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Highlights

• A mix of the classical Schelling segregation model with the Voter model is studied.

• In this mixed model an unhappy agent can change her place or her state to be happy.

• The main parameters are the propensity to change type and the density of empty spaces.

• Several segregation/extinction patterns appear in the parameter space.

• Different measures for the segregation patterns are studied.
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Abstract

In this work we analyze several aspects related with segregation patterns ap-
pearing in the Schelling-Voter model in which an unhappy agent can change
her location or her state in order to live in a neighborhood where she is
happy. Briefly, agents may be in two possible states, each one represents an
individually-chosen feature, such as the language she speaks or the opinion
she supports; and an individual is happy in a neighborhood if she has, at
least, some proportion of agents of her own type, defined in terms of a fixed
parameter T .

We study the model in a regular two dimensional lattice. The parameters
of the model are ρ, the density of empty sites, and p, the probability of
changing locations. The stationary states reached in a system of N agents as
a function of the model parameters entail the extinction of one of the states,
the coexistence of both, segregated patterns with conglomerated clusters of
agents of the same state, and a diluted region.

Using indicators as the energy and perimeter of the populations of agents
in the same state, the inner radius of their locations (i.e., the side of the
maximum square which could fit with empty spaces or agents of only one
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type), and the Shannon Information of the empty sites, we measure the
segregation phenomena. We have found that there is a region within the
coexistence phase where both populations take advantage of space in an
equitable way, which is sustained by the role of the empty sites.

Keywords: Schelling Model; Voter Model; Segregation; crowds

1. Introduction

In the last decades, international migration has been increasing ethnic
diversity in different urban areas to date. Ethnic segregation in the way
of ghettos might provide advantages for new migrants to the city, where
they could find an established social network. Nevertheless, segregation can
become problematic when it is associated with social exclusion and economic
marginalization, even worse if inequalities persist across generations, limiting
opportunities for health, employment and schooling, among other problems.
Segregation is analyzed by different institutions across the world, see [1].

Residential segregation in terms of the concentration of ethnicity, nation-
ality or socioeconomic level groups in different parts of a city has been one
of the most important public socio-political topics all around the world for a
long time. Before Schellings’s works round the 1970s, it was commonly be-
lieved that residential segregation was caused by strong discriminatory prefer-
ences (racism, economic discrimination). Nevertheless, using an agent-based
model, Schelling showed that mild discriminatory preferences and segrega-
tion patterns are compatible situations. He proposed a social model which
captures mild and local individual preferences in terms of the choice of res-
idence [2, 3, 4, 5, 6], assuming that in a population of two types of agents
(races in the original work), every agent prefer to live surrounded by at least
some proportion of agents of their own type. In his model, a set of agents are
allowed to change their locations in order to satisfy their preferences. These
individual choices can lead to segregation in the way of ghettos, clusters of
agents of one predominant type of varied shapes and sizes. It is surprising
that segregation occurs although no individual agent strictly seeks it, since
individuals are tolerant to a mixed neighborhood. In this way, Schelling
alerted that certain individual mechanisms can impact on segregated neigh-
borhood patterns as an unintended consequence, and even modest levels of
racial preferences can be amplified into high levels of global segregation.

In the classical descriptions of the model, two types of agents coexist on
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a square lattice with a proportion of empty sites. Every agent has a fixed
tolerance level T , which is the threshold for the proportion of people of the
opposite type she is willing to tolerate among her neighbors. When this
threshold is reached, the agent becomes unhappy and decides to migrate to
some empty site. Hence, agents have a utility function with two possible
values (0 when she is happy and 1, when she is unhappy).

The Schelling model is based on the economic idea that an individual
takes decisions according to a preference or a utility function, which depends
on the local environment. Its results have drawn the economic community’s
attention because it is a clear example of the emergence of aggregate phenom-
ena which are unseen by directly observing individual behaviors [7, 8, 9], and
of a model of critical-mass phenomena, in which people’s behavior depends
on how many others are behaving in a specific way [10].

On the other hand, the fact that very simple rules for interacting agents
lead to emergent properties such as segregation patterns, and their connec-
tion with a physical system such as the Ising model [11, 12], has made the
Schelling model very interesting for the physicists’ community [13, 14]. In the
analogy with a physical system, agents are considered dummy particles, and
the concept of utility function is replaced by the internal energy the particle
stores. According to this interpretation, an increase in the happiness of the
agent represents a decrease in her internal energy. Thus, an agent tries to
minimize her energy (or maximizes her utility) by moving to another place.

There are different rules which govern the movement of agents: for exam-
ple, moving only to empty spaces, or interchanging places, avoiding move-
ments to closer or distant places. Many variants of the model include changes
in the utility function, size of the neighborhood, and the availability of empty
spaces to move in, among others, see for instance [15, 16, 17, 18, 19]. Re-
cently, Vinkovic et al. [14] show that these movement rules matter to define
the shape of the borders of the resulting clusters.

In a previous work [20], we wondered what could happen if an unhappy
agent could change her position or change her own type in order to become
happy. Although this does not make sense when we speak about racial char-
acteristics, it does make sense in many social and economic situations, where
an agent who is unhappy about her neighborhood can choose between trying
to adapt to her neighbors or to migrate to a place which she deems better for
her. Thus, we have mixed the Schelling and the Voter model, another well-
known agent-based model introduced by Holley and Liggett [21], in which
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agents of two states (usually opinions) can change their states depending on
those of their neighbors by following different types of interaction rules, see
[22]. There, we have combined Schelling and Voter dynamics in the following
way: at every step, an unhappy agent is selected at random, and she chooses
to play one of two different games: either she migrates to another place where
she will be happy (with probability p), or she changes her own type (with
probability 1− p).

