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Decoherence in current induced forces: Application to adiabatic quantum motors
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Current induced forces are not only related with the discrete nature of electrons but also with its quantum
character. It is natural then to wonder about the effect of decoherence. Here, we develop the theory of current
induced forces including dephasing processes and we apply it to study adiabatic quantum motors (AQMs). The
theory is based on Büttiker’s fictitious probe model, which here is reformulated for this particular case. We prove
that it accomplishes the fluctuation-dissipation theorem. We also show that, in spite of decoherence, the total
work performed by the current induced forces remains equal to the pumped charge per cycle times the voltage.
We find that decoherence affects not only the current induced forces of the system but also its intrinsic friction
and noise, modifying in a nontrivial way the efficiency of AQMs. We apply the theory to study an AQM inspired
by a classical peristaltic pump where we surprisingly find that decoherence can play a crucial role by triggering
its operation. Our results can help to understand how environmentally induced dephasing affects the quantum
behavior of nanomechanical devices.
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I. INTRODUCTION

Nanomechanical devices in general and nanomotors in
particular are topics that have attracted much attention in
recent years [1–6]. The working principle of most of these
experimental and theoretical proposals relies on classical
physics. However, at nanoscale, one may benefit from the
many phenomena emerging from quantum interferences. In
this direction, reverse quantum pumping has been recently
proposed as the basic mechanism by which dc-current induced
forces can drive a nanoscopic motor. Such a device is
now known as “adiabatic quantum motor” (AQM) [7–10].
Despite the classical description of the motor’s movement,
one can profit from the quantum nature of current induced
forces. Indeed, one can boost the efficiency of AQMs by
exploiting the interferences present in the Thouless pump
[7].

Many natural questions arise when one addresses current
induced forces in nanomechanical devices. Will their quantum
behavior survive under realistic nonideal situations? Which is
the effect of environmentally induced decoherence and how
can we model it? Will the effect of decoherence be always
counterproductive for an AQM? Solving these issues will
provide a better understanding of their working principles
and ways to assess the feasibility of their experimental
implementations.

In this work, the theory of current induced forces based on
scattering matrices [11–13] is extended to include decoherent
events. Our approach is based on a reformulation of Büttiker’s
fictitious probe model [14–16]. This allows us to address
the effect of decoherence on nonequilibrium current induced
forces, friction coefficients, and fluctuating forces with a focus
on AQMs.

*Corresponding author: rbustos@famaf.unc.edu.ar

II. THEORY

A. Langevin equation and current induced forces

In the nonequilibrium Born-Oppenheimer approximation,
the dynamical degrees of freedom of a system are slow as
compared to the electron dynamics. In this limit, we can treat
the mechanical degrees of freedom as a classical field acting
on the electrons. Since the movement of a motor is cyclic, one
can reduce its many degrees of freedom to a single rotational
coordinate, x. Hence one can describe the rotor’s dynamics by
the 1D Langevin equation

Mẍ + dU

dx
= F − γ ẋ + ξ, (1)

where M is the mass of the rotor (or the moment of inertia)
and U is some classical external potential that can also be
introduced. The right-hand side of Eq. (1) accounts for the
current induced forces where F is a mean adiabatic reaction
force. The second term is a friction (dissipative) force where
γ is the friction coefficient. The last term, ξ , accounts for
the force fluctuations. These current induced forces have a
quantum origin and practical expressions in terms of the
scattering matrices are given in Refs. [11–13], which are our
starting point.

Like in Brownian motion, the interaction of the electrons
with the rotor gives rise to a dissipation mechanism and
a fluctuating force. At equilibrium, the only nonvanishing
contribution to the friction coefficient is the symmetric
contribution γ s,eq [11–13]. On the other hand, there is a
fluctuating force ξ (t) whose self-correlation D, defined by
〈ξ (t)ξ (t ′)〉 ≈ Dδ(t − t ′), is assumed locally correlated in time.
These quantities must be related by the fluctuation-dissipation
theorem (FDT), i.e., they satisfy D = 2KBT γ s,eq, where KBT

is the thermal energy. We will consider the forces only up
to first order in eV and/or ẋ. That implies that only the
equilibrium contributions to the friction coefficient and D will
be taken into account.
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B. Decoherence and null current condition

Decoherence is included by connecting the system to a
fictitious voltage probe φ. The voltmeter condition imposes
Iφ = 0, which provides charge conservation, while the reser-
voir character of the fictitious probe ensures the loss of
memory of the reinjected electrons. Strictly speaking, this also
involves inelastic events that redistribute electron’s energy.
However, in a linear response, eV → 0, inelasticity is just
reduced to a stochastic dephasing of the wave function, i.e.,
decoherence [17].

