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SUMMARY

The formation of biofilms is an important survival strategy allowing
rhizobia to live on soil particles and plant roots. Within the microcolonies of the
biofilm developed by Rhizobium leguminosarum, rhizobial cells interact tightly
through lateral and polar connections forming organized and compact cell
aggregates. These microcolonies are embedded in a biofilm matrix, whose main
component is the acidic exopolysaccharide (EPS). Our work shows that the O-
chain core region of the R. leguminosarum lipopolysaccharide (LPS) (which
stretches out of the cell surface) strongly influences bacterial adhesive properties
and cell-cell cohesion. Mutants defective in the O-chain or O-chain core moiety
developed premature microcolonies in which lateral bacterial contacts were
greatly reduced. Furthermore, cell-cell interactions within the microcolonies of
the LPS mutants were mediated mostly through their poles, resulting in a biofilm
with an altered three-dimensional structure and increased thickness. In addition,
on the root epidermis and on root hairs, O-antigen core-defective strains showed
altered biofilm patterns with the typical microcolony compaction impaired. Taken
together, these results indicate that the surface exposed moiety of the LPS is
crucial for proper cell-to-cell interactions and for the formation of robust biofilms

on different surfaces.

INTRODUCTION

During legume-rhizobial interactions, bacteria invade the legume plant roots

leading to the formation of nodules in which atmospheric nitrogen is reduced to

ammonia that is ultimately used by the host to grow in nitrogen-depleted soils. Only a
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fraction of soil rhizobia infect and colonize host plants (1, 2) suggesting that they must
have alternative strategies, such as biofilm formation, to survive in different
environments and conditions (3, 4).

Biofilms are structures in which microorganisms are encased in a matrix of
polymeric substances and grow attached to biotic or abiotic surfaces. Biofilm formation
requires initial attachment to a surface, microcolony formation, maturation, dispersion
and migration (5-7). Structured microbial communities attached to plant roots and the
surrounding soil particles can be viewed as biofilm communities (3, 8). Rhizobia and
the closely-related agrobacteria develop structured biofilms in vitro consisting of layers
of bacteria in contact with each other and interlaced with water channels (9, 10). Within
curled root hairs, Sinorhizobium meliloti cells form small biofilm-type aggregates that
provide the inoculum for root invasion (1). In S. meliloti strain 1021, attachment to
polystyrene and growth as a biofilm depends on the environmental conditions (11) and
biotic and abiotic surfaces colonization is affected by succinoglycan production (12).
Establishment of a three dimensional biofilm structure and autoaggregation depend on
the production of another exopolysaccharide, termed EPS |1 (13, 14) and also on core
nodulation (Nod) factor (15).

Mutants of Rhizobium leguminosarum bv. viciae strain A34, defective in the
production of the acidic EPS and the capsular polysaccharide (CPS), were unable to
develop typical microcolonies and a structured biofilm in vitro (9). Two EPS-B-1,4
glycanases and several proteins from the Rap (Rhizobium adhering protein) family,
secreted by the PrsDE system, were proposed to be involved in the maturation of an
organized biofilm structure (9, 16). One of the Rap proteins, RapA2, is a calcium-
dependent lectin that specifically interacts with the EPS/CPS of R. leguminosarum,

supporting a role of Rap(s) in the development of the biofilm matrix (17). Recently,
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overexpression of several Rap(s) was observed in a mutant defective in the
transcriptional repressor PraR, resulting in enhanced root attachment and nodule
competitiveness (18). The development of an in vitro biofilm by the sequenced strain
3841 requires EPS, but not cellulose, glucomannan or gel forming polysaccharide,
whereas glucomannan and cellulose were required for biofilm formation on root hairs
(19). In addition, calcium seems to play an important role in the adhesion of R.
leguminosarum to hydrophilic abiotic surfaces by remodeling higher-order structures of
polysaccharides. It was proposed that calcium influences surface roughness and the
hydrophilic character that will ultimately affect cell adhesion properties (20).

The external leaflet of the outer membrane of Gram-negative bacteria is built of
lipopolysaccharide (LPS), which is in rhizobia as in other bacteria a key determinant of
the bacterial cell surface antigenicity. LPS is made up of the lipid A, which anchors the
molecule to the external membrane, the connecting core oligosaccharide and the distal
O-chain polysaccharide. The LPSs from R. leguminosarum and R. etli share a common
lipid A-core structure and vary in their O-chain structures (21). The lipid A structure of
rhizobial LPSs differs from those of enteric bacteria, in that it lacks phosphate groups
and it is acylated with hydroxylated fatty acids of variable lengths, one of which is an
unusual very-long-chain fatty acid, 27-hydroxyoctacosanoic (21-23). The core
oligosaccharide of R. leguminosarum species and R. etli consists of an octasaccharide of
mannose (Man), galactose (Gal), galacturonic acid (GalA) and 3-deoxy-d-manno-2-
octulosonic acid (Kdo) residues in a 1:1:3:3 molar ratio, arranged in the structure: lipid
A-(Kdo)2-Man-Gal-Kdo—[O antigen] with two GalA residues linked to an internal Kdo
and another to the Man residue (21, 23, 24). In Rhizobium spp., neutral O-antigen
polysaccharides which are relatively hydrophobic are favored; residues imparting net

negative charge are either absent or, when present, they are blocked by esterification or
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neutralized with a positive substituent (21). The main glycosyl residues present are
deoxyhexoses and methylated glycosides (25). The O-antigen of R. leguminosarum
strain 3841 is formed by a branched tetraheteroglycan consisting of three or four
repeating units of 6-deoxy-3-O-methyltalose (3Me-6dTal), 2-acetamido-2-deoxy-L-
guinovosamine  (QuiNAc), 3-acetimidoylamino-3-deoxy-D-gluco-hexuronic  acid
(GIc3ANAmMA, rhizoaminuronic acid) and fucose (Fuc) residues with endogenous O-
methylation and O-acetylation (26).

