.
467 Alternatively, the LPS portion exposed on the surface of the wild type strains could
468 mask or interfere with other surface and polarly localized component and the absence of
469 the O-antigen structure in the LPS mutants may lead to the exposure of this polar
470 component that mediates aberrant (and strong) cell-cell interactions. Several surface-
471 associated factors have been shown to display polar localization. The RapA lectins of *R.*
472 *leguminosarum* have affinity for the EPS and CPS and are polarly localized on the cell
473 surface (17, 68) and the glucomannan polysaccharide is also located at one pole on the
474 bacteria (69). Further studies will be required to understand the interplay between the
475 LPS, polar located molecules and cell-cell interactions.

476 Impaired attachment and biofilm formation have been reported for O-antigen- or
477 core-oligosaccharide-deficient mutants in other species, such as, *Xanthomonas citri* ssp.
478 *citri* (37), *Pseudomonas fluorescens* SBW25 (36) and *E. coli* (39). In laboratory and
479 clinical isolates of *E. coli*, several lines of evidence, using time-lapse microscopy,
480 pointed to a model in which electrostatic interactions between the poly-N-
481 acetylglucosamine (PNAG) polysaccharide and the LPS, are critical for PNAG-induced
482 biofilm formation (39). *Pseudomonas aeruginosa* LPS mutants that lack or display
483 truncated core or O-antigen oligosaccharides had enhanced biofilms on abiotic surfaces
484 and/or host surfaces in comparison to the parental strain (38). *P. aeruginosa* biofilm
485 interactions assayed by microbead force spectroscopy and atomic force microscopy
486 revealed that, in contrast to what we observed with rhizobial mutants, cell adhesion and
487 cohesion (cell-to-cell adherence) were enhanced in mutants with core and O-antigen
488 defects (70). Furthermore, an O-antigen-deficient mutant of *Bradyrhizobium japonicum*
489 showed an enhanced biofilm formation on a polyvinyl chloride (PVC) surface
490 apparently due to a cell surface more hydrophobic than that of the wild-type strain (71).
491 Similarly, lack of the O-antigen in a mutant of *Rhizobium rhizogenes* enhanced
492 adherence among cells, allowing higher bacterial numbers within the biofilms formed
493 on either an abiotic or the root tip surface (72). These observations all support the
494 hypothesis that the exposed moiety of the LPS is important to develop biofilms.
495 Differential phenotypes suggest that the overall effect of a mutation in a LPS
496 biosynthetic gene depends on the interplay between the hydrophobic nature of both, the
497 surface and the O-antigen core region and the other extracellular factors involved in
498 biofilm formation.

499 The LPS-defective mutants of *R. leguminosarum* were affected in the nodulation
500 process since the developed nodules were white and free of bacteria. Impaired

501 nodulation phenotypes were also reported for other LPS mutants of *R. leguminosarum*
502 (27, 52), *R. etli* (64, 65) and *S. meliloti* (73). We showed that mutants that lack the
503 surface-exposed portion of the LPS are altered in both the initial attachment to the root
504 epidermis and the formation of compact root-associated bacterial aggregates at later
505 stages. Interestingly, the LPS mutants showed a tendency to develop bacterial clumps
506 around the root hairs while this pattern was barely observed in the parental strains.
507 Therefore, absence of the surface exposed moiety of the LPS may affect root
508 colonization and eventually root hair invasion. But other factors were shown to be
509 required to colonize the root surface. As mentioned, glucomannan is required for initial
510 and polar bacterial binding along the root hair surface (19, 69) and induction of
511 cellulose synthesis is responsible for cap formation on the hair root surface (19, 74, 75).
512 It will be interesting to perform further studies to evaluate the relation between the O-
513 chain core region of the LPS and the glucomannan-cellulose induced attachment of
514 *Rhizobium* to host surfaces.

515

516 **Acknowledgments**

517 We are grateful to María Pía Brucini and D&D from Diego F. Chiarullo for helpful
518 collaborations. We thank Maximiliano Neme, Susana Raffo and Marta Bravo for
519 technical assistance; Philip Poole for providing pRU1319. AZ, WG, DMR and PLA are
520 members of CONICET. DMR was supported by UNESCO-ASM Travel Award from
521 the American Society for Microbiology to visit the John Innes Centre (UK); DMP and
522 AW were supported by CONICET and BBSRC studentships, respectively. This work
523 was supported by PICT 20334, Agencia de Promoción Científica y Tecnológica
524 (Argentina) and PIP 545, CONICET (Argentina), a grant (BB/E017045/1) and a grant
525 in aid from the BBSRC (UK). E.K. was supported in part by a grant from the United

526 States National Institutes of Health (R21 AI76753) and in part by a grant of the United
527 States Department of Energy (DE-FG02-09ER20097) to the Complex Carbohydrate
528 Research Center (University of Georgia, Athens, USA).

529

530 **Legends to figures**

531 **Figure 1. (A)** Diagram of the *R. leguminosarum* strain 3841 *loci* organization involved
532 in LPS biosynthesis. The location of each gene in 3841 chromosome (or pRL9 plasmid)
533 is indicated by numbers relating to the genome sequence. The positions of the Tn5
534 insertions in mutants are shown by inverted black (A950 and A951) or white arrows
535 (B772). The lower bold lines indicate the amplified products used to generate the
536 complementation plasmids. δ -*lps* locus: *cpaA* encodes a LPS-associated cation exporter;
537 *lpcB* encodes a CMP-Kdo transferase; *lpcA* encodes a galactosyl transferase. pRL9-
538 borne β locus: *lpsB2* encodes a hypothetical O-antigen biosynthesis related protein;
539 *lpsB1* a putative galactosyl transferase protein; *lpsD* a putative O-antigen ligase. **(B)**
540 12% SDS PAGE-Silver periodate oxidation (left) or immunoblot (right) analysis of the
541 LPS extracted from A34, 3841, *lpcA*, *lpcB*, *lpsD* and complemented strains. O-chains
542 were detected by immunoblots using the specific monoclonal antibodies MAC 114 or
543 MAC57, which recognize the O-LPS from A34 or 3841 strains, respectively. LPS I and
544 LPS II components of the LPS are indicated.

545 **Figure 2. Autoaggregation assays.** The sedimentation profiles of liquid suspensions of
546 *R. leguminosarum* strains A34 (A) or 3841 (B) derivative strains in TY medium are
547 shown. Each point corresponds to average of replicated samples from two independent
548 experiments.

549 **Figure 3. Rhizobial adhesion to a hydrophobic abiotic surface.** *R. leguminosarum*
550 A34 or 3841 derivative strains were grown in polystyrene multiwell plates in static Y-

551 mannitol minimal medium for 3 days at 28 °C and bacterial attachment was quantified
552 by crystal violet (CV) staining. Horizontal values correspond to average of six replicate
553 samples in at least two different experiments. (****) p<0.0001 One way ANOVA was
554 performed using Graphpad Prism 5 software.