The total current flowing at lead m is

Im = IBias
m + I Pump

m + δIm, (2)

where IBias
m is the nonequilibrium current caused by an

infinitesimal bias eV , I
Pump
m is the pumped current due to a

variation of x, and δIm accounts for current fluctuations. The
fictitious voltage probe method has proved useful to address
a quite related problem, the quantum pumping with dephas-
ing [18,19]. While there, fluctuations could be disregarded,
here, we need to consider them explicitly as they affect the
dynamics of the system.

The nonequilibrium current incoming to the system through
the lead m = L,φ, in a linear response limit and at low temper-
atures, is IBias

m = (e/2π�)(
∑

n�=m Tnmδμm − ∑
n�=m Tnmδμn).

Here, Tnm is the transmittance between leads m and n =
L,R,φ; and δμm = μm − μR is the chemical potential of m,
taking μR as reference.

The pumped current I
Pump
m through a lead m is I

Pump
m =

e(dnm/dx)ẋ, where e is the electron charge, ẋ the velocity of
the rotational parameter x, and the emissivity of the lead m is

dnm

dx
=

∫
dε

2π i

(
−∂f

∂ε

)
Tr

(
	m

dS

dx
S†

)
, (3)

where f is the Fermi distribution, 	m is a projector onto the
lead m, and S is the scattering matrix [19,20]. By integration
of I

Pump
L we obtain the pumped charge per cycle through lead

L [18,19],

QL = e

∮ (
dnL

dx
+ TLφ

TLφ + TφR

dnφ

dx

)
δx. (4)

Current fluctuations contain both the nonequilibrium shot
noise and the thermal noise. Both of them satisfy 〈δIm〉 =
0, and

∑
m δIm = 0. However, at equilibrium, the shot noise

vanishes and only thermal noise survives.
The null current condition Iφ = 0 at lead φ directly imposes

a condition to δμφ . The value of δμφ that ensures current
cancellation of Eq. (2) is

δμφ = 1

TLφ + TφR

(
TLφδμL − 2π�

dnφ

dx
ẋ − 2π�

e
δIφ

)
. (5)

Since the variation of x is slow with respect to the electronic
dynamics, we can consider that δμφ adapts instantaneously to
satisfy Iφ = 0 at all time.

C. Current induced forces in presence of decoherence.

By considering an infinitesimal bias, δμL = eV , we can
split the Fermi function into an equilibrium and an out-of-
equilibrium contributions, fm = f0 + 
fm. Then, the force

generated by the electric current [11–13],

F =
∑
m

∫
dε

2π i
fmTr

(
	mS† dS

dx

)
, (6)

can be split as F = F eq + 
F . The equilibrium force, F eq,
is conservative and thus, it does not produce work. At low
temperatures and for small eV ,

∫
(·)
fmdε � (·)δμm. Using

Eqs. (3), (5), and (6), we calculate the nonconservative forces
for systems without magnetic fields up to first order in eV and
ẋ,


F =
(

dnL

dx
+ TLφ

TLφ + TφR

dnφ

dx

)
eV

− 2π�
ẋ

TLφ + TφR

(
dnφ

dx

)2

+ 2π�

e

δIφ

TLφ + TφR

dnφ

dx
. (7)

The first term on the right-hand side (RHS) of Eq. (7)
is the nonequilibrium force, F ne, whose second term within
the parenthesis is the decoherent contribution. This force is
responsible for the work of the system, which is obtained by
evaluating W = ∮

(F eq + F ne)dx, yielding

W =
∮

dx

(
dnL

dx
+ TLφ

TLφ + TφR

dnφ

dx

)
eV . (8)

Comparing Eqs. (8) and (4), we realize that the work in
presence of decoherence is proportional to the pumped charge
per cycle times the voltage’s bias,

W = QV. (9)

This relation, proved valid for coherent AQMs, can be thought
as a signature of the Onsager’s reciprocal relations [21],
showing that the model is well behaved.

