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1 Introduction

Consider the division problem faced by a set of agents who have to share a unit of an homogeneous

and perfectly divisible good. For instance, a group of agents participate in an activity that requires

a fixed amount of labor measured in units of time. Given a wage, classical monotonic and quasi-

concave preferences on the set of bundles of money and leisure generate single-peaked preferences

on the set of potential shares, where the best share is the amount of working time associated to the

optimal bundle and in both sides of the best share the preference is strictly monotonic, decreasing

at its right and increasing at its left. Similarly, a group of agents join a partnership to invest

in a project (an indivisible bond with a face value, for example) that requires a fixed amount of

money, neither more nor less. Their risk attitudes and wealth induce single-peaked preferences on

the amount to be invested. As in the previous examples, there are other social choice settings for

which the division problem appears as its reduced problem (see for example, Barberà and Jackson

(1995)).

A solution is a family of mappings that select for each instance of division problem (a set of

agents and their single-peaked preferences) a vector of shares, one for each agent. But for most

single-peaked preference profiles, the sum of the best shares will be either larger or smaller than

the total amount to be allocated. A positive or negative rationing problem emerges depending on

whether the sum of the best shares exceeds or falls short of the fixed amount. Sprumont (1991)

started a large literature characterizing solutions in terms of alternative sets of properties. These

solutions differ on the underlying principles guiding how the rationing problem has to be solved.1

In this paper, we study the division problem when the good to be allocated also comes with

fixed amounts but now agents may share several units, whose number is endogenous because it

may depend on agents’ preferences. Consider for example a group of entrepreneurs examining

several business opportunities. Each entrepreneur is willing to devote himself to at most one of

those business opportunities and as before, their risk attitudes and wealth induce single-peaked

preferences on the amount to be invested. We let agents partition themselves into coalitions in

such a way that agents in each coalition will have to share one and only one unit of the good.

We want to emphasize that the class of real-life examples that we want to model have to have

the feature that every coalition of the partition, no matter what its composition is, gets a full

unit to allocate among its members; for instance, when a set of agents who want to invest some

of their savings in a particular indivisible bond, no coalition is able to buy strictly less than the

face value of the bond. An allocation is a pair consisting of a partition of the set of agents and a

vector of allotments specifying for each coalition in the partition a vector of shares, one for each

agent in the coalition, whose components add up to one unit. A rule is a mapping that selects

for each profile of single-peaked preferences an allocation. Thus, a rule can be decomposed into

two procedures. For each profile of single-peaked preferences, the first procedure is a function that

selects a partition of the set of agents while the second procedure is a solution to be applied to the

subprofile of single-peaked preferences of the agents in each coalition of the partition. We restrict

ourselves to second procedures that select the allotment by means of a unique solution applied to

each rationing problem faced by each coalition in the partition. This restriction implies that the

1For axiomatic characterizations of solutions see for example Barberà, Jackson, and Neme (1997), Ching (1992,

1994), Dagan (1996), Ehlers (2002a, 2002b), Herrero and Villar (2000), Schummer and Thomson (1997), Sönmez

(1994), and Thomson (1994, 1995, 1997, 2003).
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same principles are used across coalitions and it can be interpreted as a consistency requirement.

Thus, a rule can be identified with a partition function (mapping single-peaked preference profiles

into partitions of the set of agents) and a solution (to be applied to each coalition of the selected

partition).

Our main concern in this paper is the stability of rules.2 Specifically, fix a solution. We want

to know whether there exists a partition function that, together with the fixed solution, constitute

a stable rule. Our notion of stability is based on the principle that the allocations proposed by

the rule have to be voluntarily accepted by the agents in the following sense. Consider a rule and

a profile of single-peaked preferences. Apply the rule to the profile, thereby obtaining a partition

and a vector of allotments. Take an agent in a coalition and another coalition (which may be

empty), and suppose that (1) the agent wants to leave his original coalition to join the other

one because the share assigned to him by the solution applied to the subprofile of preferences of