555 **Figure 4. Cellular interactions and biofilms formed by *R. leguminosarum* A34**
556 **derivative strains.** CLSM images are horizontal (X-axis) projections of optical sections
557 showing bacterial attachment at day 1 and the biofilms formed at day 4 in chambered
558 coverglass slides (1000 X magnification) by A34, the isogenic LPS-mutant *lpcA* and the
559 complemented *lpcA* pFC222 strains. The inserted images are zooms (3X). Sized bars
560 indicate 2 μ m.

561 **Figure 5. Cellular interactions and biofilms formed by *R. leguminosarum* 3841**
562 **derivative strains.** CLSM images showing bacterial attachment at day 1 and biofilms
563 formed at day 4 in chambered coverglass slides by 3841, the isogenic LPS-mutants *lpcB*
564 and *lpsD* and the complemented *lpcB* pFC222 and *lpsD* pFC224 strains after one and
565 four days (1000X magnification). The inserted images are zooms (3X). Sized bars
566 indicate 2 μ m.

567 **Figure 6. Rhizobial biofilm formation on pea roots. (A)** Five-days-old GFP-labelled
568 biofilm formed by the WT strains and the LPS derivative mutants. Note the compact
569 microcolony-patches formed by the A34 and 3841 WT strains and the ramified or star-
570 like microcolonies scattered on the root epidermis developed by the mutants. 6X-zoom-
571 images (right) show the detail of a root-attached bacterial aggregate. Magnifications:
572 400X (left) or 2400X (right). **(B)** CLSM images of bacterial aggregates associated to
573 root hairs. White arrows indicate bacterial clumps associated to root hairs developed by
574 the LPS mutants. Magnification: 400X. CLSM images are horizontal (X axis)

575 projections of representative images of five independent experiments. Sized bars
576 indicate 10 μ m.

577

578

579 **Table 1. Strains and Plasmids used in this work.**

Strain/ Plasmid	Description	Source or Reference
3841	<i>R. leguminosarum</i> bv. <i>viciae</i> 3841 (Str ^R)	(76)
A34	<i>R. leguminosarum</i> bv. <i>viciae</i> 8401 (77) /pRL1JI (Str ^R)	
A950	Mutant of 3841, <i>lpsD</i> ::Tn5	This work
A951	Mutant of 3841, <i>lpcB</i> ::Tn5	This work
B772	Mutant of A34, <i>lpcA</i> :: Tn5	This work
pRU1319	Plasmid pOT1 carrying green fluorescent protein (GFPuv)	(47)
pJB4JI	pPH1JI derivative plasmid carrying Mu and Tn5.	(44)
pGEM-T easy	Cloning vector for PCR products	Promega
pLAFR3	Broad host range cosmid cloning vector	(78)
pFC222	pLAFR3 cosmid carrying the <i>lpcA</i> and <i>lpcB</i> genes and the upstream regulatory sequences from 3841	This work
pFC224	pLAFR3 cosmid carrying the <i>lpsD</i> gene and the upstream regulatory sequences from 3841	This work

580

581

582 **Table 2. EPS and CPS production**

Strain	EPS	CPS
	(mg GlcA equivalents/100 ml)	(µg GlcA equivalents/100 ml)
A34	17± 2	127 ± 4
<i>lpcA</i>	17 ± 7	73 ± 23 (-42%)
3841	27 ± 6	113 ± 6
<i>lpcB</i>	22 ± 8	69 ± 5 (-39%)
<i>lpsD</i>	23 ± 3	75 ± 5 (-34%)

583

584 EPS and CPS produced by *Rhizobium* strains were estimated as glucuronic acid equivalents
585 quantified by the *meta*-hydroxybiphenyl method (54).

586

587 **Table 3. COMSTAT analysis of four-day biofilms**

588

Parameter	A34	<i>lpcA</i>	3841	<i>lpcB</i>	<i>lpsD</i>
Average thickness (μm)	28 ± 6	103 ± 12 (**)	31 ± 6	103 ± 16 (*)	110 ± 18 (*)
Roughness coefficient	0,41 ± 0,06	0,23 ± 0,02 (*)	0,66 ± 0,03	0,45 ± 0,06	0,31 ± 0,03 (*)
Surface to volume ratio (μm ² /μm ³)	0,12 ± 0,01	0,05 ± 0,00 (*)	0,08 ± 0,00	0,04 ± 0,00	0,04 ± 0,01
Percentage of the area covered by bacteria in each layer (%)	Layer 1 26,9 ± 3,2 (*)	7,8 ± 5,4	26,8 ± 5,7	7,5 ± 1,5 (*)	4,0 ± 2,0 (*)
	Layer 15 88,9 ± 0,2 (*)	48,7 ± 5,9	88,8 ± 7,9	39,6 ± 6,9 (*)	38,2 ± 2,6 (**)
	Layer 50 3,9 ± 0,7 (***)	23,8 ± 9,0	5,9 ± 2,6	40,0 ± 3,8 (*)	12,7 ± 1,7
	Layer 150 —	3,0 ± 2,7	—	1,3 ± 0,7	3,0 ± 1,3

589

590 Values are means of data from at least 5 independent experiments. Parameters were
 591 calculated using COMSTAT and statistical analysis by Graphpad Prism 5 software (One
 592 way ANOVA (*) p<0,05; (**) p<0,01; (***) p<0,001).

593

594

595

596 **References**

1. **Gage DJ.** 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. *Microbiol Mol Biol Rev* **68**:280-300.
2. **Cooper JE.** 2007. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. *J Appl Microbiol* **103**:1355-1365.
3. **Danhorn T, Fuqua C.** 2007. Biofilm formation by plant-associated bacteria. *Annu Rev Microbiol* **61**:401-422.
4. **Downie JA.** 2010. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. *FEMS Microbiol Rev* **34**:150-170.
5. **Davey ME, O'Toole G A.** 2000. Microbial biofilms: from ecology to molecular genetics. *Microbiol Mol Biol Rev* **64**:847-867.

609 6. **Watnick P, Kolter R.** 2000. Biofilm, city of microbes. *J Bacteriol* **182**:2675-
610 2679.

611 7. **Karatan E, Watnick P.** 2009. Signals, regulatory networks, and materials that
612 build and break bacterial biofilms. *Microbiol Mol Biol Rev* **73**:310-347.

613 8. **Rudrappa T, Biedrzycki ML, Bais HP.** 2008. Causes and consequences of
614 plant-associated biofilms. *FEMS Microbiol Ecol* **64**:153-166.