The second term on the right-hand side (RHS) of Eq. (7) is
a force proportional to the velocity. Thus one can associate
it with a dissipative force whose origin is purely due to
decoherence. The resulting friction coefficient γ φ is

γ φ = 2π�

TLφ + TφR

(
dnφ

dx

)2

. (10)

This proves that decoherence inside the sample enables energy
dissipation through an additional friction of the rotor [22,23].

The third term on the RHS of Eq. (7) accounts for
the fluctuations on the force induced by decoherence. The
self-correlation of the fluctuating force ξφ , can be defined as
〈ξφ(t)ξφ(t ′)〉 ≈ Dφδ(t − t ′). Thus

Dφ =
(

2π�

e

1

TLφ + TφR

dnφ

dx

)2

Sφ, (11)

where Sφ , the spectrum power of the fluctuating current at the
lead φ, is defined as 〈δIφ(t)Iφ(t ′)〉 ≈ Sφδ(t − t ′). In deducing
Eq. (11), we use that transmittances and emissivities are
already mean values. The only contribution to the current
fluctuation, which is nonvanishing at equilibrium is the
thermal fluctuation or Nyquist-Johnson noise [24]. Thus Sφ
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is characterized by

Sφ = 2KBT
e2

2π�
(TLφ + TφR). (12)

Replacing Eq. (12) into Eq. (11) yields

Dφ = 2KBT γ φ, (13)

which demonstrates that decoherent friction and fluctuating
forces induced by decoherence are related by the FDT in our
model as they should be.

D. Efficiency of AQMs

The thermodynamic efficiency, ηT D , can be defined as the
useful output power that can be extracted from the system over
the total input power. The useful output power is the work per
cycle of the motor minus the energy lost due to friction, all
divided by the period τ , i.e., QV/τ − ∫ τ

0 γ ẋ2dt/τ . The total
input power is IV + QV/τ . Then,

ηTD = Q − 4π2γ ∗/(τV )

ḡτV + Q
. (14)

Here, we have introduced I = ḡV , where ḡ is the average
conductance, and the corrected average friction coefficient
γ ∗ = d2γ̄ , where γ̄ is the average friction coefficient γ̄ =∮

γ ẋ2dt/
∮

ẋ2dt . The dynamical constant d essentially ac-
counts for the deviations of ẋ with respect to its mean value,
d = τ/(2π )

√
〈ẋ2〉, where 〈ẋ2〉 = ∮

ẋ2dt/τ .
From Eq. (14), one can extract the minimum energy

necessary for η �= 0, which is the minimum energy necessary
to start the motor’s motion QV > 4π2γ ∗/τ . Additionally,
one can also realize that there is an optimal value of τ that
maximizes the efficiency,

τ0 = 4π2γ ∗

QV

⎛
⎝1 +

√
1 + Q2

4π2γ ∗ḡ

⎞
⎠. (15)

This value can be used to find the optimal load that the
motor can move or, given a load, the optimal voltage to
be applied to maximize the efficiency. Note that, when the
average conductance goes to zero, τ0 goes to infinity, which is
consistent with the adiabatic limit of the efficiency proposed
in Ref. [7].

III. RESULTS

Just to illustrate our theory, we will consider a simple
example, see Fig. 1, of a quantum dot that while rotating
changes its resonant energy, E(θ ) = E0 + 
E cos(θ + θ0),
and the coupling to one reservoir, VR + 
V sin(θ ). The
angular coordinate is θ , with θ0 = θ (t = 0). The couplings
to the other reservoir L and to the fictitious probe φ are
assumed constant. The system-environment interaction rate
2�φ/� is determined by the coupling to the fictitious probe.
The details of the solution of this example can be found in
Appendix A. The main assumptions used are the following.
(1) the Landauer-Büttiker picture of noninteracting electrons
is valid. (2) The interaction with the leads can be taken within
the wide band limit (WBL). (3) The interaction between the
dot and the movable part of the system is perturbative, i.e., the

FIG. 1. Scheme of the type of system studied. A rotational device
interacting with a quantum dot. Rotation of the motor changes the
dot’s energy as well as its coupling to one lead.

variations of 
E and 
V are small with respect to �0, the
width of the dot’s resonance without decoherence at θ = 0.
(4) The terminal velocity of the rotor in the stationary regime
is approximately constant, i.e., d ≈ 1. We briefly discuss the
conditions for the validity of this last in Appendix B.