The Schelling-Voter model we have proposed is non-conservative in terms
of the population type of agents (exchange is possible) but it is still conser-
vative in terms of the whole population. In the variation of the Schelling
model proposed by Gauvin et al. in [12], also the whole population is non-
conservative. The authors consider an open city with a reservoir of agents of
both populations outside the city and define a parameter of welcome to the
city. They pay attention to the resulting vacancy density of the city, which
is a non-fixed variable because of the possibility for external moves in both
directions between the city and the reservoir. In particular, they analyse the
shape of the borders conformed by the empty sites surrounding clusters of
agents of the same population. In our model the number of empty spaces is
fixed, although we vary it as one of the main parameters together with the
propensity to change agent types. In particular, we study the role that the
empty space plays either as borders of clusters or as available space inside
clusters of agents of the same type.

In our previous work [20], we showed that the phase-diagram in the (ρ, p)
plane for a fixed tolerance T can be roughly divided into four regions corre-
sponding to qualitatively different kinds of final configurations: the extinction
of one of the states, ghetto formation, coexistence of both states and diluted
states. This last case involve sparse groups of agents (or isolated agents) over
the grid with a lot of vacant sites. In the last three cases, both type of agents
survive.

The aim of this paper is to further study the phase-diagram in a quanti-
tative way by introducing some indicators:

1. The perimeter of the clusters of each population, an indicator which
focuses on those agents who have lower values of utility because of their
bordering location.

2. The energy of each population, defined in terms of links between neigh-
bors, an indicator which takes into account a global utility function.

3. The inner radius of the clusters of each population, which gives the size
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of the maximum square which could fit without mixing populations.

4. The Shannon’s information of the empty space, which gives information
about the role that empty space is playing as a whole.

1.1. A Few words about the indicators

Let us remark that the problem of pattern characterization is an interest-
ing problem by itself, appearing in porous media, colloidal mixtures, percola-
tion processes, statistical mechanics, probability theory, random and discrete
geometry, image segmentation and classification, among many other fields of
pure and applied sciences. We refer the interested reader to chapters 2 and
3 of [23], and the monograph [24] for some of these applications.

In the specific case of social sciences, the measure of residential segrega-
tion is a highly debated topic, and we refer only to [25] for a description and
a history of the indicators, together with their main advantages and draw-
backs, and the relevant bibliography. There are essentially five dimensions
of segregation, and about 20 indicators were used to measure them.

In our work, two of these dimensions cannot be considered: concentration
and centrality. The former refers to the density of the different groups and
here each agent has always the same proportion of space, one site in the
grid. The later studies the location of the groups respect to the center of the
town, assuming that it has some additional value and it is exploited by one
of the groups, however this is a dimension of the problem which is highly
debated now due to decentralization and the growth of suburban residential
neighborhoods. Let us recall that a Schelling model with this characteristic
can be found in [17], see also [26].

The other three dimensions are evenness, exposure and clustering. This
last dimension is the typical one studied for the classical Schelling model,
where the agents only can change positions. The distribution, size, mean
path, diameters, and number of final clusters of each population are the
main indicators considered, both qualitatively (as in the original works of
Schelling) and quantitatively (see for instance [11], and specially [18], where
precise theoretical estimates were obtained about their size and distribution).

The evenness refers to the spatial distribution of the populations, and
there are several possible ways to measure it. For example, each region of
the grid is classified in terms of the proportion of individuals of each group,
and a region is considered integrated whenever the values are close to the
proportions in all the grid; let us observe that this is an entropy measure,
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and the Information Index was defined in this way by Theil. In this work
we focus on the Shannon Information indicator for the empty spaces, in
much the same spirit, in order to study the opportunities afforded to each
population to change locations. This also has some relationship with the
density of unwanted locations studied in [11]. Also, the inner radius is an
evenness indicator, since it refers to a minimum volume controlled by each
population.

Finally, the exposure refers to the mean number of connections that an
agent has with the members of the other population, computed separately
for each population. Although there are different measures, they depend
basically on the number of links between agents of different populations.
The more links an agent has, the higher is her exposure, and whenever the
mean of the individual exposures of the members of one population is higher
than the mean of the members of the other population, there exists a higher
inequality between both groups.

This dimension is related to the energy, defined as a sum over the links
in the grid, of a parameter c which equals −1 for links between agents of
the same population, +1 for links between agents of different populations,
and 0 if one of the linked nodes is an empty space. A beautiful analysis
of the relationship between economic utility, internal energy of a particle,
and particle dynamics can be found in [14]. A key result in their analysis is
that the deformation of the boundary of a cluster depends on the curvature,
and the dynamics tries to flatten the surfaces. With a different argument, a
similar result appears in the characterization of the equilibrium states given
in [27], although not explicitly stated in this way.

In order to measure the exposure, we split the energy into two separate
functions, each one summing only the links which contains at least one node
among the one of the populations. We refer to them as the energy of the
smallest and the biggest population. However, let us point out that they are
not true energies, and they can increase or decrease after each step of the
dynamics.

The role of the energy as a utility function, and its connection with the
perimeter, was discussed in [27], where the authors prove that it is a Lya-
punov function if only unhappy agents can interchange positions (observe
that the dynamics in [27] is different, since there are no empty spaces, al-
though the proofs can be easily adapted to our case).

These results in [14, 27] make the perimeter indicator worth studying:
whenever clusters appear, the population with greater perimeter has an ex-
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panding concave frontier. When the dynamics stops, the empty spaces play
a fundamental role: they form an insulating layer, reducing the contact be-
tween both populations; or they are located inside a cluster of one of the
populations, and so they are available for only one of the groups. Here, the
Shannon Information indicator helps to distinguish between both situations.

