Psychometric Properties of the Alcohol Expectancy Scale in Argentinean Adolescents Applying the Rating Scale Analysis

Angelina Pilattia, Juan Carlos Godoya, Óscar Lozanob & Silvina Brussinoa

a Universidad Nacional de Córdoba, Córdoba, Argentina
b University of Huelva, Huelva, Spain

Published online: 30 Apr 2015.

To cite this article: Angelina Pilatti, Juan Carlos Godoy, Óscar Lozano & Silvina Brussino (2015): Psychometric Properties of the Alcohol Expectancy Scale in Argentinean Adolescents Applying the Rating Scale Analysis, Journal of Child & Adolescent Substance Abuse, DOI: 10.1080/1067828X.2013.829009

To link to this article: http://dx.doi.org/10.1080/1067828X.2013.829009

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
Psychometric Properties of the Alcohol Expectancy Scale in Argentinean Adolescents Applying the Rating Scale Analysis

Angelina Pilatti and Juan Carlos Godoy

Universidad Nacional de Córdoba, Córdoba, Argentina

Óscar Lozano

University of Huelva, Huelva, Spain

Silvina Brussino

Universidad Nacional de Córdoba, Córdoba, Argentina

The goal of this study was to analyze the psychometric properties of the Alcohol Expectancy Scale (AES-AA) applying item response theory. Data were obtained from 592 adolescents enrolled in private and public schools of the city of Córdoba (Argentina). This psychometric study was carried out with the Rating Scale Model (RSM), a polytomous Rasch model. Out of the 45 items that make up the scale, 42 items had adequate fit indexes, explaining 91.3% of the adolescents’ response patterns. The estimation error of the parameters was low, indicating adequate precision of the items. In general, the participants’ scores fell within the range of the continuum where the test is most precise. Adolescents’ least frequent expectancies about alcohol consumption were related to sexual behavior (positive expectancies), whereas their most frequent expectancies corresponded both with the Sociability Scale (positive expectancies) and to the Cognitive and Behavioral Impairment Scale (negative expectancies). Implications for preventive programs are discussed.

Keywords: adolescent, alcohol expectancy, item response theory

INTRODUCTION

Adolescent alcohol consumption represents one of the main problems in public health. Data from the Monitoring the Future survey indicated that 72% of all 17-year-old adolescents have consumed alcohol at some time (Johnston, O’Malley, Bachman, & Schulenberg, 2010), and approximately 20% drank more than 5 standard drinks during the 2 previous weeks (Johnston, O’Malley, Bachman, & Schulenberg, 2011). Data from epidemiological studies in Argentina showed that 60% of adolescents drink alcohol and that 25% drink intensively (Secretariat for the Prevention of Drug Abuse and Drug Trafficking [Secretaría de Programación para la Prevención de la Drogadicción y la Lucha contra el Narcótico (SEDRONAR)], 2011). This prevalence is similar to that reported in other studies carried out in Argentina (Alderete & Bianchini, 2008; Pilatti, Godoy, & Brussino, 2011), Brazil (Galduróz & Carlini, 2007), and Mexico (Rojas-Guiot, Fleiz-Bautista, Medina-Mora, Morón, & Domenech-Rodríguez, 1999).