An intact LPS plays an important role in infection of both determinate and
indeterminate nodules in legumes (21, 27-29). Rhizobial LPS exhibits considerable
heterogeneity in different plant microhabitats and soil environments (30) and several
factors induce modifications in LPS structure (28, 31-35). This suggests that variation in
the LPS may have a role in survival and adaptation to local microenvironments. A role
for LPS in biofilm structures has been shown in several pathogenic or opportunistic
pathogenic bacteria (36-39). In R. leguminosarum the participation of the lipid A
component of the LPS in desiccation tolerance, biofilm formation and motility has been
reported (34). In this work we show that the O-antigen core region of LPS of R.
leguminosarum is essential for the establishment of lateral and intimate cell-to-cell
interactions and is required for the formation of a compact biofilm structure. Besides,
the outermost part of the LPS influences adhesion properties on both abiotic and root

surfaces.

EXPERIMENTAL PROCEDURES
Microbiological techniques and phenotypic analysis
Bacterial strains and plasmids are described in Table 1. R. leguminosarum

strains were grown at 28 °C in tryptone-yeast extract (TY) medium (40) or Y-minimal
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medium (41) containing mannitol (0.2%, wt/vol) as carbon source. Escherichia coli
cultures were grown at 37°C in LB medium (42). Bacterial growth was monitored at
600 nm using an Amersham Pharmacia spectrophotometer. Plasmids were mobilized
into Rhizobium by triparental mating using a helper strain of E. coli. Cellulose
production was detected using Y-mannitol minimal medium agar plates containing
0.001% (w/v) Congo red. R. leguminosarum strains were inoculated using a toothpick
and cultured for three days at 28°C. Red or pink colonies are indicative of cellulose
production in Rhizobium leguminosarum (19, 43). Swimming motility was assayed (10)
by inoculating bacteria from cultures (ODggonm adjusted to 1.0) on Y-mannitol minimal
medium containing 0.3% agar and measuring the colony diameters after 4 days growth.

Statistical analysis was done using GraphPad Prism 5 software.

Tn5 mutagenesis and screening of the LPS mutants

A suicide plasmid pJB4JI containing Tn5 was conjugated from E. coli into R.
leguminosarum. bv. viciae A34 by filter mating as described (44). The IpcA mutant was
identified by screening for colonies with a rough morphology on TY agar. To determine
the Tn5 insertion site, an EcoRI fragment containing the transposon from genomic DNA
of the mutant was cloned in pBluescript. A BamHI fragment was subcloned in
pBluescript and PCR amplified using primers from the end of 1S50
(TTCCGTTCAGGACGCTA) and the T7 (GTAATACGACTCACTATAGGGC) site
from pBluescript. The PCR product was sequenced to identify the transposon insertion
point. The IpcB and IpsD mutant derivatives of strain 3841 were isolated by gene-
specific PCR amplification using pools of Tn5 mutants as previously described (19) and
the insertion sites confirmed by DNA sequencing using products amplified by Tn5 and

gene-specific primers.



150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Complementation of mutant strains

To clone the IpcA-IpcB and IpsD genes, the regions indicated in Fig. 1 were
amplified by PCR using specific oligonucleotide below. Primers were designed using
gene sequences of the R. leguminosarum 3841 strain (45). The IpcA-lpcB locus was
amplified from 3841 DNA using sense and antisense primers containing a BamHI
restriction site (bold): IpcABfor: CAGGATCCTCTAAGTTCACGTTCCGATTC and
IpcABrev: AGGGATCCGCCACGTAGCGTCAACTCAAAG. A PCR product of
2074 bp, including the complete coding sequence of IpcA (RL3440) and IpcB (RL3439)
and the upstream putative regulatory sequences was cloned into BamHI digested
PLAFR3 to generate pFC222. The IpsD gene was PCR amplified from 3841 DNA
using sense and antisense primers containing Bglll restriction sites (bold): IpsDfor
CAAGATCTGAAGGTTCGACACGCCCATATTG and IpsDrev
CAAGATCTCGAGCCAATACGGCTACCTCAG. A PCR product of 1600 bp,
including the coding and regulatory sequences of IpsD (pRL90053), was cloned into
pGEMTeasy (pGEMTeasy Cloning kit -Promega) to generate pFC219. The 1600 bp
Bglll fragment from pFC219 was subcloned in the BamHI site of the pLAFR3 cosmid

to make pFC224.