615 9. **Russo DM, Williams A, Edwards A, Posadas DM, Finnie C, Dankert M,
616 Downie JA, Zorreguieta A.** 2006. Proteins exported via the PrsD-PrsE type I
617 secretion system and the acidic exopolysaccharide are involved in biofilm
618 formation by *Rhizobium leguminosarum*. *J Bacteriol* **188**:4474-4486.

619 10. **Merritt PM, Danhorn T, Fuqua C.** 2007. Motility and chemotaxis in
620 *Agrobacterium tumefaciens* surface attachment and biofilm formation. *J
621 Bacteriol* **189**:8005-8014.

622 11. **Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano
623 W.** 2006. Effects of nutritional and environmental conditions on *Sinorhizobium
624 meliloti* biofilm formation. *Res Microbiol* **157**:867-875.

625 12. **Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM.** 2006. Investigations of
626 *Rhizobium* biofilm formation. *FEMS Microbiol Ecol* **56**:195-206.

627 13. **Rinaudi LV, Gonzalez JE.** 2009. The low-molecular-weight fraction of
628 exopolysaccharide II from *Sinorhizobium meliloti* is a crucial determinant of
629 biofilm formation. *J Bacteriol* **191**:7216-7224.

630 14. **Sorroche FG, Rinaudi LV, Zorreguieta A, Giordano W.** 2010. EPS II-
631 dependent autoaggregation of *Sinorhizobium meliloti* planktonic cells. *Curr
632 Microbiol* **61**:465-470.

633 15. **Fujishige NA, Lum MR, De Hoff PL, Whitelegge JP, Faull KF, Hirsch AM.**
634 2008. *Rhizobium* common nod genes are required for biofilm formation. *Mol
635 Microbiol* **67**:504-515.

636 16. **Krechenbrink M, Downie JA.** 2008. Identification of protein secretion systems
637 and novel secreted proteins in *Rhizobium leguminosarum* bv. *viciae*. *BMC
638 Genomics* **9**:55.

639 17. **Abdian PL, Caramelo JJ, Ausmees N, Zorreguieta A.** 2013. RapA2 is a
640 calcium-binding lectin composed of two highly conserved cadherin-like
641 domains that specifically recognize *Rhizobium leguminosarum* acidic
642 exopolysaccharides. *J Biol Chem* **288**:2893-2904.

643 18. **Frederix M, Edwards A, Swiderska A, Stanger A, Karunakaran R,
644 Williams A, Abbruscato P, Sanchez-Contreras M, Poole PS, Downie JA.**
645 2014. Mutation of praR in *Rhizobium leguminosarum* enhances root biofilms,
646 improving nodulation competitiveness by increased expression of attachment
647 proteins. *Mol Microbiol* **93**:464-478.

648 19. **Williams A, Wilkinson A, Krechenbrink M, Russo DM, Zorreguieta A,
649 Downie JA.** 2008. Glucomannan-mediated attachment of *Rhizobium
650 leguminosarum* to pea root hairs is required for competitive nodule infection. *J
651 Bacteriol* **190**:4706-4715.

652 20. **Dong J, Signo KS, Vanderlinde EM, Yost CK, Dahms TE.** 2011. Atomic
653 force microscopy of a *ctpA* mutant in *Rhizobium leguminosarum* reveals surface
654 defects linking CtpA function to biofilm formation. *Microbiology* **157**:3049-
655 3058.

656 21. **Carlson RW, Forsberg LS, Kannenberg EL.** 2010. Lipopolysaccharides in
657 *Rhizobium*-legume symbioses. *Subcell Biochem* **53**:339-386.

658 22. **De Castro C, Molinaro A, Lanzetta R, Silipo A, Parrilli M.** 2008. Lipopolysaccharide structures from *Agrobacterium* and *Rhizobiaceae* species. *Carbohydr Res* **343**:1924-1933.

659 23. **Bhat UR, Mayer H, Yokota A, Hollingsworth RI, Carlson RW.** 1991. Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family *Rhizobiaceae*. *J Bacteriol* **173**:2155-2159.

660 24. **Carlson RW, Garcí F, Noel D, Hollingsworth R.** 1989. The structures of the lipopolysaccharide core components from *Rhizobium leguminosarum* biovar *phaseoli* CE3 and two of its symbiotic mutants, CE109 and CE309. *Carbohydr Res* **195**:101-110.

661 25. **Carlson RW.** 1984. Heterogeneity of *Rhizobium* lipopolysaccharides. *J Bacteriol* **158**:1012-1017.

662 26. **Forsberg LS, Carlson RW.** 2008. Structural characterization of the primary O-antigenic polysaccharide of the *Rhizobium leguminosarum* 3841 lipopolysaccharide and identification of a new 3-acetimidoylaminoo-3-deoxyhexuronic acid glycosyl component: a unique O-methylated glycan of uniform size, containing 6-deoxy-3-O-methyl-D-talose, N-acetylquinovosamine, and rhizoaminuronic acid (3-acetimidoylaminoo-3-deoxy-D-gluco-hexuronic acid). *J Biol Chem* **283**:16037-16050.

663 27. **Perotto S, Brewin, N.J., Kannenberg, E.L.** 1994. Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of *Rhizobium leguminosarum* strain 3841. *Mol Plant Microbe Interact* **7**:99-112.

664 28. **Kannenberg EL, Carlson RW.** 2001. Lipid A and O-chain modifications cause *Rhizobium* lipopolysaccharides to become hydrophobic during bacteroid development. *Mol Microbiol* **39**:379-391.

665 29. **D'Haeze W, Leoff C, Freshour G, Noel KD, Carlson RW.** 2007. *Rhizobium etli* CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria. *J Biol Chem* **282**:17101-17113.

666 30. **Lerouge I, Vanderleyden J.** 2001. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. *FEMS Microbiol Rev* **26**:17-47.

667 31. **Kannenberg EL, Brewin NJ.** 1989. Expression of a cell surface antigen from *Rhizobium leguminosarum* 3841 is regulated by oxygen and pH. *J Bacteriol* **171**:4543-4548.

668 32. **Bhat UR, Carlson RW.** 1992. Chemical characterization of pH-dependent structural epitopes of lipopolysaccharides from *Rhizobium leguminosarum* biovar *phaseoli*. *J Bacteriol* **174**:2230-2235.

669 33. **Noel KD, Box JM, Bonne VJ.** 2004. 2-O-methylation of fucosyl residues of a rhizobial lipopolysaccharide is increased in response to host exudate and is eliminated in a symbiotically defective mutant. *Appl Environ Microbiol* **70**:1537-1544.