Alcohol consumption at these ages has been shown to be a predictor of the onset of problems of abuse and dependence in adulthood (DeWit, Adlaf, Offord, & Ogborne, 2000). Alcohol abuse and dependence are defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV; American Psychiatric Association [APA], 1994) as a maladaptive pattern of alcohol use, leading to clinically
significant impairment or distress, manifested by recurrent use of alcohol despite a persistent or recurrent social, occupational, psychological, or physical problem that is caused or exacerbated by alcohol use. To be classified with alcohol abuse, respondents had to report the occurrence of at least one symptom of any of the four DSM-IV abuse criteria. To be classified with alcohol dependence, respondents had to report symptoms of at least three of the seven DSM-IV dependence criteria (APA, 1994). Moreover, the World Health Organization (WHO) has reported that 9% of the deaths of youths between 15 and 29 years of age are caused by intensive alcohol consumption (WHO, 2009, 2010). Risk factors for alcohol use and abuse include personality traits (McCarthy, Kroll, & Smith, 2001; Urbán, Kökönyei, & Demetrovics, 2008), rearing style (Windle et al., 2008), having peers or parents who drink alcohol (Martino, Collins, Ellickson, Schell, & McCaffrey, 2006), and a combination of high positive alcohol expectancies and low negative alcohol expectancies (Cameron, Stritzke, & Durkin, 2003; Randolph, Gerend, & Miller, 2006).

Alcohol expectancies fall within the framework of the socio-cognitive theory (Bandura, 1986) and they refer to the beliefs about the effects that alcohol has on behavior, mood, and emotions (Goldman, Brown, Christiansen, & Smith, 1991; Leigh, 1999). According to this theory, alcohol expectancies are considered proximal factors with a direct influence on alcohol consumption. Moreover, alcohol expectancies are regarded as the link between social and biological-genetic variables (Goldman et al., 1991; Smith & Goldman, 1994). Thus, early learning experiences (Martino et al., 2006) combined with biological-genetic factors (Smith & Anderson, 2001) constitute early influences on subsequent behaviors.

Adolescents have been reported to hold both positive and negative alcohol expectancies (Randolph et al., 2006; Stein et al., 2006). Positive alcohol expectancies are related to the initiation, maintenance, and escalation of drinking (Mackintosh, Earleywine, & Dunn, 2006; Randolph et al., 2006). More specifically, it has been suggested that positive expectancies have greater weight at early stages of alcohol consumption (Aas, Leigh, Andersen, & Jakobsen, 1998; Tush & Wiers, 2007), which generally occurs during adolescence. Negative alcohol expectancies are important for stopping or delaying drinking (Oei & Jardim, 2007; Urbán et al., 2008). From this viewpoint, adolescents will consume alcohol because they expect to obtain certain positive effects (e.g., social enhancement or tension reduction), and they will not consume, or reduce their alcohol intake, because of the expectations obtain certain negative effects (e.g., cognitive or motor impairment, aggression, or depression). Therefore, both positive and negative expectancies about alcohol should be dealt with in preventive campaigns.

Research indicates that alcohol expectancies can be modified with specific interventions (Cruz & Dunn, 2003; Lau-Barraco & Dunn, 2008). The expectancy challenge, a procedure that focuses on confronting the pharmacological effects of alcohol with the observed behavioral effects, has been successfully applied to reduce alcohol use (Darkes & Goldman, 1998; Lau-Barraco & Dunn, 2008).

The Alcohol Expectancy Questionnaire-Adolescent Form (AEQ-A; Brown, Christiansen, & Goldman, 1987) and the Comprehensive Effects of Alcohol (CEOA; Fromme, Stroot, & Kaplan, 1993) are the two most widely used instruments to measure alcohol expectancies. Short versions of the AEQ (Randolph et al., 2006; Rönnback, Ahllund, & Lindman, 1999; Stein et al., 2006; Vik, Carello, & Nathan, 1999) and the CEOA (Ham, Stewart, Norton, & Hope, 2005; Valdivia & Stewart, 2005) emerged, mainly for use by clinicians during brief interventions. It is recommended, however, to employ the original long versions for academic research (Stein et al., 2006). There are Spanish versions of both questionnaires, AEQ and CEOA, adapted to the adult and adolescent populations of Mexico (Morarios, Natera, Villatoro, & Villalvalzo, 2000), Colombia (Herrán & Ardila, 2007), Peru (Perez-Aranibar, Van den Broucke, & Fontaine, 2005), and Argentina (Pilatti & Cassola, 2005; Pilatti, Cassola, Godoy, & Brussino, 2005).