Analysis of biofilms in vitro

To analyze biofilms, bacteria grown in TY medium containing appropriate
antibiotics (ODggo Of about 1.5) were inoculated at 1:1000 dilution into 100 ml of Y-
mannitol medium in a 300 ml conical glass flask with shaking at 250 rpm in an orbital
shaker (9). Rings of biofilms at the air-liquid interface were qualitatively scored after 5

days of growth. For quantification of biofilms in microtitre plates, rhizobia were
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inoculated as above and cultured in 96 well flat bottom polystyrene (PE)-culture plates
(Greiner, CellStar #655180) for three days without shaking. Unbound bacteria were
removed by gently washing with 0.9% NaCl and attachment was quantified by staining
with 0.1% crystal violet (46). To analyzed the biofilm structures, bacteria carrying the
plasmid pRU1319, which expresses the green fluorescent protein (GFPuv) (47) were
cultured for three days at 28 °C in 5 ml of TY medium. After centrifugation, bacteria
were washed and suspended in Y-mannitol medium at 1:1000 dilution; 0,5 ml of this
bacterial suspension was cultured statically in chambered glass-coverslides (Nunc, Lab
Tek #155411) at 28°C (9). Observation of biofilm formation in a four day time course
experiment was done as previously described using Plan-Apochromat 100X/1.40 oil or
C-Apochromat 40X/1.2 W objectives from a Carl Zeiss Pascal LSM 5-Axioplan 2 laser
scanning confocal microscope (488 nm Argon laser excitation and 500 nm long pass
emission filter) (9). Representative horizontal projections of CSLM image-stacks taken
from five independent experiments are shown. To quantify the biofilm structures
developed in the chambers, at least five 40X-image stacks taken from three independent
experiments were analyzed by COMSTAT software (48). Movies enclosed in
supplementary files are representative image stacks of biofilms developed after four
days in chambered coverslides from A34 and IpcA strains observed from the base to the

top using a Plan-Apochromat 100X/1.40 oil objective.

Preparation and analysis of LPS

LPS was extracted by the hot-phenol method (49) modified for rhizobia (28).
Briefly, R. leguminosarum strains were cultured for 72 h in TY medium, harvested and
washed with 0.9% NaCl. The pellet (1 g wet cells) was suspended in sterile milliQ

water and phenol (1:1) at 70 °C as described (28). After mixing with LAEMLI’s
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solubilization buffer, the LPS suspension was analyzed by SDS-PAGE (12%) in Tris-
Glycine Running buffer and visualized by carbohydrate-specific periodate oxidation and
Silver staining as described previously (50). Immunochemical analysis of the LPS was
performed by immunoblots on nitrocellulose membranes using R. leguminosarum O-
antigen monoclonal antibodies MAC 57 and MAC 114 as previously reported (51, 52)
and anti-rat horseradish peroxidase-conjugated secondary antibody (SIGMA). The ECL
Plus Western Blotting Detection reagents (GE Healthcare, UK) were used to detect the
signals using a Storm 840 Imager (Amersham Pharmacia Biotech) following

manufacturer’s instructions.

Quantification of EPS and CPS production

To obtain the EPS and CPS, rhizobia were cultured for five days at 28 °C in
100 ml Y-mannitol minimum medium and centrifuged at 8000 x g for 1 hour at 4 °C
(53). The supernatants were re-centrifuged to remove remaining cells and then the EPS
was precipitated with two volumes of cold ethanol, dissolved in water and quantified by
the meta-hydroxy-diphenyl-sulfuric acid method (54). The bacterial pellets were washed
twice with 10 mM PBS pH 7.4 containing 1 mM MgSO, and centrifuged at 10000 x g
for 15 minutes at 4 °C. The cells were suspended in PBS containing 1 mM MgSO4 and
0.5 M NaCl and stirred vigorously for 1 hour at room temperature. After centrifugation,
the CPS was precipitated with 3 volumes of cold ethanol, dissolved in water and
quantified by the meta-hydroxy-diphenyl-sulfuric acid method (54). Mean and standard
error of replicated samples of EPS and CPS polysaccharides from two independent

experiments are shown.

Autoaggregation assay
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To monitor differences in auto-aggregation, each rhizobial strain from a TY
medium-starter culture of four days was diluted to 1:100 in 5 ml of Y-mannitol or TY
medium (inoculum ODgoonm= 0.01) and shaken (200 rpm) at 28°C. After five days, the
cultures were mixed vigorously for 15 seconds and the suspensions were left standing to
start the assay. At regular time intervals, a 150 pl-sample was taken at 0.5 cm from the
liquid surface and the ODggonm quantified in a microtiter plate in a Multimode Detector
DTX880 Beckman Coulter as previously described (55). The results of two independent

experiments using replicated cultures of each strain are shown.