the agents in the new coalition is strictly preferred to his former share, and (2) all agents of the

receiving coalition want to admit the agent because the shares assigned to them by the solution

applied to the subprofile of preferences of the agents in the new coalition are weakly preferred to

their respective former shares. In this case, the original chosen allocation would be unstable at the

profile to which the rule has been applied. A rule is stable if it chooses stable allocations at each

profile of single-peaked preferences. Three remarks are in order. First, to generate an instability

we are requiring that the moving agent has to obtain a strictly preferred share while the agents

of the receiving coalition have to obtain a weakly preferred share. This captures the idea that to

move from one coalition to another (the origin of the instability) requires a bit more than just to

admit a new member in the coalition. Second, instabilities are generated only by one agent moving

to a new coalition. In this case, the needed coordination among agents to fulfill the instability is

minimal compared with the coordination needed if non-singleton subcoalitions would be allowed

to change coalitions. Third, the receiving coalition may be empty, in which case the instability

would be produced only by the agent that by leaving his current coalition could be strictly better

off; i.e., the agent would strictly prefer the full share of one unit of the good to the share he had

been assigned in his original coalition.

In a similar setting Gensemer et al (1996, 1998) study another concept of stability that they

call “migration equilibrium”. Agents with single-peaked preferences are partitioned into several

local economies, each of which has an endowment that is allocated among its participants following

a given solution. A migration equilibrium requires that no agent will be better off by leaving his

economy to join another. They show that when the solution applied to each local economy is well

behaved there might not exist a migration equilibria.3 Note that the receiving economy cannot

ban the arrival of a new agent and hence the migration equilibrium is a stronger stability condition

2Kar and Kibris (2008) consider the efficiency of such rules in a setting where the number of units to share is

fixed rather than endogenous. They show that for the domain of single-peaked preferences and for well behaved

solutions (efficient, non dictatorial, strategy proof, resource monotonic and consistent), it is not possible to find a

partition such that the final allocation is efficient.

3In particular, in Gensemer et al (1996) they show that a migration equilibrium might fail to exists if the solution

applied to the local economies satisfies two of the following three properties: Pareto efficiency, strategy proofness and

no-envy. In Gensemer et al (1998) they show that a migration equilibrium might fail to exists whenever the solution

applied to the local economies is either the Proportional, the Sequential Dictator, the Uniform or the Egalitarian

rules.
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than the one studied in this paper. Which stability concept to apply depends on the applications.

In an environment with a small number of agents with decision power such as in joint ventures, our

concept is more appealing whereas for movements across countries or big societies the migration

equilibrium is the one to be considered.4

We found that in general, finding partition functions for well-known and simple solutions, to

constitute together stable rules, is not an easy task. Indeed, it may become extremely complex

in the general setting of the division problem. Thus, we have simplified the problem by assuming

that agents’ single-peaked preferences are in addition symmetric.5 A single-peaked preference is

symmetric if the following additional condition holds: a share is strictly preferred to another one

if and only if the former is strictly closer to the best share. Observe that in many applications the

linear order structure on the set of potential shares, relative to which single-peakedness is defined,

conveys to agents’ preferences more than just an ordinal content. Often, an agent’s preference

on the set of shares is responsive also to the notion of distance, embedding to the preference

its corresponding property of symmetry (see Massó and Moreno de Barreda (2011) for the use of

symmetric single-peaked preferences in the context of selecting a public good, as in Moulin (1980)).

The use of symmetric single-peaked preferences has the additional advantage that, without loss of

generality, the domain of the rule is the set of vectors of best shares, instead of the set of profiles

of full preferences.