Results regarding dimensions of alcohol expectancies have not been conclusive. Some studies were not able to find the dimensions proposed in the original versions of the AEQ (Herrán & Ardila, 2007; Perez-Aranibar et al., 2005; Pilatti & Cassola, 2005; Randolph et al., 2006; Rönnback et al., 1999; Stein et al., 2006; Vik, Carello, & Nathan, 1999) and the CEOA (Ham et al., 2005; Pilatti et al., 2005). This may be due to methodological, social, and cultural differences (Herrán & Ardila, 2007; Pérez-Aranibar, Van den Broucke, & Fontaine, 2005; Vélez-Blasini, 1997). Specifically, some studies employed the complete set of items (Rönnback et al., 1999) while others analyzed the factor structure underlying a shorter number of items (Randolph et al., 2006; Stein et al., 2006). Moreover, samples differed in sociodemographic characteristics and alcohol use across the studies. Specificity and complexity of alcohol expectancies significantly increases when patterns of alcohol intake are established, and therefore, children and adolescents are faced with a variety of new consequences that extend and modify their repertory of anticipated effects (Leigh & Stacy, 2004; Randolph et al., 2006).

Within this framework, and considering the difficulties found with the adaptations of the AEQ and the CEOA, a new measurement instrument of alcohol expectancies in adolescents was developed—the Alcohol Expectancy Scale for Argentinean Adolescents (AES-AA). The AES-AA is based on the operational definition of the CEOA (behavioral impairment, risk and aggression, self-perception [negative factors], sociability, liquid courage, and sex [positive factors]), but items have been developed specifically for Argentine adolescents. The AES-AA has shown adequate psychometric properties and there is evidence of validity (Pilatti, Godoy, & Brussino, 2010, 2012).
Application of item response theory (IRT) is becoming increasingly frequent within the health sphere (Bezruckzo, 2005). However, as with the CEOA, the psychometric studies conducted with the AES-AA were carried out from the perspective of the classical test theory (CTT). IRT comprehends a series of psychometric models that allow determining the response probability of an item as a function of the subject’s level in the construct being measured and of the difficulty of the items. Its diffusion in the health sphere is promoted due to its advantages versus the CTT. Probably, the most important advantage is invariance of parameter estimates. IRT models estimate both item and person parameters with the same model, offer person-free item parameter estimation and item-free person’s measure estimation, and provide an optimal scaling of individual differences. Another advantage is that in IRT each person and each item has its own standard error of estimate (SEE). In contrast with CTT, this property provides more information about how the variable is being measured by the test. Also, it is useful to write more items, and to select the best items to develop new instruments or short forms. Another important advantage is that items and persons are measured on an interval scale. This allows applying statistical procedures not available with CTT, in which obtained data are ordinal (Embretson & Reise, 2000; Rupp & Zumbo, 2006).

The present study has the following goals: (a) to determine the psychometric properties of the AES-AA applying a polytomic model of IRT, and (b) to provide evidence of the validity of the construct alcohol expectancies through the map of persons and items.

METHOD

Participants

The sample was comprised of adolescents, defined as aged from 13 to 18 years, who were enrolled in public and private high schools in Córdoba. According to the 2010 National Census, Córdoba is the second largest city in Argentina, with 1,329,694 citizens, 130,816 of whom are adolescents. Schools and classrooms were selected based on accessibility. Only adolescents whose parents provided written consent participated in the study. Adolescents were told the study was aimed at describing their beliefs and customs regarding alcohol use. They were informed that participation was voluntary and that they could refuse to participate or quit at any time without any negative consequences.

Under the assumption of random sampling, the necessary sample size was 598 adolescents, considering the adolescent population of this city, a ± 4, error margin, a 95% confidence interval, and a p = q distribution. A total of 645 questionnaires were administered, of which 53 were eliminated because the respondents did not complete at least 95% of the questionnaire, so the analyses of the present study were carried out with the data of 592 adolescents.