Initial attachment, biofilm formation and nodulation tests on pea roots

To evaluate initial attachment to root surfaces, ten days post-germination Pisum
sativum variety Frisson (pea) plantlets were dissected and roots sectioned in 1 cm-
segments. Root sections were placed on a Fahréeus chamber containing 0.5 ml of 0.3%
Fahrdeus Plant Medium (FP)-agar and incubated for 45 minutes in 20 ml of GFP-tagged
bacterial suspension (ODggo nm 0.06) in darkness at room temperature (56). The pea roots
sections were observed by scanning different focal planes of the root-surface using a C-
Apochromat 40X/1.2 W objective from a Carl Zeiss Pascal LSM 5-Axioplan 2
microscope (see above). The estimation of the total number of bacteria associated to the
root section per square centimeter was calculated using Carl Zeiss Browser software by
counting total bacteria in each layer of at least six Z-stack images obtained from two
independent experiments. The proportion of the number of bacteria that are in direct
contact with the epidermis in relation to the total number of bacteria associated to the
epidermis in the same image was calculated as the root attachment index (Al).

To analyze biofilm development on root surfaces, pea plantlets were inoculated

with a suspension of GFP-labeled bacteria. Rhizobium strains cultured in TY medium

10
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were centrifuged and pelleted bacteria were washed and suspended in FP. Ten milliliters
of the bacterial suspension (ODgyonm=0.06) were used to inoculate each plantlet grown
in FP and incubated at 22°C in a plant growth chamber (16 h light/ 8 h darkness). After
five days, the entire plant was removed and the roots were washed twice in FP liquid
medium under shaking to remove loosely associated cells. Then, roots were weighed
and crushed to estimate root-associated bacteria by plating serial dilutions of smashed
roots on TY agar containing streptomycin and counting the colony-forming units (CFU)
per gram of root tissue. At least four whole-pea roots per strain from two independent
experiments were analyzed. To visualize the biofilms, roots were washed and dissected
in 1 cm-sections and placed on a slide containing 0.5 ml of 0.5% FP-agar. CSLM-stack
images were obtained by scanning different focal planes of the root-surface. At least six
whole-pea roots per strain from five independent experiments were analyzed. Images
were projected and processed using Carl Zeiss confocal image browser software and
Adobe Photoshop CS 8.01.

Nodulation tests were done using pea plants (Pisum sativum variety Frisson) in

at least two independent experiments as previously described (57).

RESULTS
Genetic and phenotypic characterization of LPS mutants

To analyze the contribution of the LPS in the formation of an organized
biofilm, we isolated mutants impaired in LPS biosynthesis in two different R.
leguminosarum bv. viciae genetic backgrounds: one mutant (B772) is a derivative of
strain A34, which has been used for related studies in our laboratory, and two mutants
(A950 and A951) are derivatives of the genome sequenced strain 3841. The gene

mutated in B772 is 99% similar to IpcA from Rhizobium leguminosarum bv. phaseoli

11
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8002 (X94963.1) and is 90% similar to RL3440 from R. I. bv. viciae 3841. The IpcA
gene encodes a galactosyl transferase that adds a galactose residue to the mannose
residue of the core oligosaccharide (58, 59). In 3841, IpcA (RL3440) is upstream of and
probably co-transcribed with IpcB (Fig. 1A), which encodes a putative CMP Kdo
transferase that adds the most external Kdo residue of the core region to the galactose
residue. A951 carries Tn5 in lpcB (RL3439) (Fig. 1A). The IpcA and IpcB genes were
previously described as locus o involved in the biosynthesis of the core region of the
LPS in R. leguminosarum (58-60).

A950 carries Tn5 in pRL90053, a gene encoding a putative O-antigen ligase that
shares 81% identity with the gene of a putative O-antigen polymerase from R. etli
CFN42 (RHE_PB00003). The pRL90053 gene (IpsD in the new annotation

http://bacteria.ensembl.org/rhizobium_leguminosarum_bv_viciae 3841) is on plasmid

pRLY and adjacent to and transcribed divergently from IpsB1 (pRL90051) and IpsB2
(PRL90052) (Fig. 1A). LpsB1 (RHE_PB0001) and LpsB2 (RHE_PB0002) from R. etli
CFN42 are implicated in O-chain synthesis and localized in locus p from the p42b
symbiotic plasmid (61, 62).

Thus the LPS mutants we used have mutations in two different regions
associated with LPS biosynthesis; one is on the chromosome and the other on a plasmid.
The IpcA and IpcB mutants would be expected to produce LPS lacking the O-chain and
with an incomplete core oligosaccharide. On the other hand, the IpsD mutant would be
predicted to have a complete core oligosaccharide that should lack the O-antigen repeat
units.

The LPS obtained by hot phenol/water extraction from cultured IpcA, IpcB and
IpsD mutants lacked LPS-I but a band of higher mobility corresponding to LPS Il was

observed (Fig. 1B). By immunoblot using MAC 114 or MAC 57 antibodies, we

12
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confirmed that the O-antigen is absent in the LPS fraction of the IpcA, IpcB and IpsD
mutants (Fig. 1B). Silver-periodate staining and immunoblot analysis showed that IpcA
and IpcB cloned in pFC222 complemented the LPS pattern of both the IpcA and IpcB
mutants (Fig. 1B) and IpsD cloned in pFC224 restored LPS-I in the IpsD mutant (Fig.
1B).