1.2. Motivation and related models

In the last few years some related models have focused on the reconfig-
uration or coevolution of networks and agents (see for instance the review
[28]). More precisely, agents located on some network interact with their
neighbors and as a result, they change their type, or they break the link with
one or more agents, pointing to new agents. These kind of models were mo-
tivated by different problems, like epidemics, evolutive game theory, political
or ideological polarization and their interrelation with segregation.

For instance, in [29, 30], agents are located on a fully connected graph.
The agent type is defined by her opinion about some issue, represented by
±1, and the dynamic process depends on two probabilities p1 and p2: given
two selected agents, with probability p1 they will agree on the same opinion,
and with probability 1 − p1 they will redirect the link with probability p2.
The main question here is related to whether the graph disconnects as two
disjoint components, each one sharing one of the opinions, or all the agents
remain in a single component and only one opinion survives, see [31, 32].
Recently, a full mathematical proof of the existence of this transition was
obtained in [33] for Erdos-Renyi graphs.

On the other hand, in [34, 35] an infectious process is suppressed depend-
ing on the rate of rewiring and the contagion rate. Let us also mention [36],
where agents are located on a square grid, playing the Prisoner’s Dilemma
with their neighbors; here, the type of the agents is the strategy they play,
namely cooperate or defect, and the number of neighbors of each type deter-
mines the payoff that some agent will obtain depending on their own type.
Now, agents change their strategy depending on their own payoff and the pay-
off of one of their contacts, and whenever an agent persuades another agent
to copy her strategy, a new neighbor is added. Here, this mechanism enables
cooperators to survive, despite the strong motivation to become defectors.

The main difference with our model is that the network is fixed and agents
cannot reconfigure it, so they must change locations to find more acceptable
neighbors. Still, there are models where fixed networks are considered, and
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there also exists a coupling between some dynamic process and the influence
of the neighbors.

In [37], the classical Schelling model was studied, and they considered a
fraction of switching agents which can spontaneously change their type at
some rate, regardless of the structure of their neighborhood as in our model.
Let us mention that in their model there are no absorbent states, so there
are interesting questions about metastability, time to reach these metastable
states, and permanence.

Finally, in [38] the agents are located on a fixed regular lattice, and agents
play one of the strategies cooperate or defect in the Prisoner’s Dilemma game.
Now, the probability to change from one strategy to the other is related both
to the respective payoffs of the players, and the number of agents of each type
in their neighborhood, reducing the chances to change if there are enough
agents of the same type.

The paper is organized as follows: in Section §2 we will define precisely
the model and we introduce the necessary notation. In Section §3 we will
present the considered indicators, and in Sections §4 and §5 we will present
the results and conclusions.

2. Schelling-Voter dynamics

From now on, we will use indistinctly ”state” or ”type” in reference to the
agent variable which is allowed to change, although it may not necessarily
represent the color or the race, but the language she speaks, or other social or
anthropological variable such as a belief, an opinion, a strategy, or a custom.

We have performed simulations of the Schelling-Voter dynamics on a lat-
tice of size L × L (using mainly L = 50) and free boundary conditions. By
this, we understand a lattice of size (L + 2) × (L + 2) where the top and
bottom rows, and the first and last columns are empty, so an agent located
in the adjacent rows or columns will interact with few neighbors.

The neighborhood considered of each agent is the Moore neighborhood,
which includes the eight cells which surround her.

At the beginning, a population of N agents is placed at random on the
lattice, and the state of each agent is selected at random with the same
probability for both states; each agent is labeled as b (black) or r (red) in
order to distinguish them. The density of empty sites is ρ = 1− N

L2 .
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We introduce a critical tolerance T , the same for all agents, and we will
say that an agent is unhappy whenever the ratio between the number of
agents of the other state in her neighborhood and the total number of agents
in her neighborhood is greater than T , otherwise we say that the agent is
happy. Let us note that the actual possible values of T are the discrete values
of the form a/c where c takes any value from 1 to 8 and a, from 0 to c. We
consider that an isolated agent is happy, not imposing a gregarious behavior.

Following the Schelling-Voter model introduced in [20], an additional pa-
rameter is needed. Let p ∈ [0, 1] be fixed. Now, an unhappy agent can play
either the Schelling dynamics with probability p, by trying to change her
location by a new one selected at random among those locations where the
agent will be happy, or the voter dynamics with probability 1− p, by trying
to change her state. Probability p can be interpreted as a balance between
the ease and the difficulty for an agent to migrate and to adapt/learn/turn
into a new state.

Let us recall that migration could not be possible if the agent is unhappy
in any of the empty available spaces, so a moving agent will always improve
her happiness, although she can generate new unhappy agents between both
the old and new neighbors.

The change of type would depend on some probabilities qb→r and qr→b,
which can include both the number of agents of each state (globally mea-
sured), and the perceived prestige of each one of the populations (named
s ∈ (0, 1) for the prestige of state b, and 1 − s for the prestige of r), by
following the attractiveness function of languages introduced in [39]:

qb→r =
sNr

(Nb +Nr)
qr→b =

(1− s)Nb

(Nb +Nr)
,

where Nb (respectively, Nr) is the number of agents with state b (resp., r).
In order to preserve the symmetry, we have considered that the prestige of
both states is the same value, s = 1− s = 1/2.

3. Indicators of segregation patterns

A configuration of the system is defined by a vector C = {c1, c2, ..., cL×L}
of size L × L, where ci is the state of the i site given by ci = 1 if i site is
occupied by a b agent, ci = −1 if i site is occupied by a r agent and ci = 0
if the i site is empty. Each i site has a fixed position on the lattice. Thus, C
defines a pattern on the lattice.
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Recall that the initial configuration of N agents is a random choice of C
with the constraint that the value 0 is assigned to L×L−N sites (they will
be the empty sites), and the values 1 or −1 for the remaining N non-empty
sites were assigned with the same probability. The final configuration of a
realization is that achieved by the system when dynamics stop, or when very
few changes have occurred for a fixed period of time.