The work of the motor can be split into a coherent and a
decoherent contributions. The behavior of W is similar to that
described in Ref. [19] for the (decoherent) pumped charge.
Details of the solution can be found in Appendix A, but
the main results are shown in Fig. 2. In the on-resonance
regime, i.e., when the Fermi energy ε is ε ≈ E0, the coherent
contribution to the work is a monotonic decreasing function
of �φ , whereas the decoherent term increases with �φ until it
reaches a maximum value to decay afterward. The total work
is always a decreasing function of �φ . In the off-resonance
regime, the coherent and the decoherent contributions behave

FIG. 2. (Color online) (Top) Total work of the AQM as function
of (E0 − ε) and �φ , both expressed in units of �0. The work is
normalized to its maximum value in the figure. (Bottom) Work of
the AQM for the “on-” and “off-”resonance conditions, (E0 − ε) = 0
and −1, respectively. Different contributions are marked in the inset.
In all figures, the work is normalized to the maximum value of the
total work.
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FIG. 3. (Color online) (Top) Total friction coefficient normalized
to its maximum value as function of E0 and �φ , both expressed in
units of �0. (Bottom) Friction coefficient of the AQM for the “on-”
and “off-”resonance conditions, (E0 − ε) = 0 and −1, respectively.
Different contributions are marked in the inset. In all figures, the
values of the friction coefficients are normalized to the maximum
value of the total friction coefficient.

qualitatively as in the on-resonance regime. However, here the
decoherent term dominates and, then, the total work presents
a maximum for a finite value of �φ . This implies that in the
off-resonance regime an adequate environment interaction can
indeed maximize the work of the motor.

The friction coefficients γ̄ s,eq and γ̄ φ present a similar
behavior both in the on-resonance and in the off-resonance
regimes as function of �φ , see Fig. 3. γ̄ s,eq is a monotonically
decreasing function of �φ while γ̄ φ presents a maximum.
The total friction coefficient γ = γ s,eq + γ φ always decays
with �φ , both in the on-resonance and in the off-resonance
regimes. In principle, just by looking Eqs. (7) and (10), one
could (naively) expect that electronic friction is increased due
to the extra friction term. However, electronic friction is ac-
tually mitigated by decoherence. This is because decoherence
diminishes the quantum fluctuations and consequently also the
friction coefficient, due to the FDT.

The effect of decoherence on the thermodynamic efficiency
is complex due to a competition between the total work
per cycle and the friction coefficient. In Fig. 4, we plot the
efficiency as function of �φ and the period τ . As predicted
by Eq. (15), there is a (decoherence dependent) optimal
value of τ that maximizes the efficiency. In this particular
example the maximum efficiency is quite low, 1.610−5. This
is expectable considering the perturbative interaction between
the rotor and the dot, which implies a small Q, and the high
coupling between the dot and the reservoirs, which gives a
high IBias. Beyond that, we find that, in the on-resonance
regime, decoherence always diminishes the efficiency of the
AQM. On the contrary, in the off-resonance regime, there is

FIG. 4. (Color online) Thermodynamic efficiency of the AQM
shown in Fig. 1 as function of the decoherent rate �φ (in units of �0)
and the period of the motor τ (in units of �/2�0). (Top) On-resonance
regime. (Bottom) Off-resonance regime (E0 − ε = −0.75�0). The
efficiency is normalized to its maximun value in all plots. Insets show
the cuts marked in the main figures as continuous or dot lines.

a maximum in the efficiency for a finite value of �φ . This
shows that, surprisingly, efficiency can be increased due to
a properly tunned interaction with the environment. Indeed,
there are certain values of τ where at a critical �φ the efficiency
switches from zero to finite values. This implies that the AQM
is indeed triggered by its interaction with environment.