Since LPS mutations may affect the production or stability of other surface
polysaccharides, the EPS, CPS and cellulose contents of the mutants were assayed.
Similar amounts of EPS, referred as glucuronic acid equivalents, were obtained from
the supernatant of the IpcA, IpcB and IpsD mutants compared with isogenic wild type
(WT) strains grown in Y-mannitol-minimal medium (Table 2). In Y-mannitol semisolid
medium in the presence of Congo red (43), the colony phenotype observed was also
indistinguishable between the mutants and the isogenic WT strains (Fig. S1). These
observations suggest that neither the production of EPS nor that of cellulose was greatly
altered in the LPS mutants.

R. leguminosarum strains are surrounded by the acidic CPS, whose structure and
genetic determinants are shared with the EPS, and only differ in their degree of non-
carbohydrate substitutions (53, 63). A defective LPS could affect the interaction of CPS
with the cell surface. We observed a reduction of 30-40% in the amount of glucuronic
acid equivalents extracted from the cell surface of the LPS mutants compared with the
isogenic WT strains (Table 2). These observations suggest that absence of the outermost
region of the LPS decreases the amount of CPS associated with the rhizobial surface.

Alterations in flagellar motility have been observed with some rhizobial LPS
mutants (64, 65), but the swimming halo diameters of the IpcA, IpcB and IpsD mutants
were similar to those of the isogenic WT strains (Fig. S2), suggesting that flagellum

integrity and functionality were unaffected.
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Role of the LPS O-chain core region in surface attachment and biofilm
development in R. leguminosarum

In liquid TY cultures, the IpcA, IpcB and IpsD mutants showed an increased
sedimentation rate, suggesting that the absence of the surface-exposed moiety of the
LPS enhances autoaggregation (Fig. 2). In Y-mannitol minimal medium, no significant
differences in sedimentation kinetics were observed between the mutants and the
isogenic WT strains (Fig. S3). The high carbon/nitrogen ratio of the Y-minimal medium
stimulates CPS and EPS synthesis (66), which increases the viscosity of bacterial
cultures. This effect may prevent differential sedimentation phenotypes in the LPS
mutants and wild type strains.

The absence of the hydrophobic O-chain in rhizobial LPS may result in a
reduction in cell surface hydrophobicity (26) causing a decrease in initial attachment to
hydrophobic surfaces. After three days, the IpcA, IpsD and IpcB mutants showed 63%,
62% and 52% reductions, respectively, in the biofilms attached to polystyrene (PE)
compared with the isogenic WT strains (Fig. 3); the biofilms were restored to normal by
complementation with pFC222 (IpcA IpcB) or pFC224 (IpsD) (Fig. 3). The influence
of the O-chain core region in the attachment to glass (a hydrophilic surface) was
analyzed using shaking-flask cultures in Y-mannitol medium (9). Under these
conditions, the IpcA, IpcB and IpsD showed thicker rings of biofilms (Fig. S4) than WT
strains while pFC222 (IpcA and IpcB) or pFC224 (IpsD) complemented the mutants to
normal (not shown).

A possible interpretation of these results is that absence of the outermost part
of the LPS makes rhizobia more proficient to attach to hydrophilic surfaces but less
capable to attach to hydrophobic surfaces. Other possibility is that cell-cell interactions

in biofilms grown with aeration could be particularly favored in the mutants compared
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with the wild type. Alternatively, the attachment phenotypes could be explained by a

combination of several effects.

Role of LPS in cell-to-cell interactions during biofilm formation

Strains A34 and 3841 develop organized and compact microcolonies with
most bacteria attached to each other side by side in static cultures in Y-medium (9, 19).
CLSM of GFP-labeled IpcA mutant grown for one day in chambered glass slides
revealed premature formation of microcolonies, in which abnormal interactions between
bacteria occurred, with abundant chains of cells interacting through their poles (Fig. 4).
After two or three days, the IpcA mutant formed unusual nets of bacteria connected
mostly through their cell poles and after four days, loose and ramified structures were
observed in contrast with the typical compact honeycomb-like structure developed by
the WT (Fig. 4, Movies S1 and S2). The movies show the bacterial distribution in the
multiple layers from the base to the top of the structure. As expected, pFC222 restored
lateral cellular interactions and the typical biofilm in the IpcA mutant (Fig. 4). After one
day, the IpcB and IpsD mutants also showed the formation of premature microcolonies,
with most bacteria interacting through their poles and, after 4 days, biofilm structures
with branched chains of rhizobia were observed (Fig. 5). Complementation with
pFC222 or pFC224 restored lateral interactions and the formation of a compact biofilm
(Fig. 5). Formation of premature (and abnormal) microcolonies in the mutants could be
related with the augmented autoaggregation observed in the mutants in comparison with
the WT strains (Fig. 2).