As in the Schelling-Voter model it is possible the change of states, we
are specially interested in the performance of each population at the final
configuration. Due to symmetry considerations, it makes sense in the follow-
ing, instead of speak about the black and red populations, to refer to the
population which turns out to be the smallest one (small population) and
the one which turns out to be the biggest one (big population).

For two values of the tolerance (T = 0.18 and T = 0.30 cases), examples of
final configurations as a function of the vacancy density ρ and the probability
of changing the location p are shown in Figures 1 and 2, being red the agents
in the biggest population, and black the agents in the smallest one. Other
values of tolerance up to T = 0.5 show similar qualitative results.

In order to characterize the resulting patterns and their boundaries, let us
think about the network g whose nodes are the sites on the lattice and whose
links are the set of all the non-ordered pairs of neighboring sites. Thus, the
set of nodes of g has n(g) = L × L elements, and taking into account the
boundary sites, which has a lower number of connections, the total number
of links is l(g) = (8(L2 − 4L+ 4) + 20(L− 2) + 12)/2.

For a given configuration, the total number of b and r agents, Nb and Nr,
can be written as:

Nb =
1

2

L×L∑

i=1

c2i +
1

2

L×L∑

i=1

ci Nr =
1

2

L×L∑

i=1

c2i −
1

2

L×L∑

i=1

ci (1)

where the index i covers all the network sites, and N = Nb+Nr is the number
of agents or non-empty sites.

There are several magnitudes to measure segregation for the classical
Schelling model, based on the size of the clusters [2, 40], cluster geometry
[11], and number of unhappy agents whenever the system freezes due to the
lack of available empty spaces to achieve comfortable neighborhoods. In
the following subsections, we will define several indicators which measure
different aspects of segregation patterns which take into account the rupture
of symmetry due to changes of states, and they consider also the use of the
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Figure 1: Examples of final configurations for different values of ρ and p for the value of
tolerance T = 0.18 and L = 50. The smallest population is black and the biggest one is
red. Plots in each column correspond to a fixed value of ρ (following from the first column
to the eighth, ρ takes the values 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60 and 0.80). Plots on
each row correspond to a fixed value of p (following from the lower up to the top, p takes
the values 0.05, 0.09, 0.12, 0.25, 0.35, 0.55 and 0.80).
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Figure 2: Examples of final configurations for different values of ρ and p for the value of
tolerance T = 0.30 and L = 50. The smallest population is black and the biggest one is
red. Plots in each column correspond to a fixed value of ρ (following from the first column
to the eighth, ρ takes the values 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60 and 0.80). Plots on
each row correspond to a fixed value of p (following from the lower up to the top, p takes
the values 0.05, 0.09, 0.12, 0.25, 0.35, 0.55 and 0.80.

12



available space by the different populations.

3.1. Perimeter indicator

The local perimeter p(i) of an agent occupying i site is defined as the
number of i’s neighboring sites that are either empty or occupied by an
agent having the opposite state than the one of the agent at the site i:

p(i) = Nd +Ne

where Ne is the total number of empty sites which are surrounding i site
(thus cj=0 being j a neighbour of i on g) and Nd is the total number of sites
connected to i site on g which are occupied with agents in the opposite state
that agent on site i (thus cj 6= ci and cj 6= 0 with j a neighbor of i on g).
Using Eq. 1, the local perimeter p(i) can be rewritten as:

p(i) = 8− 1

2

∑

k ∈ neig(i,g)

c2i c
2
k −

1

2

∑

k ∈ neig(i,g)

cick

where neig(i, g) is the set of neighbors of i site on the network g.
We have considered the perimeter of the big (respectively, small) popu-

lation, called Pbig (resp., Psmall), by applying the sum of p(i) over all the i
sites occupied by one agent in the state of the big population (respectively
small). Pbig and Psmall can be written as:

Pbig = Lempty−big + Lbig−small

Psmall = Lempty−small + Lbig−small (2)

where Lempty−big is the number of links on g connecting an empty site with
a site occupied by an agent in the state of the big population, Lempty−small

is the number of pairs of empty − small sites, and Lbig−small is the total
number of links on g connecting two nodes occupied by agents in different
states (one in state b and the other one in state r). The indicators Pbig and
Psmall capture information related with the frontiers of the populations, the
boundaries of clusters, where the agents with lower chances of being happy
are located.

In Figure 3 we illustrate the perimeter indicator for two extreme different
final configurations. In the left panel, the small population makes up a ghetto
surrounded by a boundary of empty sites, which limits both populations. The
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Figure 3: Example of two configurations of 5 × 5 sites. Left panel: the small population
makes up a ghetto surrounded by empty sites which form a frontier with the big population,
in this configuration Pbig = 4Psmall. Right panel: empty sites form a straight border which
limits the big and small populations and contribute equally to both perimeters.

perimeter of the small population is smaller than that of the big population
(Pbig = 4Psmall in this particular case). This is caused by the convex shape
of the ghetto, surrounded by empty sites, which results in more empty-big
links than empty-small ones. The situation on the right panel gives rise to
the same value of the perimeter for both populations, although the size of
the populations are different. This is caused by the straight shape of the
boundary of clusters.

Thus, the perimeter captures information related with the size and the
shape of the frontiers among populations. This is the reason why we have
decided not to normalize the perimeter value with respect to the size of the
populations, in which case we would miss information regarding the borders,
which is what we intend to record by considering this magnitude. In the fol-
lowing section, we apply a normalization related with the maximum possible
value which the indicator can take on for P to become independent of the
system size.