Of the sample, 59% were female. Mean age was 15.01 (SD = 1.5) years, and there were no statistically significant age differences as a function of gender: 38.3% were between 13 and 14 years old, 44% were between 15 and 16 years, and 17.7% were between 17 and 18 years of age.

Instrument

The design of the AES-AA was based on the operational definition of the CEOA. To obtain the information to construct the items addressing the expected effects of alcohol consumption, in a previous study (Pilatti et al., 2010), we administered an open questionnaire to a sample of 212 adolescents. Adolescents were asked the following question to determine the effects they expected from drinking alcohol:

How do you feel when you drink alcohol? On the basis of their answers, we constructed a form with items and categories that assess expectancies about the positive (sociability, relaxation, increase of sexuality) and negative effects (cognitive and behavioral deterioration, risk and aggressiveness, perception of negative moods) of alcohol consumption. The items are rated on a 5-point frequency response format (1 = never, 2 = not very often, 3 = sometimes, 4 = often, 5 = always).

Procedure

First, a member of the research team contacted the headmaster of the school. The headmaster was informed of the goals of the study, its anonymous nature, and any doubts about it were clarified. After the school had authorized the administration of the questionnaires, the parents were informed about the study. They were requested to sign an informed consent form before the students completed the questionnaire. The questionnaire was administered collectively in the classrooms by a trained researcher during the course of a regular school day. No personal information was requested. The teachers were not present during the administration. The administration lasted approximately 45 minutes. All participants were recruited and surveyed in a similar manner.
Analysis

The IRT model applied was the Rating Scale Model (RSM). This model belongs to the Rasch models (Rasch, 1960), and it is an extension of the dichotomous model for polytomously scored items. According to the model, the probability of a person’s response to an item is expressed in the following equation (Wright & Masters, 1982):

\[
P_{nk} = \frac{\sum_{j=1}^{k} (\beta_n - (\delta_i + \tau_j))}{1 + \sum_{j=1}^{m} \exp \sum_{j=1}^{k} (\beta_n - (\delta_i + \tau_j))}
\]

where \(\beta_n\) is the person’s location or scale value, \(\delta_i\) is the location or scale value of the item \(i\), and \(\tau_j\) is the category threshold parameter, representing the locations of step \(m\) relative to the scale value of the item. In this model, the only difference between items is due to their different location \((\delta_i)\) on the one-dimensional continuum of the variable being measured (Masters, 1980). The values of \(\tau_j\) should remain constant across all the items of the scale, and it is assumed that they only depend on the proposed response categories (Wright & Masters, 1982).

When Rasch models are used, before interpreting the results, the first step is to verify the fit of the data to the model. This analysis will determine the extent to which the empirically obtained data match the prediction of the model. This analysis is normally carried out through the square residual—Mnsq—and the standardized mean square residual—Zstd. The analysis of residuals is performed with two indexes: the INFIT and the OUTFIT. INFIT is an internal fit index assessing the fit with regard to proximal parameters, whereas OUTFIT is an external fit index assessing the fit with regard to distal parameters. Following Wright and Linacre (1994), values of Mnsq between 0.6 and 1.4 indicate acceptable fit. For the Zstd, fit is considered adequate when the values are between -2.0 and +2.0.

The values provided by this model are expressed in a logit scale, which is a logistic transformation of the observed scores, with a mean of 0 and standard deviation of 1.

RESULTS

Fit Analysis

The verification of the global fit of the data showed adequate indexes for persons and items (Table 1). The detailed analysis of persons showed that 91.3% of the adolescents’ response patterns matched the predictions of the model. Of the 45 items that make up the scale, only 3 items (Items 1, 7, and 26) had inadequate fit indexes. As seen in Table 1, in these three items, the values of the fit indexes exceeded the established limit, which indicates that the observed response patterns are unpredictable. This happens because the model predicted that adolescents with higher levels of alcohol expectancies would have high scores, and adolescents with lower levels of alcohol expectancies would have low scores. However, adolescents with high and adolescents with low levels of alcohol expectancies have similar answers in those three items.