670 34. **Vanderlinde EM, Muszynski A, Harrison JJ, Koval SF, Foreman DL, Ceri H, Kannenberg EL, Carlson RW, Yost CK.** 2009. *Rhizobium leguminosarum* biovar *viaiae* 3841, deficient in 27-hydroxyoctacosanoate-modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. *Microbiology* **155**:3055-3069.

671 35. **Brown DB, Forsberg LS, Kannenberg EL, Carlson RW.** 2012. Characterization of galacturonosyl transferase genes *rgtA*, *rgtB*, *rgtC*, *rgtD*, and

708 *rgtE* responsible for lipopolysaccharide synthesis in nitrogen-fixing
709 endosymbiont *Rhizobium leguminosarum*: lipopolysaccharide core and lipid
710 galacturonosyl residues confer membrane stability. *J Biol Chem* **287**:935-949.

711 36. **Spiers AJ, Rainey PB.** 2005. The *Pseudomonas fluorescens* SBW25 wrinkly
712 spreader biofilm requires attachment factor, cellulose fibre and LPS interactions
713 to maintain strength and integrity. *Microbiology* **151**:2829-2839.

714 37. **Li J, Wang N.** 2011. The wxacO gene of *Xanthomonas citri* ssp. *citri* encodes a
715 protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress
716 tolerance and virulence. *Mol Plant Pathol* **12**:381-396.

717 38. **Abu-Lail LI, Liu Y, Atabek A, Camesano TA.** 2007. Quantifying the
718 adhesion and interaction forces between *Pseudomonas aeruginosa* and natural
719 organic matter. *Environ Sci Technol* **41**:8031-8037.

720 39. **Amini S, Goodarzi H, Tavazoie S.** 2009. Genetic dissection of an exogenously
721 induced biofilm in laboratory and clinical isolates of *E. coli*. *PLoS Pathog*
722 **5**:e1000432.

723 40. **Beringer JE.** 1974. R factor transfer in *Rhizobium leguminosarum*. *J Gen*
724 *Microbiol* **84**:188-198.

725 41. **Sherwood MT.** 1970. Improved synthetic medium for the growth of *Rhizobium*.
726 *J Appl Bacteriol* **33**:708-713.

727 42. **Miller J.** 1972. Experiments in Molecular Genetics. Cold Spring Harbor, New
728 York.

729 43. **Zevenhuizen LP, Bertocchi C, van Neerven AR.** 1986. Congo red absorption
730 and cellulose synthesis by *Rhizobiaceae*. *Antonie Van Leeuwenhoek* **52**:381-
731 386.

732 44. **Beringer JE, Beynon J.L., Buchanan-Wollaston A.V. and Johnston A.W.B.**
733 1978. Transfer of the drug resistance transposon Tn5 to *Rhizobium*. *Nature*
734 **276**:633-634.

735 45. **Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull**
736 **KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK,**
737 **Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T,**
738 **Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K,**
739 **Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M,**
740 **Simmonds M, Whitehead S, Parkhill J.** 2006. The genome of *Rhizobium*
741 *leguminosarum* has recognizable core and accessory components. *Genome Biol*
742 **7**:R34.

743 46. **O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R.**
744 1999. Genetic approaches to study of biofilms. *Methods Enzymol* **310**:91-109.

745 47. **Allaway D, Schofield NA, Leonard ME, Gilardoni L, Finan TM, Poole PS.**
746 2001. Use of differential fluorescence induction and optical trapping to isolate
747 environmentally induced genes. *Environ Microbiol* **3**:397-406.

748 48. **Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK,**
749 **Molin S.** 2000. Quantification of biofilm structures by the novel computer
750 program COMSTAT. *Microbiology* **146 (Pt 10)**:2395-2407.

751 49. **Westphal OaJ, K.** 1965. Bacterial lipopolysaccharides. *Methods Carbohydr*
752 *Chem* **5**:83-91.

753 50. **Tsai CM, Frasch CE.** 1982. A sensitive silver stain for detecting
754 lipopolysaccharides in polyacrylamide gels. *Anal Biochem* **119**:115-119.

755 51. **Brewin NJ, Wood EA, A.P. L, G. G, G.W. B.** 1986. Analysis of
756 Lipopolysaccharide from root nodule bacteroids of *Rhizobium leguminosarum*
757 using monoclonal antibodies. *Journal of General Microbiology* **132**:1959-1968.

758 52. **Kannenberg EL, Rathbun EA, Brewin NJ.** 1992. Molecular dissection of
759 structure and function in the lipopolysaccharide of *Rhizobium leguminosarum*
760 strain 3841 using monoclonal antibodies and genetic analysis. *Mol Microbiol*
761 **6**:2477-2487.

762 53. **Hollingsworth RI, Abe M, Sherwood JE, Dazzo FB.** 1984. Bacteriophage-
763 induced acidic heteropolysaccharide lyases that convert the acidic
764 heteropolysaccharides of *Rhizobium trifolii* into oligosaccharide units. *J*
765 **Bacteriol** **160**:510-516.

766 54. **Filisetti-Cozzi TM, Carpita NC.** 1991. Measurement of uronic acids without
767 interference from neutral sugars. *Anal Biochem* **197**:157-162.

768 55. **Sherlock O, Schembri MA, Reisner A, Klemm P.** 2004. Novel roles for the
769 AIDA adhesin from diarrheagenic *Escherichia coli*: cell aggregation and biofilm
770 formation. *J Bacteriol* **186**:8058-8065.

771 56. **Fahraeus G.** 1957. The infection of clover root hairs by nodule bacteria studied
772 by a simple glass slide technique. *J Gen Microbiol* **16**:374-381.

773 57. **Beynon JLB, J.E.; Johnston, A.W.B.** 1980. Plasmids and host range in
774 *Rhizobium leguminosarum* and *Rhizobium phaseoli*. *J Gen Microbiol* **120**:413-
775 420.

776 58. **Allaway D, Jeyaretnam B, Carlson RW, Poole PS.** 1996. Genetic and
777 chemical characterization of a mutant that disrupts synthesis of the
778 lipopolysaccharide core tetrasaccharide in *Rhizobium leguminosarum*. *J*
779 **Bacteriol** **178**:6403-6406.

780 59. **Kadrimas JL, Allaway D, Studholme RE, Sullivan JT, Ronson CW, Poole
781 PS, Raetz CR.** 1998. Cloning and overexpression of glycosyltransferases that
782 generate the lipopolysaccharide core of *Rhizobium leguminosarum*. *J Biol Chem*
783 **273**:26432-26440.

784 60. **Poole PS, Schofield NA, Reid CJ, Drew EM, Walshaw DL.** 1994. Identification of chromosomal genes located downstream of *dctD* that affect the
785 requirement for calcium and the lipopolysaccharide layer of *Rhizobium*
786 *leguminosarum*. *Microbiology* **140 (Pt 10)**:2797-2809.