3.2. Energy indicator

This indicator is borrowed from [11]. An agent located at i is happy if:

Nd − T (Nd +Ns) ≤ 0, (3)

being Ns the total of agents on neighboring sites of i on g in the same type
state than that occupying site i (thus cj = ci and cj 6= 0). Hence, condition
(3) can be rewritten as a property of the i site:

−
∑

j∈neig(i,g)
cicj − (2T − 1)c2i

∑

j∈neig(i,g)
c2j ≤ 0,

14



in terms of the neighbors of the i site on the network g.
By considering the sum over all the (i, j) pairs of neighboring sites of each

of the populations, we introduce the functions Ebig and Esmall which can be
interpreted as the energy of the big and small subsystems respectively:

Ebig =
∑

<i,j>big

cicj − (2T − 1)
∑

<i,j>big

c2i c
2
j

Esmall =
∑

<i,j>small

cicj − (2T − 1)
∑

<i,j>small

c2i c
2
j

where the sums are over the < i, j >big pairs of neighboring big-big sites, and
neighboring small-small sites.

Thus, we unfold the energy by separately considering the energy of each
population as a subsystem, which can be rewritten in terms of the pairs of
sites as:

Ebig = Lbig−small − TLbig−big − TLbig−small

Esmall = Lbig−small − TLsmall−small − TLbig−small (4)

where Lbig−big is the number of links connecting both nodes occupied by
agents in the state of the big population and Lsmall−small, the total links con-
necting both nodes occupied by agents in the state of the small population.

3.3. Inner radius indicator

We define the inner radius for the big population, nrbig, as the side of
the maximum square on the lattice for which all the sites inside are either
occupied by agents of the big population or empty sites, and the analogous
one for the inner radius of the small population, nrsmall.

To simplify, the inner radius measures the maximum sublattice nr × nr
inside a subpopulation. The empty sites inside that square could receive
agents of the same population since they will be comfortable there, disre-
garding few empty sites in the boundary, since some of them are in contact
with agents of the other population.

3.4. Shannon’s information of empty sites

Finally, the Shannon’s information (or entropy) of an empty site i takes
into account only the amount of agents in the two possible states, and it is
defined as

si(i) = −qi log(qi)− (1− qi) log(1− qi) (5)
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Figure 4: Example of two configurations of 5 × 5 sites. Left panel: empty sites form a
straight border which limits both populations; in this case, each empty site contributes
with the maximum value to Shannon’s information, and SI = 1. Right panel: empty sites
inside a cluster of agents of the same population; in this case, each empty site contributes
with zero to Shannon’s information, and SI = 0

where qi is the proportion of agents in the neighborhood of i in the state b,
and 1− qi, the proportion in state r:

qi =
number of neighbors of i such that ci = 1

number of non-empty sites in i’s neighborhood
,

we set qi = 0 if all the neighbor sites of i are empty, and we follow the usual
convention that x log(x) = 0 if x = 0.

The Shannon’s information of the empty sites on the network g is defined
as the sum of the Shannon’s information of each empty node i normalized
by the number of empty sites:

SI(g) =
1

Nρ

∑

i such that ci=0

si(i) (6)

The Shannon’s information indicator of empty sites captures something
we are interested in, which is the homogeneity of the neighborhoods of the
empty sites. Figure 4 shows two different situations to illustrate SI. In the
left panel the empty sites form a straight boundary separating two clusters
of different types, and si takes the maximum value 1 for each site (half
of the occupied neighboring sites are r and the other half, b). Therefore,
SI = 1, reflecting a completely heterogeneous neighborhood for the empty
sites. In the situation on the right panel, the empty sites are surrounded by
other empty sites or occupied by agents of the same type. In this case, the
contribution of each empty site to SI is zero, which gives the result SI = 0,
reflecting a completely homogeneous neighborhood for the empty sites.
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Figure 5: Phase diagram ρ − p for tolerance T = 0.30 and L = 50. In region I (dots,
blue in the online version), the size of the minimum population is less than or equal to 10
per cent of N ; in region II (cross, green in the online version), it is between 10 and 45
per cent; in region III (circles, yellow in the online version), the minimum population is
greater than 45 per cent.

In the left panel of Figure 3, those empty sites which limit with one agent
r and three agents b, contribute with si = 0.81 each, and those with one agent
r and five agents b (the corners of the border) contribute with si = 0.65 each.
As a consequence, SI = 0.73.

According to this definition, a straight border of empty sites separating
two clusters of different colors (vertical or horizontal for example) gives rise
to a si value near the maximum value 1 for each empty site because in this
situation an empty site is surrounded by approximately half of the sites of
one state and half of the other one. In the extreme case in which an empty
site is surrounded by other empty sites or all agents of the same color, si
takes the minimum value 0. Thus, a set of empty sites inside a cluster does
not contribute to the SI magnitude.

4. Results

We have scanned the points of the phase diagram ρ − p for tolerance
T = 0.30. In the simulations, the agents evolve asynchronously. Results
are obtained by averaging 100 realizations of 50000 time steps each, or until
the systems stabilizes so that 99 per cent of the population is happy. Also,
the curves in the figures below show the mean values over 100 realizations
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for each condition, and they are smoothed to avoid noise by averaging the
results obtained in two following points of the parameters (as for example,
taking two consecutive values of ρ).

Figure 5 shows three regions characterized by the size of the small popu-
lation. In the first region I (dots, blue in the online version), the size of the
small population is less than or equal to 10% of N . In the second region II
(cross, green in the online version), it is between 10% and 45%. In the third
region III (circles, yellow in the online version), the minimum population
is greater than 45% of the total population; we call its boundary the curve
of coexistence, since the sizes of both populations are similar. However, as
we will show below, some differences appear on the available empty spaces
for each group, and the shapes of the clusters and their boundaries. Be-
yond ρ = 0.6, the system can be considered as a diluted one, there is too
much empty space, so the system quickly reaches a final configuration that
is almost identical to the initial one.