To provide quantitative measurements of the three-dimensional biofilm
structures, CSLM images were analyzed with the COMSTAT software (48). The IpcA,

IpcB and IpsD mutants produced 3-fold thicker biofilm structures than the WTs (Table

15
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3). The pronounced increment of the thickness was also evident by vertical (Z axis)
projection of several CSLM images stacks obtained with a C-Apochromat 40X/1.2 W
objective (Fig. S5). In addition, the mutants showed reduction of both the roughness
coefficient (Ra) and the surface to volume ratio in comparison to the isogenic WTs and
reflecting a tendency to form structures with impaired profiles (Table 3). Importantly,
the bacterial distribution in the multiple layers of the biofilm developed by the LPS
mutants was altered by means of the proportion of area covered by bacteria in each
layer (Table 3). The surface colonization and the overall bacterial density in the layers
near the substratum (layer 1 and layer 15) were significantly reduced in the IpcA, IpcB
and IpsD mutants compared with those of the WTs (Table 3). In both A34 and 3841 WT
strains, maximum coverage of the surface (of around 89%) was observed at an
intermediate layer (layer 15), while the mutants occupied a lower proportion of the area
(38-48%) in the same layer. In the WT biofilms, bacterial coverage showed a
pronounced reduction to 3-5% at layer 50 while in the mutants, a similar reduction was
observed at layer 150 (Table 3). Therefore, it seems that preponderance of polar
interactions between cells and reduction of tight lateral interactions in the LPS-mutants
leads to ramified and abnormal microcolony structures, which in turn results in thicker

biofilms.

Attachment to pea roots

As seen with other rhizobial LPS mutants (21, 52), the establishment of
symbiosis between the IpcA, IpcB and IpsD mutants and the host legume was impaired
with the mutants developing white nodules; using GFP-labeled rhizobia we confirmed
the absence of bacteria inside the pseudo-nodules induced by the IpcA, IpcB, IpsD

mutants (data not shown). This indicates that nitrogen fixation was not taking place
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fitting with the observation that the plants showed signs of nitrogen deficiency (data not
shown).

Initial attachment to pea roots was evaluated after 45 minutes of incubation of 1
cm-root sections with rhizobia in FP medium using Fahrdeus chambers (19, 56). CSLM
visualization of root sections showed that both A34 and 3841 initially attached to the
root epidermis as single bacterium or groups of 2-3 bacteria (Fig. S6). In contrast, the
IpcA, lpcB and IpsD mutants were seen associated to the epidermal root surface as star-
like microcolonies (Fig. S6). This is probably related with the premature formation of
abnormal microcolonies in the mutants. Projections of Z-stack images from different
scanned root sections showed that these microcolonies were attached to the surface by a
limited number of bacteria. In line with this observation, the proportion of bacteria that
attach directly to the epidermis surface relative to total rhizobia counted in the same
image (attachment index: Al) was lower in all the mutants in comparison with the
isogenic WT strain (Fig. S7). We examined the total bacteria associated to the root
surface, i.e., observed in all focal planes, per square centimeter of root section using
Zeiss Image Browser software. Comparable amounts of WTs and mutant bacteria per
square centimeter of root section scanned were observed (Fig. S7). Therefore, although
the mutants deficient in the outermost part of the LPS were initially able to colonize the
root epidermis, anchoring of individual bacteria to the root surface seemed to be
impaired.

Biofilms associated to root surfaces at a later stage were examined five days
after inoculation of whole plantlets with the different strains. The WT strains developed
compact and robust patch-like bacterial aggregates mostly distributed on the epidermis
of the pea roots, whereas bacterial aggregates of the IpcA, IpcB and IpsD mutants were

scattered on the root epidermis and, in general, they were seen as star-like bacterial
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aggregates or small ramified structures (Fig. 6A). The LPS mutant strains developed
root-hair-associated clumps of bacteria that persisted even after the washing steps (Fig.
6B). This pattern of colonization was less frequent in the WT strains where bacteria
were observed as small groups interacting with the hair root surface. The quantification
of root-associated bacteria as CFU per gram of root tissue showed similar values for the
WTs and the LPS mutants (Fig. S7), suggesting that differences between the parental
and mutant strains in the biofilm patterns observed on root epidermis and root hairs

somehow compensate total bacterial counts.

DISCUSSION

The exposed O-antigen of R. leguminosarum is built up of deoxyhexoses and
methylated deoxyhexoses, which confer hydrophobic character to the cellular surface
(25, 26). Strains such as the IpcA, IpcB and IpsD mutants that lack the O-antigen but
express lipid A attached to a complete or truncated core are expected to expose the most
hydrophilic portion of the core (nearest to the lipid bilayer surface) (21). Thus, the
bacterial surface would become more hydrophilic and, as observed here, this would be
predicted to make the mutants less proficient to bind hydrophobic surfaces. Absence of
the outermost part of the LPS also affected cell-cell cohesion. Analysis of the biofilm
structures using the COMSTAT program confirmed that the degree of microcolony and
biofilm compaction is strongly reduced in the LPS mutants. The simplest interpretation
for these observations is that the surface-exposed moiety of the LPS, i.e. the O-chain
core region itself, plays a direct role in cell-cell interactions between bacteria.

The possibility exists that the exposed portion of the LPS is required for the
correct localization or assembly of other surface structures involved in attachment to

abiotic or biotic surfaces and cell-cell interactions. It has been suggested that the O-
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antigen together with the core oligosaccharide are involved in a tight attachment of the
CPS on the cell surface (26, 67). We observed a 30-40% reduction in the CPS fraction
extracted from the LPS-defective mutants that might be in part responsible for the
altered biofilm phenotypes of these strains. However, the reduction in the CPS of the
LPS mutants cannot account for the severe phenotype and the aberrant cell-to-cell
interactions displayed by the LPS mutants. In fact, the biofilm phenotype of EPS/CPS
defective mutants differs from that of the LPS-mutants analyzed in this work since they
were completely unable to form microcolonies and polarly attached cells were not
observed (9). Therefore, it seems that aberrant interactions between bacteria are caused
mainly by the defect in the O-chain core region of the LPS.