788 61. **Garcia de los Santos A, Brom S.** 1997. Characterization of two plasmid-borne
789 lps beta loci of *Rhizobium etli* required for lipopolysaccharide synthesis and for
790 optimal interaction with plants. *Mol Plant Microbe Interact* **10**:891-902.

791 62. **Gonzalez V, Santamaria RI, Bustos P, Hernandez-Gonzalez I, Medrano-
792 Soto A, Moreno-Hagelsieb G, Janga SC, Ramirez MA, Jimenez-Jacinto V,
793 Collado-Vides J, Davila G.** 2006. The partitioned *Rhizobium etli* genome: genetic
794 and metabolic redundancy in seven interacting replicons. *Proc Natl Acad
795 Sci U S A* **103**:3834-3839.

796 63. **O'Neill MA, Darvill AG, Albersheim P.** 1991. The degree of esterification and
797 points of substitution by O-acetyl and O-(3-hydroxybutanoyl) groups in the
798 acidic extracellular polysaccharides secreted by *Rhizobium leguminosarum*
799 biovars *viciae*, *trifolii*, and *phaseoli* are not related to host range. *J Biol Chem*
800 **266**:9549-9555.

801 64. **Noel KD, Forsberg LS, Carlson RW.** 2000. Varying the abundance of O
802 antigen in *Rhizobium etli* and its effect on symbiosis with *Phaseolus vulgaris*. *J*
803 **Bacteriol** **182**:5317-5324.

804 65. **Forsberg LS, Noel KD, Box J, Carlson RW.** 2003. Genetic locus and
805 structural characterization of the biochemical defect in the O-antigenic
806 polysaccharide of the symbiotically deficient *Rhizobium etli* mutant, CE166.

807 Replacement of N-acetylquinovosamine with its hexosyl-4-ulose precursor. *J
808 Biol Chem* **278**:51347-51359.

809 66. **Janczarek M.** 2011. Environmental signals and regulatory pathways that
810 influence exopolysaccharide production in rhizobia. *Int J Mol Sci* **12**:7898-7933.

811 67. **Laus MaK, JW.** 2004. A fixer's dress code: surface polysaccharides in Host-
812 Plant-Specificity in the root nodule symbiosis. *Trends in Glycoscience and
813 Glycotechnology* **16**:281-290.

814 68. **Ausmees N, Jacobsson K, Lindberg M.** 2001. A unipolarly located, cell-
815 surface-associated agglutinin, RapA, belongs to a family of *Rhizobium-adhering
816 proteins* (Rap) in *Rhizobium leguminosarum* bv. *trifoli*. *Microbiology* **147**:549-
817 559.

818 69. **Laus MC, Logman TJ, Lamers GE, Van Brussel AA, Carlson RW, Kijne
819 JW.** 2006. A novel polar surface polysaccharide from *Rhizobium
820 leguminosarum* binds host plant lectin. *Mol Microbiol* **59**:1704-1713.

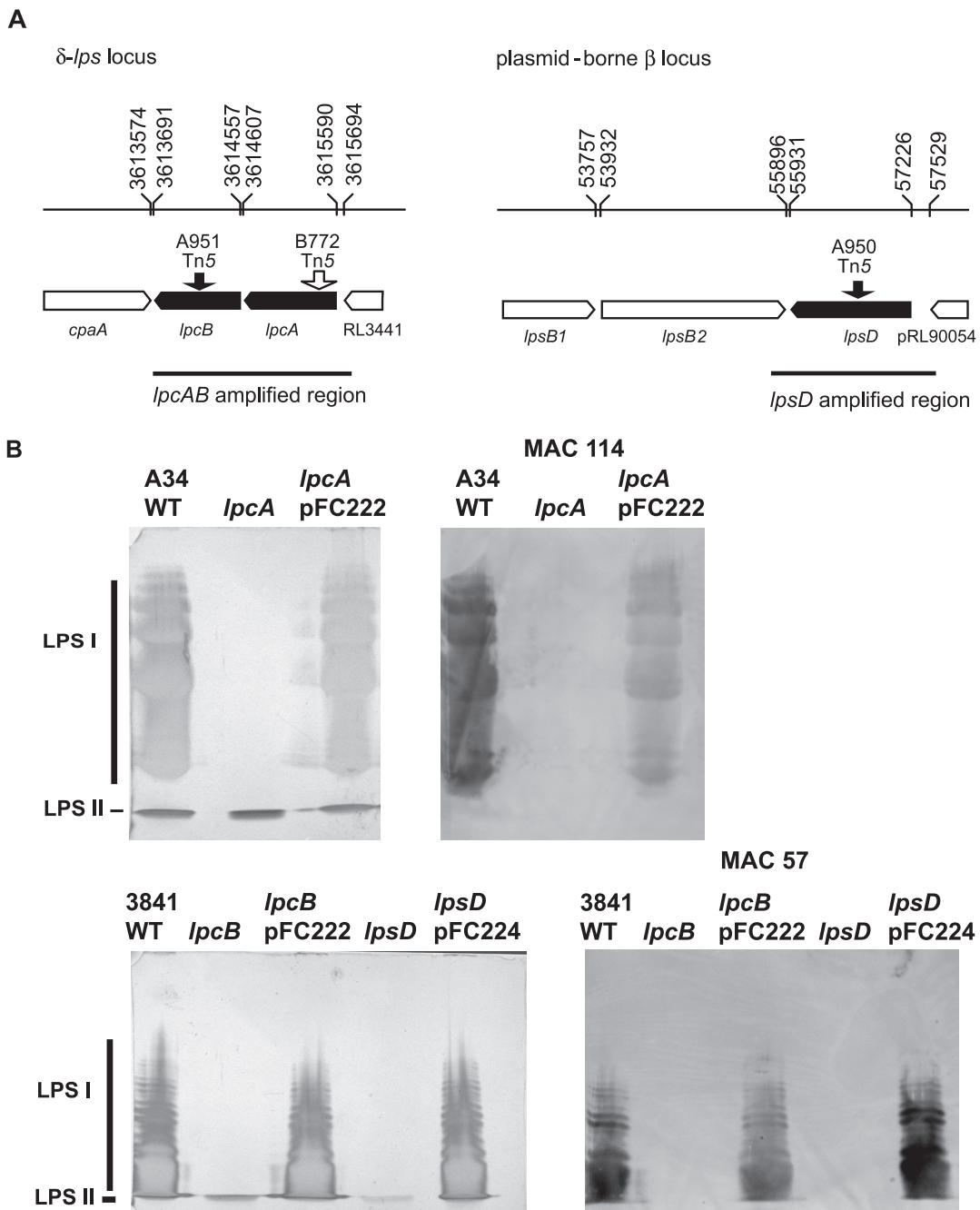
821 70. **Lau PC, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS.** 2009. Differential
822 lipopolysaccharide core capping leads to quantitative and correlated
823 modifications of mechanical and structural properties in *Pseudomonas
824 aeruginosa* biofilms. *J Bacteriol* **191**:6618-6631.