These regions were presented in our previous work [20], and can be
mapped to extinction, ghetto formation, or coexistence. However, a sharper
analysis of the coexistence region has motivated this work. In the following
subsections, we present results for the previously defined indicators for the
diagram p− ρ.

In order to obtain values of energy and perimeter not depending on the
system size, we have normalized both magnitudes with respect to their max-
imum possible values:

• The maximum perimeter value for an agent is reached when all her
neighbors are either empty sites or sites occupied by agents of the
other state. In such case, the contribution to the perimeter is 8 and
then the maximum perimeter is

Pmax = 16Neff ,

if we disregard the boundary conditions, being Neff the number of
effective agents, which is Neff = N(1− ρ).

• The maximum energy value for an agent is reached for Ns = 8 with
Nd = 0, and therefore, the contribution to E is −8T . Hence, by con-
sidering the whole system,

Emax = 16TNeff .
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Figure 6: For each value of p and ρ, symbols (colors in the online version) represent the
normalized perimeter of the small population Psmall: region I (plus symbols, black in
the online version) represent values greater than 0.2; region II (cross, blue in the online
version) represent values between 0.15 and 0.2; region III (circles, skyblue in the online
version) represent values between 0.1 and 0.15; region IV (dots, green in the online version)
represent values between 0.05 and 1; and region V (circles, yellow in the online version)
represent values less than 0.05.

4.1. Perimeter

Figure 6 shows different regions according to the values of the normalized
perimeter of the small population. We observe a clear pattern of values which
increase depending on ρ for any fixed value of p. The maximum values are
found in the area of greater values of ρ (region I), with values greater than
0.2. We have subdivided the ρ− p diagram in regions where the normalized
perimeter of the small population takes values between 0.15 and 0.2 (II),
values between 0.1 and 0.15 (III), another one with values between 0.05 and
0.1 (IV ), and finally by one whose perimeter of the minimum population is
less than 0.05 (V ). For small values of p up to p ≈ 0.2 we observe a shift of
the boundaries of the regions to the right hand side, since in this region the
coexistence phase occurs for higher values of ρ.

The corresponding image for the perimeter of the big population is showed
in Figure 7; it shows a similar pattern from a value of p ≈ 0.2, while the shape
of the pattern is reversed up to this value.

For some fixed values of ρ (0.05, 0.2 and 0.6) we have computed the mean
value and the standard deviation of the normalized perimeter as a function
of p, varying p in the range from 0 to 1, see Figures 8 and 9. The plots show
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Figure 7: For each value of p and ρ, symbols (colors in the online version) represent the
normalized perimeter of the big population, Pbig : region I (plus symbols, black in the
online version) represent values greater than 0.2; region II (cross, blue) represent values
between 0.15 and 0.2; region III (circles, skyblue) represent values between 0.1 and 0.15;
region IV (dots, green) represent values between 0.05 and 1, and region V (circles, yellow)
represent values less than 0.05.

a value of p for each ρ in which the mean value of the perimeter indicators
of the small and the big population coincide.

The standard deviation of the perimeters for the big and small popu-
lations overlap for ρ = 0.2 and ρ = 0.6, and let us note that ρ = 0.05
corresponds to extinction or ghetto formation in Figure 5. The maximum of
the standard deviation is found near pairs (ρ, p) where the transition from
ghettos formation to coexistence occurs.

As a function of ρ for a fixed p value, the perimeter shows a very different
behavior (see Figure 8). In the limit case of ρ = 0, the perimeter is null for
both populations (there are no empty spaces, and only one population due
to extinction of the other one), and after this value, the value for the two
populations increases while the two curves become distinct (for the case of
p = 0.2 and p = 0.05). Curves achieve different maximum values depending
on ρ, and after their maximum they decrease until they are null again, when
ρ takes the value 1 (because, by definition, all the links belong to the empty-
empty type).

In order to determine the region where the perimeters of the two popu-
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Figure 8: Normalized perimeter of the small population (dash line) and the big one (filled
line) as a function of p for different values of ρ and T = 0.3.
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Figure 9: Standard deviation of the normalized perimeter of the small population (dash
line) and the big one (filled line) as a function of p for different values of ρ and T = 0.3.
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Figure 10: Normalized perimeter of the small population (dash line) and the big one (filled
line) as a function of ρ for different values of p and T = 0.3.
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Figure 11: Standard deviation of the normalized perimeter of the small population (dash
line) and the big one (filled line) as a function of ρ for different values of p and T = 0.3.
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lations are similar, we compute for each pair (ρ, p) the magnitude

Sp =
x̄− ȳ√

∆x2 +∆y2
,

where x̄ is the mean of the perimeter of the big population over all the 100
realizations, ∆x2 is the estimated variance of the perimeter of the big popu-
lation, and ȳ and ∆y2 are the analogous ones for the perimeter of the small
population. The lower the value of Sp is, the more comparable the values of
the perimeters of both populations are. The magnitude Sp is inspired on the
statistics to test mean values among the perimeter of the two populations.
Since the hypothesis of independence of the measures does not hold in this
case, we do not use Sp as a statistical test with an associated p-value. Thus,
the purpose of applying Sp to the perimeter indicator is to define different
regions where the perimeters of the two populations are comparable to a
greater or lesser extent.

Figure 12 shows regions with similar values of Sp. In region I there
are points for which Sp takes values less than −3, and II correspond to
−3 ≤ Sp < −2; in both the perimeter indicator are different. Region III
corresponds to values of −2 ≤ Sp < −1, IV to −1 ≤ Sp < −0.5 and V
to −0.5 ≤ Sp. We can consider that in regions IV and V the perimeter
indicators are similar. Let us note that for very small values of ρ or p,
the perimeter indicators are far from similar, since one of the populations
undergoes extinction or it is very close to it.