IV. CONCLUSIONS

In conclusion, we developed the general theory of deco-
herent current induced forces and we applied it to AQMs.
We showed that decoherence not only modifies the current
induced forces but also the electronic or intrinsic dissipation
mechanisms and its related force fluctuations [22,23]. We
proved that the theory is consistent with the fluctuation-
dissipation theorem. Besides, we showed that the relation
between the total work and the pumped charge per cycle,
proved for coherent AQMs [7], remains valid in presence of
decoherence. We exemplified our theory with a simple example
of AQMs showing that even there the role of decoherence can
be nontrivial. Indeed, we showed that decoherence can increase
the efficiency of the AQM. This may allow the design of novel
devices such as environmentally activated nanomotors.
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APPENDIX A: DETAILS OF THE CALCULATION OF THE
EXAMPLE OF AN AQM WITH DECOHERENCE

In this Appendix, we give the details of the calculations of
the example presented in the main text, an AQM based on a
peristaltic pump. The energy level of this AQM depends on
θ , the rotational coordinate, as E(θ ) = E0 + 
E cos(θ + θ0),
where θ0 is a phase shift. The coupling to the reservoir R is
VR + 
VR sin(θ ). We assumed a noninteracting electron pic-
ture. All the solutions are obtained considering a perturbative
interaction between electrons and the mechanical degree of
freedom, i.e., 
E and 
VR are small with respect to �0, the
width of the dot’s resonance without decoherence at θ = 0.
The chemical potential of the right reservoir is taken as the
reference energy and we assumed a wide band approximation.
All observables are evaluated at low temperatures and in
a linear response regime, where eV → 0. All this implies
ε = μR in all the equations.

The effective Hamiltonian of the whole system, i.e., dot
plus leads, reads

H (θ ) = E(θ ) + �L + �R(θ ) + �φ, (A1)

where �i is the self-energy of the lead i = L,R,φ. We
consider the leads within the wide band limit (WBL) where the
self-energies �’s are pure imaginary quantities and are inde-
pendent of the Fermi energy ε. Thus �L = −i�L, �φ = −i�φ ,
and �R(θ ) = −i�R(θ ) = −i[VR + 
VR sin(θ )]2/VBW , where
4VBW is the bandwidth of the lead. Here, the quantities �L and
�φ are constants since the couplings to their corresponding
leads are assumed independent of θ . The retarded Green
function, defined as G0 = [ε − H (θ )]−1, is

G0 = 1

ε − (E(θ ) − i�L − i�R(θ ) − i�φ)
. (A2)

Transmittances Tm,n, needed to calculate the observables from
Eqs. (4) to (8), can be obtained from

Tm,n = 2�m|Gm,n|22�n, (A3)

where m �= n, and m,n = L,R,φ. In this example, Gm,n = G0,
for all m,n. We can also obtain the density of states (DOS),
N (ε,θ ) = −(1/π )Im(G0), as

N (ε,θ ) = 1

π

�(θ )

(ε − E(θ ))2 + �(θ )2
, (A4)

where �(θ ) = �L + �φ + �R(θ ). The complete S matrix can
also be obtained from (A2):

S = I − 2iG0

⎛
⎜⎝

�L

√
�L�R(θ )

√
�L�φ√

�L�R(θ ) �R(θ )
√

�R(θ )�φ√
�L�φ

√
�R(θ )�φ �φ

⎞
⎟⎠.

(A5)

Thus the matrix [S† dS
dθ

] gives

S† dS

dθ
= −2i|G0|2�, (A6)

where the elements of the operator � are

�1,1 = �L

dE(θ )

dθ
,

�1,2 =
√

�L�R(θ )
dE(θ )

dθ

+
√

�L

4�R(θ )
(ε − E(θ ) + i�(θ ))

d�R(θ )

dθ
,

�1,3 = √
�L�φ

dE(θ )

dθ
,

�2,2 = �R(θ )
dE(θ )

dθ
+ (ε − E(θ ))

d�R(θ )

dθ
,

�2,3 = √
�R(θ )�φ

dE(θ )

dθ

+
√

�φ

4�R(θ )
(ε − E(θ ) + i�(θ ))

d�R(θ )

dθ
,

�3,3 = �φ

dE(θ )

dθ
,

with �m,n = �∗
n,m.

At this point, we can evaluate all the physical quantities that
are relevant to this problem. Let us start with the emissivities of
Eq. (3). At low temperatures, we can use ∂fm/∂ε = −fm(1 −
fm)/KBT � −δ(ε − μm). Thus we have

dnm

dθ
= 1

2π i
Tr

(
	mS† dS

dθ

)
(A7)

= 1

2π i

(
S† dS

dθ

)
m,m

, (A8)

where m = L,R,φ. Then

dnL(φ)

dθ
= −N (ε,θ )

�(θ )

dE(θ )

dθ
�L(φ),

dnR

dθ
= − 1

π

N (ε,θ )

�(θ )

×
[
dE(θ )

dθ
�R(θ ) + d�R(θ )

dθ
(ε − E(θ ))

]
. (A9)

We can insert these expressions into Eq. (4) to obtain the
pumped charge per cycle or the total work, note that W = QV .
The result can be split into a coherent and a decoherent con-
tributions, W = W coh + W dec. The mathematical expression
for W coh is exactly the same with or without decoherence
(however, its value depends on �φ). Consistently, W dec is zero
in a purely coherent case.