Our main results establish that, provided that agents’ preferences are symmetric single-peaked,

the proportional solution (Proposition 1) and all sequential dictator solutions (Proposition 2) have

the property that for each one of them there exists a partition function that, together with the

corresponding solution, constitute a stable rule.6 The proportional solution of the division problem

assigns to each agent, given a vector of agents’ best shares, a share that is equal to his best share

divided by the sum of all the best shares. Remember that the solution is applied to each coalition

in the partition selected by the partition function at the vector of agents’ best shares. Given an

ordering on the set of agents, the sequential dictator solution associated with this ordering, and

applied to a vector of agents’ best shares, let each agent, except the last one, choose sequentially

(following the ordering) his share of what is left of the good (if anything) by his predecessors. The

last agent in the ordering gets the remainder. Observe that (i) each ordering on the set of agents

define a different solution of the division problem, and (ii) the order is fixed and used in each of the

coalitions selected by the partition function at the same vector of agents’ best shares. The proofs

of the two results are constructive and proceed by induction on the number of agents. In addition,

we exhibit examples showing that for both rules stability is a strong requirement incompatible with

many other desirable properties like efficiency, strategy-proofness, anonymity, and non-envyness.

4Conley and Konishi (2000) propose another stability concept, “migration-proof Tiebout equilibrium”, which is

weaker than the migration equilibrium. They show that for sufficiently large populations of homogeneous agents,

a migration-proof Tiebout equilibrium exists, is unique and asymptotically efficient. See also Sertel (1992) for an

alternative notion of stability and efficiency of partitions, in which a membership property rights code is used in an

abstract setting.

5Kar and Kibris (2008) show that in the domain of symmetric singled-peaked preferences, and when the number

of units of the good to be shared is fixed, whenever a (local) solution is efficient, there exists a partition such that

the final allocation is efficient. At the end of the paper we further discuss on the importance of assuming that agents

have symmetric single-peaked preferences.

6Note that for both the proportional solution and the sequential dictator solution a migration equilibrium (Gense-

mer et al (1996,1998)) might fail to exists even when we restrict the preferences to be symmetric single-peaked.
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We also show that there are simple solutions for which there do not exist partition functions

that together constitute stable rules. In particular, we exhibit an example of a vector of weights

(one for each agent) and a profile of preferences with the property that there is no partition function

that, together with the corresponding weighted proportional solution, constitute a stable rule.

Amorós (2002), Adachi (2010), and Morimoto, Serizawa, and Ching (2013) study also multi-

dimensional extensions of Sprumont (1991)’s division problem. They extend the uniform solution

of a division problem to many division problems (Amorós (2002) does it for problems with only

two agents). Their approach is different to ours because they consider problems where the goods

to be allocated may be different and each agent has preferences on vectors of his potential shares

(one for each different good). Their main contribution is to extend and axiomatically characterize

the uniform solution to the multiple goods setting.

The paper is organized as follows. In Section 2 we introduce the model. In Section 3 we state

and prove our main results. In Section 4 we present some final comments.

2 Preliminaries

Agents are indexed by the elements of a finite set N = {1, ..., n}, where n ≥ 1. They have to

partition themselves in such a way that the agents of each coalition of the partition have to share

one unit of a perfectly divisible good (as in Sprumont (1991)). Let Π denote the set of partitions

of N . Given π = {S1, ..., SK} ∈ Π and i ∈ N , let Sπ(i) denote the set Sk ∈ π such that i ∈ Sk. An

allocation is a pair (π, x) where π = {S1, ..., SK} ∈ Π is a partition and x = (x1, ..., xn) ∈ [0, 1]n is

a vector of allotments such that, for each k = 1, ...,K,∑
i∈Sk

xi = 1.

Let A be the set of allocations. We assume that each agent i ∈ N has a complete and transitive

preference relation Ri on the set of his potential shares [0, 1]. Let Pi and Ii be its associated strict

and indifference relations, respectively. Namely, for each pair xi, yi ∈ [0, 1], xiPiyi if and only if

yiRixi does not hold, and xiIiyi if and only if xiRiyi and yiRixi hold. In addition, we assume

that Ri is symmetric single-peaked ; that is, there exists the best share bi ∈ [0, 1] (i.e., biPixi for

all xi ∈ [0, 1]\{bi}) and xiPiyi if and only if |xi − bi| < |yi − bi|. Therefore, we can identify a

profile of preference relations R = (R1, ..., Rn) by the vector of their corresponding best shares

b = (b1, ..., bn), which we call a profile. The set of all profiles is [0, 1]n. Given a non-empty subset

S ⊆ N , we denote its cardinality by its lower case representation, i.e., s = #S. Given a profile

b ∈ [0, 1]n and a non-empty subset S ⊆ N we denote by bS = (bi)i∈S ∈ [0, 1]s the subprofile of best

shares of agents in S.