When the perimeters of both populations coincide, the number of links
between an agent that belongs to the big population and an empty site (called
big-empty links for simplicity) is approximately the same that the number of
links between an agent that belongs to the small population and an empty site
(called small-empty links), see Eq. (2). This can occur either because the
empty sites play the role of borders of clusters of agents of different color or
because no population takes advantage of the empty sites, a situation which
could occur if both has roughly accumulated a set of empty sites inside their
clusters, and not only one of them store empty sites.

4.2. Energy

Normalized values of energy of small and big populations are shown in
Figures 13 and 14 respectively. For the small population we define the region
I where E < −0.35, then in II −0.35 ≤ E < −0.30, in III we have −0.30 ≤
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Figure 12: For each value of p and ρ, symbols (colors in the online version) represent
values of Sp to compare the normalized perimeter of the both populations. Region I (plus
symbols, black in the online version) are those points for which Sp takes values less than
−3; region II (cross, blue in the online version) are those points for which −3 < Sp < −2,
in these cases we can consider both perimeters are not comparable; region III (circles,
skyblue in the online version) correspond to values of −2 < Sp < −1; region IV (dots,
green in the online version) correspond to values of −1 < Sp < −0.5 and region V (circles,
yellow in the online version) correspond to values of −0.5 < Sp.
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Figure 13: For each value of p and ρ, symbols (colors in the online version) represent the
normalized energy of the small population Esmall: region I (plus symbols, black in the
online version) for values less than −0.35, II (cross, blue) for values between −0.35 and
−0.3; III (circles, skyblue) for values between −0.3 and −0.2, IV (dots, green) for values
between −0.2 and −0.1 and V (circles, yellow) for values greater than −0.1.
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Figure 14: For each value of p and ρ, symbols (colors in the online version) represent the
normalized energy of the big population Ebig: filled circles (black in the online version)
for values less than −0.5; region I (plus symbols, black in the online version) for values
between −0.5 and −0.35; region II (cross, blue in the online version) for values between
−0.35 and −0.3; region III (circles, skyblue) for values between −0.3 and −0.2, region IV
(dots, green in the online version) for values between −0.2 and −0.1 and region V (circles,
yellow in the online version) for values greater than −0.1.

E < −0.20, in IV we have −0.20 ≤ E < −0.10 and finally E > 0.10 in
region V . Similar regions are defined for the big population.

We observe that both energies present a similar dependence on ρ for any
fixed value of p, except at low density regions, where one of the populations
faces extinction, and also E is almost constant for any fixed value of ρ, except
for small p.

We compare the energy of the both populations as in the case of the
perimeter indicator, by computing the magnitude Se defined as

Se =
x̄− ȳ√

∆x2 +∆y2
.

Now, x̄ is the mean of the energy of the big population, ∆x2 is the estimated
variance of the energy of the big population from the data, and ȳ and ∆y2

are the analogous ones for mean and variance of the energy of the small
population, see Figure 15.

We have used the same criterium that for the perimeter. However, the
values of Se are mostly positives and thus, region I correspond to values of
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Figure 15: For each value of p and ρ, symbols (colors in the online version) represent
values of Se to compare the energy of the both populations. Region I (plus symbols, black
in the online version) are those points for which Se takes values greater than 3; region II
(cross, blue in the online version) correspond to values of 2 ≤ Se < 3; region III (circles,
skyblue in the online version) correspond to values of 1 ≤ Se < 2; region IV (dots, green
in the online version) correspond to values of 0.5 ≤ Se < 1 and region V (circles, yellow
in the online version) correspond to values of Se < 0.5.

Se greater than 3, in region II we have 2 ≤ Se < 3, in III 1 ≤ Se < 2, in
IV 0.5 ≤ Se < 1 and in region V we have Se < 0.5.

Then, in the regions where the values of the energy are similar (regions I
and II) we have Lbig−big ≈ Lsmall−small, see Eq. (4). Thus, the composition
of clusters of both populations are similar.

Let us observe that, as connections between agents and empty sites are not
considered in the definition of the energy, this indicator gives no information
about empty sites inside the clusters of each population.

4.3. Inner radius

Figure 16 shows values of inner radius for some values of p as a function
of ρ and Figure 17 shows the inner radius for some values of ρ as a function
of p. From them, it is clear that for each value of p, beyond certain value of
ρ, the inner radius of both populations overlap.

We have computed the magnitude Sr, similar as the ones defined for
perimeter and energy indicators. Figure 18 shows regions for different limit
values of Sr. In this case, the considered values of Sr to obtain the level
curves are less than the ones for Sp and Se.
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Figure 16: For some values of p, curves of inner radius of the small population, nrsmall

(dash line) and that of the big one nrbig (filled line) as a function of ρ and T = 0.3.

Now, the main difference with the previous indicators is that the level
curves of Sr characterize the probability p, since they are almost parallel to
the axis ρ in this region (which corresponds with the coexistence region of
the phase diagram in Figure 5).

4.4. Shannon information of empty sites

Finally, we compute the Shannon Information for the empty sites for
each final configuration of the phase diagram by considering the definition of
SI (i.e., not considering empty neighboring sites to compute probabilities).
Figure 19 shows values of SI as a function on ρ and p. Region I are those
points for which SI takes values less than 0.1, region II corresponds to values
of 0.1 ≤ SI < 0.15, region III corresponds to values of 0.15 ≤ SI < 0.20,
IV to 0.2 ≤ SI < 0.23; and region V corresponds to 0.23 ≤ SI.