Although lateral interactions between bacteria were impaired in the LPS
mutants, chains of cells attached mostly through their poles were formed. Hence, the
guestion arises as to what molecules are responsible for these polar interactions. One
possibility is that in the wild type strains, the LPS structure exposed on the cell surface
is not identical all around the cell. In this case, defective O-antigen core structures in the
mutants could somehow affect to a greater extent side-to-side interactions.
Alternatively, the LPS portion exposed on the surface of the wild type strains could
mask or interfere with other surface and polarly localized component and the absence of
the O-antigen structure in the LPS mutants may lead to the exposure of this polar
component that mediates aberrant (and strong) cell-cell interactions. Several surface-
associated factors have been shown to display polar localization. The RapA lectins of R.
leguminosarum have affinity for the EPS and CPS and are polarly localized on the cell
surface (17, 68) and the glucomannan polysaccharide is also located at one pole on the
bacteria (69). Further studies will be required to understand the interplay between the

LPS, polar located molecules and cell-cell interactions.
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Impaired attachment and biofilm formation have been reported for O-antigen- or
core-oligosaccharide-deficient mutants in other species, such as, Xanthomonas citri ssp.
citri (37), Pseudomonas fluorescens SBW25 (36) and E. coli (39). In laboratory and
clinical isolates of E. coli, several lines of evidence, using time-lapse microscopy,
pointed to a model in which electrostatic interactions between the poly-N-
acetylglucosamine (PNAG) polysaccharide and the LPS, are critical for PNAG-induced
biofilm formation (39). Pseudomonas aeruginosa LPS mutants that lack or display
truncated core or O-antigen oligosaccharides had enhanced biofilms on abiotic surfaces
and/or host surfaces in comparison to the parental strain (38). P. aeruginosa biofilm
interactions assayed by microbead force spectroscopy and atomic force microscopy
revealed that, in contrast to what we observed with rhizobial mutants, cell adhesion and
cohesion (cell-to-cell adherence) were enhanced in mutants with core and O-antigen
defects (70). Furthermore, an O-antigen-deficient mutant of Bradyrhizobium japonicum
showed an enhanced biofilm formation on a polyvinyl chloride (PVC) surface
apparently due to a cell surface more hydrophobic than that of the wild-type strain (71).
Similarly, lack of the O-antigen in a mutant of Rhizobium rhizogenes enhanced
adherence among cells, allowing higher bacterial numbers within the biofilms formed
on either an abiotic or the root tip surface (72). These observations all support the
hypothesis that the exposed moiety of the LPS is important to develop biofilms.
Differential phenotypes suggest that the overall effect of a mutation in a LPS
biosynthetic gene depends on the interplay between the hydrophobic nature of both, the
surface and the O-antigen core region and the other extracellular factors involved in
biofilm formation.

The LPS-defective mutants of R. leguminosarum were affected in the nodulation

process since the developed nodules were white and free of bacteria. Impaired
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nodulation phenotypes were also reported for other LPS mutants of R. leguminosarum
(27, 52), R. etli (64, 65) and S. meliloti (73). We showed that mutants that lack the
surface-exposed portion of the LPS are altered in both the initial attachment to the root
epidermis and the formation of compact root-associated bacterial aggregates at later
stages. Interestingly, the LPS mutants showed a tendency to develop bacterial clumps
around the root hairs while this pattern was barely observed in the parental strains.
Therefore, absence of the surface exposed moiety of the LPS may affect root
colonization and eventually root hair invasion. But other factors were shown to be
required to colonize the root surface. As mentioned, glucomannan is required for initial
and polar bacterial binding along the root hair surface (19, 69) and induction of
cellulose synthesis is responsible for cap formation on the hair root surface (19, 74, 75).
It will be interesting to perform further studies to evaluate the relation between the O-
chain core region of the LPS and the glucomannan-cellulose induced attachment of

Rhizobium to host surfaces.
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Legends to figures

Figure 1. (A) Diagram of the R. leguminosarum strain 3841 loci organization involved
in LPS biosynthesis. The location of each gene in 3841 chromosome (or pRL9 plasmid)
is indicated by numbers relating to the genome sequence. The positions of the Tn5
insertions in mutants are shown by inverted black (A950 and A951) or white arrows
(B772). The lower bold lines indicate the amplified products used to generate the
complementation plasmids. J-1ps locus: cpaA encodes a LPS-associated cation exporter;
IpcB encodes a CMP-Kdo transferase; IpcA encodes a galactosyl transferase. pRL9-
borne # locus: IpsB2 encodes a hypothetical O-antigen biosynthesis related protein;
IpsB1 a putative galactosyl transferase protein; IpsD a putative O-antigen ligase. (B)
12% SDS PAGE-Silver periodate oxidation (left) or immunoblot (right) analysis of the
LPS extracted from A34, 3841, IpcA, IpcB, IpsD and complemented strains. O-chains
were detected by immunoblots using the specific monoclonal antibodies MAC 114 or
MACS57, which recognize the O-LPS from A34 or 3841 strains, respectively. LPS | and
LPS Il components of the LPS are indicated.