Given a non-empty subset of agents S ⊆ N , a solution for S is a function fS : [0, 1]s → [0, 1]s

that selects for each subprofile an allotment for S; namely, for each bS ∈ [0, 1]s, fS(bS) ∈ [0, 1]s

has the property that ∑
i∈S

fSi (bS) = 1.

A solution f is a family {fS}S⊆N , where each fS is a solution for S.7 Given a solution f , a

partition π, and a profile b, denote by f(π, b) = (fi(π, b))i∈N the following vector of allotments:

7Note that the definition of solution allows for each subset S ⊆ N to have its own distinct solution fS . As we
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for each i ∈ N ,

fi(π, b) = f
Sπ(i)
i (bSπ(i)).

A partition function is a mapping µ : [0, 1]n → Π that selects, for each profile b ∈ [0, 1]n, a

partition µ(b) ∈ Π.

A rule is a function Φ : [0, 1]n → A selecting, for each profile b ∈ [0, 1]n, an allocation Φ(b) =

(π, x) ∈ A. Given a partition function µ and a solution f , Φ = (µ, f) is the rule that for all

b ∈ [0, 1]n, selects the allocation Φ(b) = (µ(b), f(µ(b), b)). We can also apply a rule to a subprofile

in the obvious way.

In the next section we will focus on the stability of some rules. We now define this property.

Consider a rule. Given a profile, apply the rule to the profile, thereby obtaining a partition and a

vector of allotments. Now, imagine that an agent moves to another coalition in the partition and,

after applying the solution to this new subset, he obtains a strictly better share and all former

members of this receiving coalition (which may be empty) are at least as well as they were before.

Then, the rule would not be stable at the profile. To define formally a stable rule we have to

describe, given a partition, an agent and a coalition receiving this agent, the new partition after

the agent moves from the former coalition to the new one. Given π = {S1, ..., SK}, i ∈ N , and

k ∈ {1, ...,K} define

π−i,k =

{
[π\({Sπ(i)} ∪ {Sk})] ∪ {{Sπ(i)}\{i}} ∪ {Sk ∪ {i}} if Sk 6= Sπ(i)

[π\{Sπ(i)}] ∪ {{Sπ(i)}\{i}} ∪ {i} if Sk = Sπ(i).

Observe that if i /∈ Sk then π−i,k is the new partition where all coalitions remain the same except

that Sπ(i) looses i and Sk gains i. But if i ∈ Sk then π−i,k is the new partition where all coalitions

remain the same except that Sπ(i) looses i and {i} is itself one of the elements of the partition.

Definition 1 Let Φ = (µ, f) be a rule and let b be a profile. Take µ(b) = {S1, ..., SK} = π. We

say that Φ is stable at b ∈ [0, 1]n if there do not exist i ∈ N and k ∈ {1, ...,K} such that:

(1) fi(π−i,k, b)Pifi(π, b), and

(2) if Sk 6= Sπ(i) then, for all j ∈ Sk, fj(π−i,k, b)Rjfj(π, b).
8

A rule Φ = (µ, f) is stable if it is stable at all b ∈ [0, 1]n.

3 Stable Rules

In the following subsections we study the stability of rules associated to two well-known solutions:

the proportional and the sequential dictator solutions.

have already said in the Introduction, we restrict our analysis to the case in which a unique solution is applied to

every coalition in the partition. This requirement implies that the same principles are used across coalitions and

can be interpreted as a consistency requirement.