A value SI = 1 means that all the empty sites are surrounded by half of
the occupied sites in state b and by other half by agents in the opposite state
r, regardless of how many occupied sites there are in their neighborhood. If
all the neighboring sites of an empty site are empty, the contribution to SI is
zero. The same will happen if all the occupied sites correspond to agents of
the same color. Hence, SI distinguishes homogeneous neighborhoods (greater
values of SI) from heterogeneous ones (small values of SI). In the region of
greater values of SI, empty sites are mainly playing the role of boundaries
of clusters of different populations.
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Figure 17: For some values of ρ,curves of inner radius of the small population, nrsmall

(dash line) and that of the big one nrbig (filled line) as a function p and T = 0.3.
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Figure 18: For each value of p and ρ, symbols (colors in the online version) represent
values of Sr to compare the inner radius of the both populations. Region I (plus symbols,
black in the online version) are those points for which Sr takes values less than −2; region
II (cross, blue in the online version) correspond to values of −2 ≤ Sr < −1; region III
(circles, skyblue in the online version) correspond to values of −1 ≤ Sr < −0.5; region IV
(dots, green in the online version) correspond to values of −0.5 ≤ Sr < −0.3; region V
(circles, grey in the online version) correspond to values of −0.3 ≤ S < −0.2.
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Figure 19: Shannon Information of the empty sites normalized by the total of empty sites
as a function of ρ and p. Region I (circle symbols, yellow in the online version) are those
points for which SI takes values less than 0.1; region II (dots, green in the online version)
correspond to values of 0.1 ≤ SI < 0.15; region III (circle, skyblue in the online version)
correspond to values of 0.15 ≤ SI < 0.20; region IV (cross, blue in the online version)
correspond to values of 0.2 ≤ SI.

5. Conclusions

In this paper we have studied the behavior of a model which combines
the Schelling and Voter dynamics. In this model, the unhappy agents can
not only move elsewhere but also adapt to a new state in order to achieve a
comfortable neighborhood.

Using some indicators of segregation, such as the energy, perimeter, inner
radius of the big and small populations, and the Shannon information of the
empty sites, we characterize some differences in the region of the coexistence,
region III in Figure 5.

Let us note that the intersection of regions IV and V in Figure 12 with
regions I and II in Figure 15, gives rise a region where we can consider that
the perimeter and the energy of both populations are similar, i.e., within
this region the populations are similar in terms of the number of agents, the
size of their frontiers (perimeter indicator), and the cluster structure (energy
indicator). From Figure 2 we can observe that the final configurations in
this region show winding curves as boundaries of the clusters, in the sense
that neither of the populations is confined to ghettos, and the concavity of
the boundary alternates. As we described in Section 2, ghettos show mainly
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convex borders surrounded by empty sites, and in this case, the population of
the ghetto would have a smaller perimeter. The more different the perimeters
of both populations are, it is possible to find empty sites that fall within one
of the populations, the one which has greater values of the perimeter.

We can consider the difference of perimeters as an indicator of the different
territorial control, and we could interpret this as the control over the available
space by one population in order to occupy it in the future with agents of
its own type, or to destine it to other uses, like a recreational space. The
Shannon information of empty sites is maximized when the empty sites are
surrounded evenly by agents of both populations.

On the other hand, populations with lower energy has more massive clus-
ters. The presence of empty sites within one of the populations prevents that
this population reaches even lower energy values. Again, both populations
will have similar energy values whenever the composition of the clusters are
similar.

So, in the intersection region referred above, both the number of agents
and the mean number of connections between agents of the same type are
similar, and no population takes any advantage of the empty spaces. More-
over, we can check from Figure 18 that the inner radius of both populations
are almost equal in this region.

Hence, the region of the diagram in which the perimeters and energies of
the two populations are similar reveals the set of parameters where the use
of the space is almost the same for both populations. We conclude that in
this region the population must not be overcrowded, a situation in which the
mobility is restricted due to space constraints, nor too diluted, a situation in
which there are no reasons to migrate nor to change state.

This last phenomena can be caused mainly by two very different reasons.
First, both states are roughly equivalent. This is the case of similar status
of languages, affording near equal economic or social opportunities for its
speakers (i.e., English and French in Canada, or the different languages spo-
ken in Spain). Several cases of coexistence of languages can be understood
from this perspective. A second reason is the difficulty to change states: we
can consider as a paradigmatic example languages which use different gram-
matical structures, phonology, phonetics, and even logographic versus alpha-
betic representations (as in the case of Indo-European and Asian languages).
However, in order to reach an almost identical territorial distribution of the
agents, we need a similar initial number of agents of each type, and we are
not aware of real examples of this situation.
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There are several possible extensions of the model, let us mention the
ones that we consider the most interesting. First, as Schelling pointed out,
assigning different tolerances for both populations could generate important
changes in the final configurations. Moreover, each agent may have her own
tolerance parameter, and we can consider it as an opinion variable which
evolves with time whenever agents interact. In this way, the model can reflect
the changes that occur in the social mechanism itself. Also, the individual
propensity to change locations or languages could be different for each agent.
The influence of fashion or the public policies directed to preserve endangered
languages can be modeled by varying these probabilities along the simulation.
Let us stress that the model can be made more realistic by introducing survey
data to define the tolerance, as Bruch and Mare did in [41], with data from
Los Angeles, Boston and Detroit.

More heterogeneity could be added in other ways. We can think of a mix
between the Schelling segregation model and the Axelrod model of dissemi-
nation of cultures, see [42]. We conjecture that in this case segregation will
be reached quickly.

Finally, a game theoretic interpretation as in references [36, 38] suggests
natural extensions of the model. Since the Middle Ages, students and schol-
ars migrated to universities or institutions where their individual interests
were better represented or recognized; today we observe this behavior also in
football and basketball players, among other sports and activities. Briefly,
we can consider the strategies of a player as her type, and her pay-off now
depends on her location on the grid, possibly in a dynamical way. Now, she
can migrate or change strategies to increase her pay-off. We expect very
different patterns in this case.
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