Category Probability Curve

The lower part of Table 1 shows the values of the threshold parameters for each response category. The threshold parameter corresponding to the categories not very often and sometimes was lower than that observed between never and sometimes. This means that the threshold parameters of these categories are disordered. Their impact on the Category Probability Curve can be seen in Figure 1. On the ordinate axis, the not very often category was not the most probable in any segment of the continuum (abscissa axis) and it fell below the curves of the other response categories.

Item Map

The map of persons and items shows their distribution on the continuum of expectancies about alcohol (Figure 2). On the one hand, most of the items were located in a central position with regard to the adolescents being assessed. Moreover, considering the position of the items corresponding to the response categories 1 (never) and 5 (always), the items were adequately distributed on the continuum. Only 2.8% of the adolescents had scores lower than the scale value of the items corresponding to the lowest response category.

With regard to the content measured by the items, adolescents’ least frequent expectancies about alcohol consumption were related to sexual behavior (positive expectancies): among the six items with higher scale values were four items that belong to this dimension. In contrast, on the lower part of the continuum, among the 10 items with a lower scale value were 7 items that correspond to the sociability scale (positive expectancies) and 3 items that belong to the cognitive and behavioral deterioration dimension (negative expectancies).

Information Function and Invariance

The information function shows that the highest precision of the test was found in the intermediate values (Figure 3). The mean error of the item parameter was 0.04 logits. The separation index value was 7.55 and item reliability was .98.

With regard to the precision with which the adolescents are measured, 7.6% fell within the range of scores between 1.5 and -1.5 logits, and this corresponded to a mean estimation error of 0.87 logits. And 24.7% fell within the range
of values between \(-1.49\) and \(-0.05\) logits with a mean estimation error of 0.15 logits. Another 63.3% were located between the values of \(-0.49\) and \(0.49\) logits with a mean error of 0.121, and 4.4% had scores higher than \(+1.5\) logits, with a mean estimation error of 0.145 logits. The separation index was 3.53 and person reliability was .93.
The study of the invariance of the AES-AA was carried out by randomly dividing the sample into two groups and applying regression analysis. The results showed a value of \(r = 0.989 \), and the value of the constant was 0.029 and \(\beta = 0.998 \), so parameter invariance can be assumed.

DISCUSSION

The aim of this study was to determine the psychometric properties of the AES-AA by applying the RSM. Relative to the CTT perspective, IRT models have a number of advantages: invariance of item and persons parameters, empirical testing of the model, items and persons are measured on an interval level, or error in measurement for each person and each item—not for the entire instrument or for all persons globally (Hays, Morales, & Reise, 2000). Moreover, the results obtained by applying these models lead to better comprehension from the viewpoint of the validity of the construct being explored (Baghaei, 2008).

Application of the RSM has allowed us to examine the psychometric properties of the AES-AA in detail. In general, the results have shown the feasibility of this test to measure adolescents’ expectancies about alcohol: the fit analysis shows a consistent response structure, the measurement error of the items is low, and item parameters are invariant. These properties are discussed next.

The fit of the data to the model has revealed that most of the adolescents (91.3%) showed agreement with the test items, or at least, it was possible to identify the response patterns that could be predicted by the model. Regarding item analysis, the fit was satisfactory for 42 of the 45 items that make up the AES-AA. The Mnsq values obtained for the three items that did not fit indicate a behavior that is not very predictable by the model (Linacre, 2002b). Examination of the reasons for the lack of fit (Karabastos, 2000) reveals that the discrimination parameters are not different from those of the rest of the items, and they measure contents for which other items have shown adequate fit. Further studies are needed in order to consider the possibility of not including these items.