Figure 2. Autoaggregation assays. The sedimentation profiles of liquid suspensions of
R. leguminosarum strains A34 (A) or 3841 (B) derivative strains in TY medium are
shown. Each point corresponds to average of replicated samples from two independent
experiments.

Figure 3. Rhizobial adhesion to a hydrophobic abiotic surface. R. leguminosarum

A34 or 3841 derivative strains were grown in polystyrene multiwell plates in static Y-
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mannitol minimal medium for 3 days at 28 °C and bacterial attachment was quantified
by crystal violet (CV) staining. Horizontal values correspond to average of six replicate
samples in at least two different experiments. (***) p<0.0001 One way ANOVA was
performed using Graphpad Prism 5 software.

Figure 4. Cellular interactions and biofilms formed by R. leguminosarum A34
derivative strains. CLSM images are horizontal (X-axis) projections of optical sections
showing bacterial attachment at day 1 and the biofilms formed at day 4 in chambered
coverglass slides (1000 X magnification) by A34, the isogenic LPS-mutant IpcA and the
complemented IpcA pFC222 strains. The inserted images are zooms (3X). Sized bars
indicate 2 um.

Figure 5. Cellular interactions and biofilms formed by R. leguminosarum 3841
derivative strains. CLSM images showing bacterial attachment at day 1 and biofilms
formed at day 4 in chambered coverglass slides by 3841, the isogenic LPS-mutants IpcB
and IpsD and the complemented IpcB pFC222 and IpsD pFC224 strains after one and
four days (1000X magnification). The inserted images are zooms (3X). Sized bars
indicate 2 pum.

Figure 6. Rhizobial biofilm formation on pea roots. (A) Five-days-old GFP-labelled
biofilm formed by the WT strains and the LPS derivative mutants. Note the compact
microcolony-patches formed by the A34 and 3841 WT strains and the ramified or star-
like microcolonies scattered on the root epidermis developed by the mutants. 6X-zoom-
images (right) show the detail of a root-attached bacterial aggregate. Magnifications;
400X (left) or 2400X (right). (B) CSLM images of bacterial aggregates associated to
root hairs. White arrows indicate bacterial clumps associated to root hairs developed by

the LPS mutants. Magnification: 400X. CSLM images are horizontal (X axis)
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projections of representative images of five independent experiments. Sized bars

indicate 10 pm.
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Table 1. Strains and Plasmids used in this work.

Strain/ Plasmid

Description

Source or Reference

3841

A34

A950
A951

B772

pRU1319

pJB4JI

pGEM-T easy

PLAFR3

pFC222

pFC224

R. leguminosarum bv. viciae 3841 (Str")

R. leguminosarum bv. viciae 8401
IpRL1JI (StrF)

Mutant of 3841, IpsD::Tn5
Mutant of 3841, IpcB::Tn5

Mutant of A34, IpcA:: Tn5

Plasmid pOT1 carrying green fluorescent
protein (GFPuv)

pPH1JI derivative plasmid carrying Mu
and Tnb.

Cloning vector for PCR products

Broad host range cosmid cloning vector

pLAFR3 cosmid carrying the IpcA and
IpcB genes and the upstream regulatory
sequences from 3841

pLAFR3 cosmid carrying the IpsD gene
and the upstream regulatory sequences
from 3841

(76)

(77)

This work
This work

This work

(47)

(44)

Promega

(78)

This work

This work
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582  Table 2. EPS and CPS production

Strain EPS CPS

(mg GIcA equivalents/100 ml)  (ug GIcA equivalents/100 ml)

A34 17+ 2 127+ 4
IpcA 177 73 £ 23 (-42%)
3841 27+6 113+ 6
IpcB 22+8 69 £5 (-39%)
IpsD 23+3 75+ 5 (-34%)

583
584  EPS and CPS produced by Rhizobium strains were estimated as glucuronic acid equivalents
585  quantified by the meta-hydroxybiphenyl method (54).

586
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Table 3. COMSTAT analysis of four-day biofilms

Parameter A34 IpcA 3841 IpcB IpsD
Average 28+6 103 £12 31+6 103 + 16 110+ 18
thickness (**) @) *

(Hm)

Roughness 0,41+0,06 0,23+0,02 0,66+0,03 0,45+0,06 0,31+0,03
coefficient * ™*)

Surface to 0,12+0,01 0,05+0,00 0,08+0,00 0,04+0,00 0,04+0,01
volume ratio *)

(Hm?/um?)

Percentage  Layer1l 269+32 78+54 26,8+57 7515 40+20
of the area *) *) *)
covered by

bacteria in Layer15 889+0,2 48,7+59 888+7,9 396+69 382+26
each layer * *) (**)

(%)

Layer50 3,9+0,7 238+90 59+26 40,0+3,8 12,7+1,7
**) ®

Layer 150 3,027 1,3+0,7 30+1,3

Values are means of data from at least 5 independent experiments. Parameters were
calculated using COMSTAT and statistical analysis by Graphpad Prism 5 software (One
way ANOVA (*) p<0.05; (**) p<0,01; (***) p<0,001).
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