By evaluating Eq. (8) with Eq. (A9) and using Green’s
theorem [20], we obtain

W = −eV (�coh + �dec)
E
VR cos(θ0), (A10)

where

�coh = �LVR

�T VBW

(4π2N2(ε)), (A11)
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�dec = �φ�LVR

�0�T VBW

[
2πN (ε)

�0
+ 4π2N2(ε)

]
. (A12)

Here, �T = �(θ )|
VR=0,
E=0, which does not depend on θ ,
and �0 = �L + V 2

R/VBW . These equations are expressed at
zero order, i.e., for small 
E and 
VR . Note that the factor

E
VR cos(θ0) is the parametric area enclosed in a cycle of
the parameter θ .

The friction coefficient at equilibrium, γ s,eq, is

γ s,eq = 1

4

∑
m,n

∫
dε

2π

∂

∂ε
(fm + fn)

× Tr

(
	mS† dS

dθ
	nS

† dS

dθ

)
. (A13)

Assuming a low-temperature limit to evaluate the integral,
yields

γ̄ s,eq = �

8π2

∮ ∑
m,n

∣∣∣∣∣
(

S† dS

dθ

)
m,n

∣∣∣∣∣
2

dθ. (A14)

The additional friction term, which is a direct consequence of
decoherence on current induced forces, can be evaluated from
Eq. (10), giving

γ̄ φ = �
�φ

4�0�T

N (ε)
E2. (A15)

Notice that the positivity of both coefficients is guaranteed.
List of parameters. The parameters used in the whole

work to perform the calculations are eV = 10−4VBW , VR =√
0.1VBW , �L = 0.1VBW , 
VR = 10−2VR , 
E = 210−3VBW ,

and �0 = �L + V 2
R/VBW = 0.2VBW . The maximum values of

the efficiency, total work, and total friction coefficient used
to normalize the plots are 1.610−5, 10−4eV , and 2.410−5

�,
respectively.

APPENDIX B: LIMIT OF CONSTANT
TERMINAL VELOCITY

At steady state, all the energy that is absorbed by the motor
is completely dissipated by friction and thus, the total energy

is conserved according to

∫ 2π

0
[F (θ ) − Fload − γ θ̇(θ )]dθ = 0, (B1)

where Fload account for an external load to the system. Here,
we are assuming an average over steady-state ensembles, so
random forces can be neglected and we can use θ̇ (t) = θ̇ (t +
τ ) = θ̇ (θ ).

From Eq. (B1) and using the same definitions for γ̄ and
〈θ̇2(t)〉 as in the main text, we obtain

〈θ̇2(t)〉 = QV − Wload

γ̄
, (B2)

where Wload is the work done by the external forces in one
cycle. Using this result, the mean kinetic energy becomes

〈K〉 = 1

2
I 〈θ̇2(t)〉 = 1

2
I

(QV − Wload)

γ̄
, (B3)

where I is the moment of inertia of the rotor.
The change of the kinetic energy due to a rotation of

the parameter θ is 
K(θ ) = −
U ∗(θ ), where U ∗(θ ) =
− ∫ θ

0 [F (θ ′) − Fload − γ θ̇(θ ′)]dθ ′ is a pseudopotential defined
only at the steady state. When the kinetic energy of the motor
is much greater than 
U ∗(θ ),

1

2
I

(QV − Wload)

γ̄
� 
U ∗(θ ), (B4)

then 
K(θ )/〈K〉 → 0 and, thus, the rotational velocity
of the system becomes insensitive to θ . Therefore τ =∫ 2π

0 dθ/θ̇ (θ ) ≈ 2π/θ̇ and hence the dynamical factor d =
τ

2π

√
〈θ̇2(t)〉 ≈ 1. Note that the terminal velocity is independent

of I . Therefore the condition given in Eq. (B4) is always
valid in the limit of macroscopic rotors, that is, rotors with a
sufficiently large moment of inertia.
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