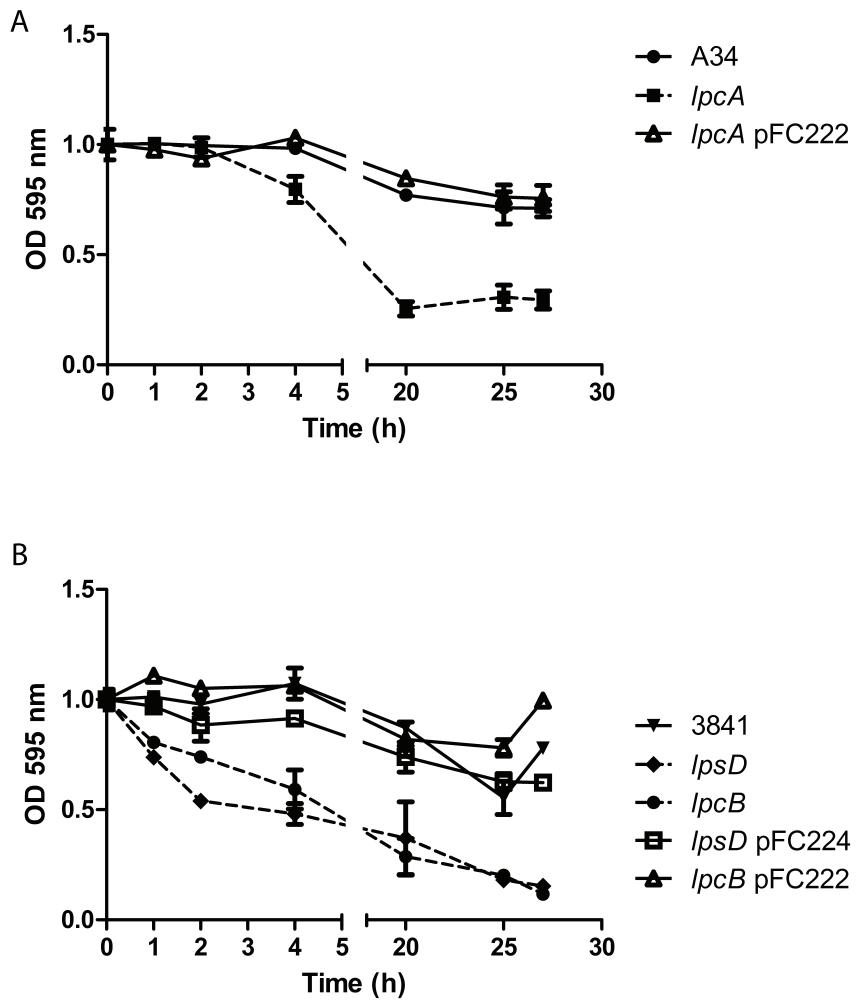
825 71. **Lee YW, Jeong SY, In YH, Kim KY, So JS, Chang WS.** 2010. Lack of O-
826 polysaccharide enhances biofilm formation by *Bradyrhizobium japonicum*. *Lett
827 Appl Microbiol* **50**:452-456.

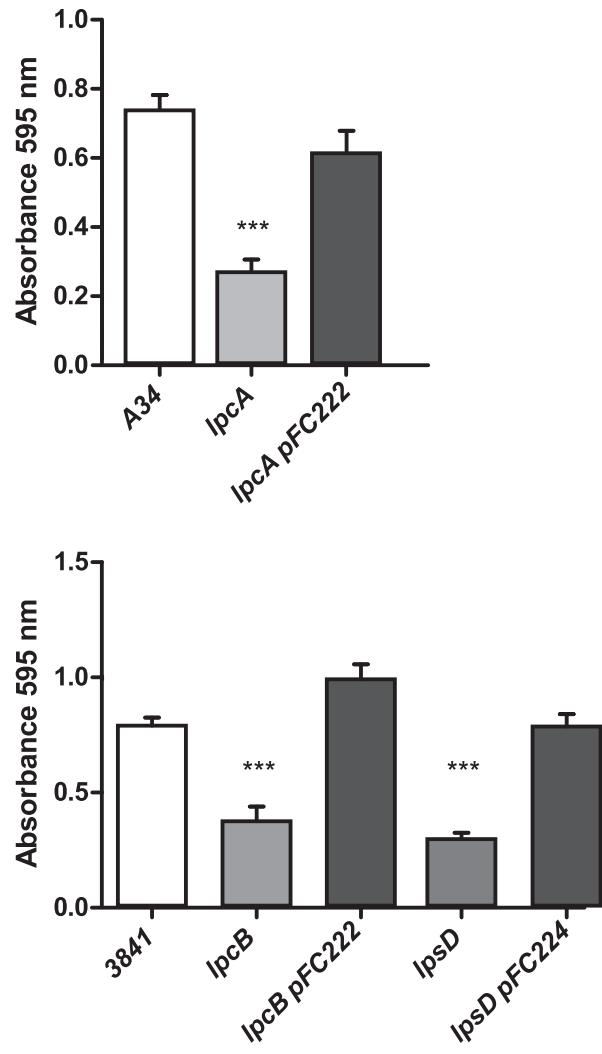
828 72. **Abarca-Grau AM, Burbank LP, de Paz HD, Crespo-Rivas JC, Marco-
829 Noales E, Lopez MM, Vinardell JM, von Bodman SB, Penyalver R.** 2012.
830 Role for *Rhizobium rhizogenes* K84 cell envelope polysaccharides in surface
831 interactions. *Appl Environ Microbiol* **78**:1644-1651.