The response alternatives are an aspect of the test that should be reviewed. It was noted that the alternative “sometimes” was never the most probable response, independently of the adolescents’ level of expectancies. This happens because ordinal numbering of categories does not accord with their substantive meaning (Linacre, 2002a), making more complex the interpretation of patterns of responses. These results led the authors to consider the possibility of choosing a model with four response alternatives. In general, from the CTT perspective, this reduction of the response alternatives would foreseeably lead to lower test reliability due to the reduction of the variability (Maydeu-Olivares, Kramp, García-Forero, Gallardo-Pujol, & Coffman, 2009). However, the results of this study have shown that a better fit of this test to adolescents’ discriminative capacity would be achieved. Future studies should consider both options to obtain empirical evidence of the most adequate format.

In terms of precision, it was noted that the estimation error of all the items is relatively low (0.04 logits). Likewise, it was observed that most of the adolescents were located in the section of the alcohol expectancies continuum where the test measures more precisely. With regard to the persons and items reliability indexes, they are both very high, which indicates that the location of persons and items could be reproduced foreseeably (Andrich, 1982).

The analysis of the map of persons and items provided information that might be useful in the design of preventive campaigns. More specifically, alcohol expectancies are susceptible to modification, and as a result, are considered useful factors to target during treatment and interventions focus in preventing and decreasing underage drinking (Randolph et al., 2006). This information on how alcohol expectancies are organized is, therefore, useful to develop interventions focused on changing adolescents’ cognitions regarding alcohol effects. For example, the highest scale value was showed for the expectancies related to sexual behavior. In general, this indicates that it is not likely for adolescents to think that alcohol consumption will have a positive impact on their sexual behavior. At the same time, adolescents with higher expectancies that alcohol consumption will affect their sexual behavior were also very likely to obtain high scores in the rest of the expectancies assessed. On the other hand, the most likely expectancies among adolescents were those related to sociability and cognitive and behavioral deterioration.

Several aspects concerning this result deserve further comment. First, in order to improve the efficiency of preventive campaigns targeting adolescents, we should first and foremost deal with their sociability expectancies, in an attempt to reduce them. As we have seen, the second aspect to underline is that adolescents frequently believe that alcohol consumption generates cognitive and behavioral impairment.
Previous studies suggested that positive expectancies (Goldman et al., 1991; McCarthy et al., 2001; Urbán et al., 2008), in particular those regarding social facilitation (Kuntsche, Knibbe, Gmel, & Engels, 2006; Pilatti, Godoy, & Brussino, 2011; Read, Wood, Lejuez, Palfai, & Slack, 2004) have more weight in the explanation of adolescent consumption, especially in cultures where alcohol consumption is strongly associated with social interaction activities (Kuntsche et al., 2006). However, other authors noted the importance of considering the effect of negative expectancies (Leigh & Stacy, 2004; Oei & Jardim, 2007; Tush & Wiers, 2007; Urbán et al., 2008). Besides the predictive capacity of both types of expectancies, empirical evidence was provided in this study that both of them are intermingled in the distribution of the continuum. This indicates that the probability of adolescents having both types of alcohol expectancies is similar.

Social Learning Theory also emphasizes the importance of social influence (Bandura, 1986) on a different range of behaviors, including peer influences on alcohol drinking...
A. PILATTI ET AL.

Herrán, O. F., & Ardila, M. F. (2007). Validez factorial del cuestionario de expectativas hacia el consumo de alcohol (AEQ-III), en adultos de Bucaramanga, Colombia [Factorial validation of the alcohol expectancy

REFERENCES

Herrán, O. F., & Ardila, M. F. (2007). Validez factorial del cuestionario de expectativas hacia el consumo de alcohol (AEQ-III), en adultos de Bucaramanga, Colombia [Factorial validation of the alcohol expectancy

FIGURE 3 Test information function.