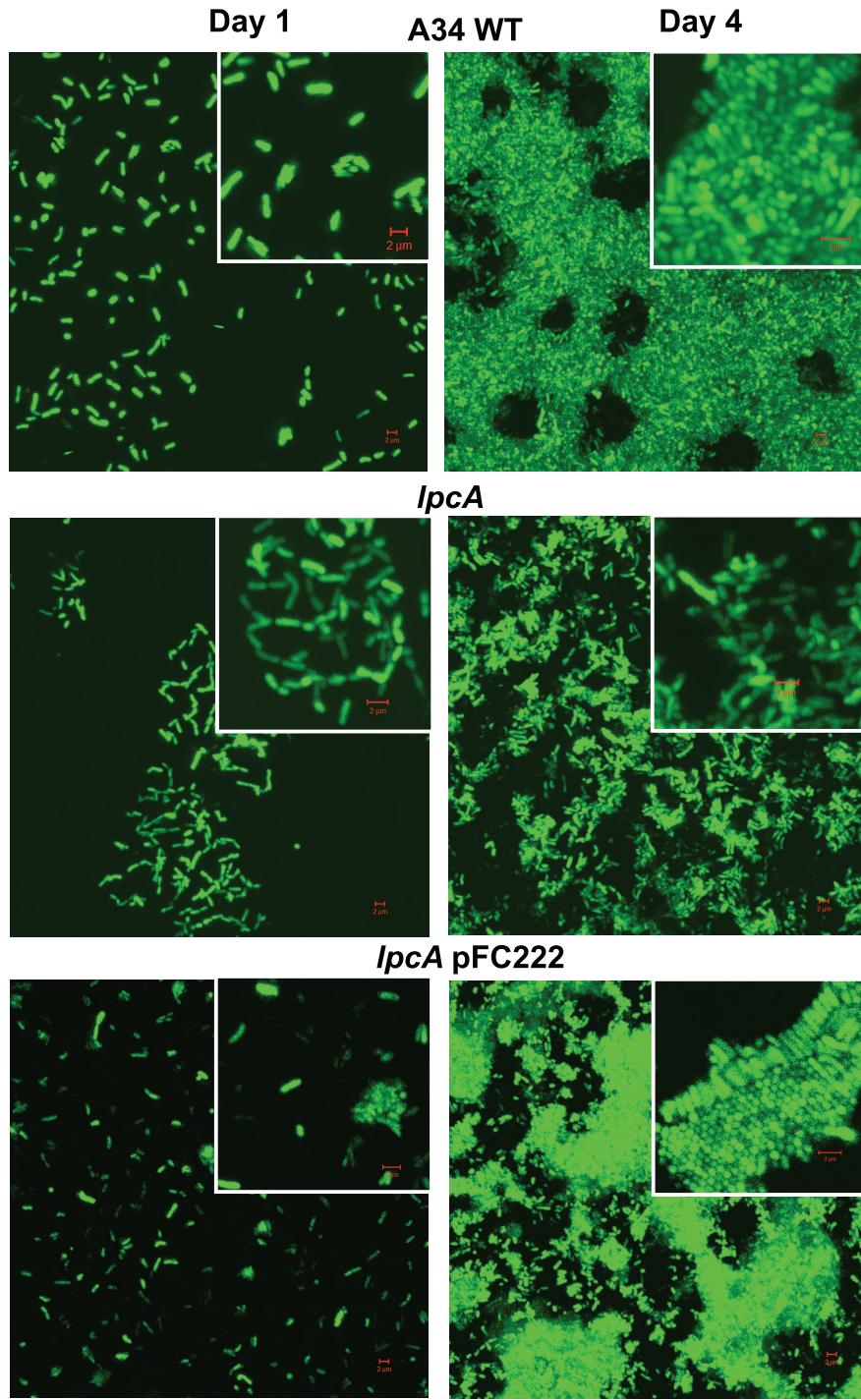
832 73. **Campbell GR, Reuhs BL, Walker GC.** 2002. Chronic intracellular infection of
833 alfalfa nodules by *Sinorhizobium meliloti* requires correct lipopolysaccharide
834 core. *Proc Natl Acad Sci U S A* **99**:3938-3943.

835 74. **Smit G, Kijne JW, Lugtenberg BJ.** 1986. Correlation between extracellular
836 fibrils and attachment of *Rhizobium leguminosarum* to pea root hair tips. *J
837 Bacteriol* **168**:821-827.

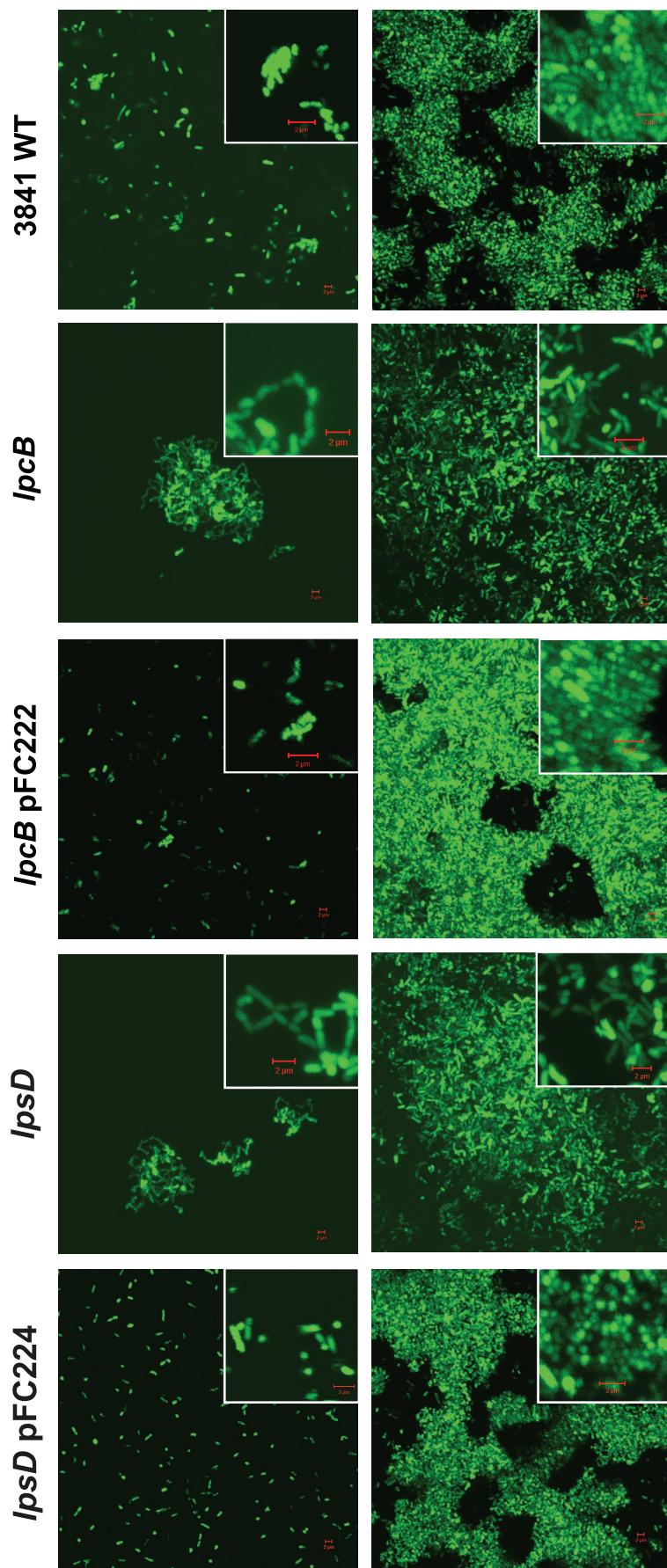

838 75. **Laus MC, van Brussel AA, Kijne JW.** 2005. Role of cellulose fibrils and
839 exopolysaccharides of *Rhizobium leguminosarum* in attachment to and infection
840 of *Vicia sativa* root hairs. *Mol Plant Microbe Interact* **18**:533-538.

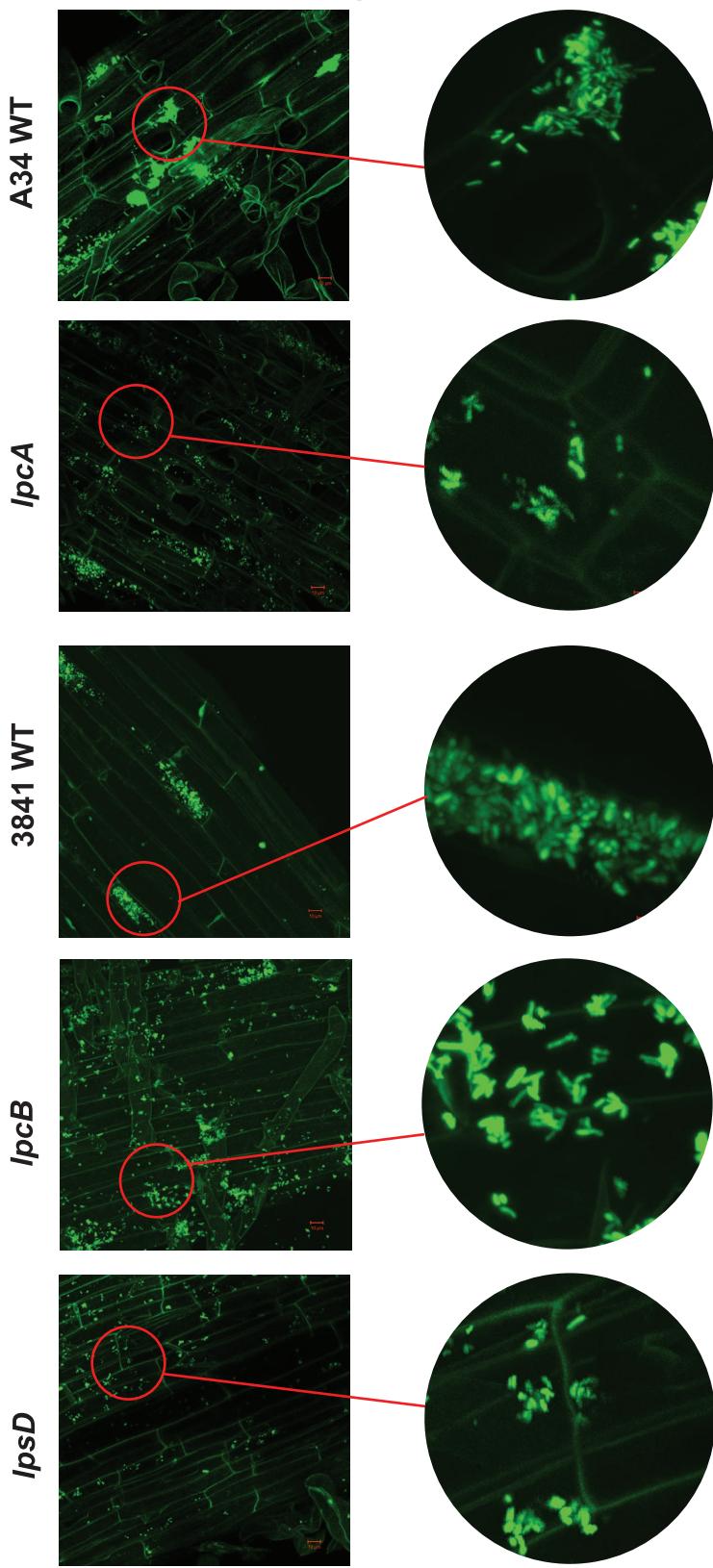

841 76. **Johnston AW, Beringer JE.** 1975. Identification of the *Rhizobium* strains in
842 pea root nodules using genetic markers. *J Gen Microbiol* **87**:343-350.

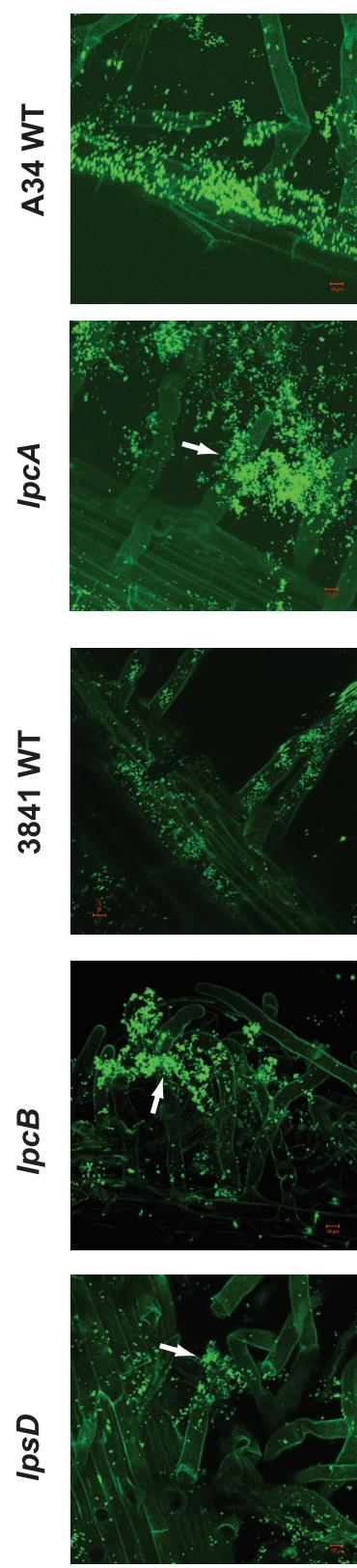

843 77. **Downie JA, Ma QS, Knight CD, Hombrecher G, Johnston AW.** 1983.
844 Cloning of the symbiotic region of *Rhizobium leguminosarum*: the nodulation
845 genes are between the nitrogenase genes and a *nifA*-like gene. *Embo J* **2**:947-
846 952.


847 78. **Staskawicz B, Dahlbeck D, Keen N, Napoli C.** 1987. Molecular
848 characterization of cloned avirulence genes from race 0 and race 1 of
849 *Pseudomonas syringae* pv. *glycinea*. *J Bacteriol* **169**:5789-5794.

850
851






Day 1

A Biofilm on the root epidermis

B Biofilm on hair roots