8If there exist i and k such that (1) and (2) hold we say i wants to leave Sπ(i) to join Sk and all agents in Sk
want to admit i.
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3.1 Proportional Solution

The proportional solution p = {pS}S⊆N is defined as follows: for each non-empty subset of agents

S ⊆ N, each bS ∈ [0, 1]s and i ∈ S,

pSi (bS) =

{
bi∑
j∈S bj

if
∑
j∈S bj 6= 0

1
#S otherwise.

The proportional solution is very intuitive and has been extensively used to solve many allo-

cation problems (for instance, in bankruptcy). If an agent’s demand represents a proportion x%

of the total demand in his coalition, the solution dictates that the agent should receive x% of the

unit they are sharing.

Given a partition function µ, define the proportional rule as Pµ = (µ, p). Proposition 1 es-

tablishes that there is always a partition function such that the proportional rule is stable. The

proof is constructive and proceeds by induction on the number of agents. An intuitive explanation

of the structure of such partitions is as follows. We consider a non-empty set of agents S1 such

that the sum of the best shares of its agents is “closest” to 1. By the induction hypothesis there

exists a partition function µp(bN\S1
) such that the proportional rule is stable over N\S1. We take

µp(b) =
{
S1, µ

p(bN\S1
)
}

and we prove that the proportional rule is stable.

Proposition 1 There exists a partition function µp such that the rule Pµ
p

is stable.

Proof By induction on n.

I Assume n = 1. The stability of Pµ
p

is obvious.

Induction Hypothesis: For all S with 1 ≤ #S < n there exists a partition function µS such

that (µS , p = {pT }T⊆S) is stable.

I Consider N and an arbitrary b ∈ [0, 1]n. Define µp(b) as follows.

First, assume bi = 0 for all i ∈ N. Then, set µp(b) = {{N}}. Obviously, (µp, p) is stable at b.

Assume now that bi > 0 for some i ∈ N . Take an arbitrary S1 ⊆ N with the property that

S1 ∈ AM ≡ arg min
S⊆N

∃j∈S s.t. bj>0

∣∣∣∑j∈S bj − 1
∣∣∣∑

j∈S bj

and #S1 ≥ #T for all T ∈ AM . Observe that if bi = 0, i ∈ S1. If S1 = N , set µp(b) = {{N}}. By

the definition of S1, Pµ
p

(b) is stable at b. Assume now that N\S1 6= ∅ and consider the subprofile

bN\S1
. Define µp(b) =

{
µN\S1(bN\S1

), S1

}
. We next show that (µp(b), p(b)) is an stable allocation

at b.

First, by definition of S1, for all i ∈ S1 and for any T ∈ µN\S1(bN\S1
),∣∣∣∑j∈S1

bj − 1
∣∣∣∑

j∈S1
bj

≤

∣∣∣∑j∈T bj + bi − 1
∣∣∣∑

j∈T bj + bi
.

Then, ∣∣∣∣∣ bi∑
j∈S1

bj
− bi

∣∣∣∣∣ = bi

∣∣∣∣∣
∑
j∈S1

bj − 1∑
j∈S1

bj

∣∣∣∣∣ ≤ bi
∣∣∣∣∣
∑
j∈T bj + bi − 1∑
j∈T bj + bi

∣∣∣∣∣ =

∣∣∣∣∣ bi∑
j∈T bj + bi

− bi

∣∣∣∣∣ .
7



Thus, pS1
i (bS1

)Rip
T∪{i}
i (bT∪{i}). Hence, i does not want to leave S1 to join T .

Second, take k ∈ N\S1. By definition of S1,∣∣∣∑j∈S1
bj + bk − 1

∣∣∣∑
j∈S1

bj + bk
>

∣∣∣∑j∈S1
bj − 1

∣∣∣∑
j∈S1

bj
.

Notice that the inequality is strict since S1 has the largest size among all sets in AM . Then,

consider any i ∈ S1 such that bi > 0. By the definition of S1, there exists at least one agent with

this property. Then, ∣∣∣∣∣ bi∑
j∈S1

bj + bk
− bi

∣∣∣∣∣ >
∣∣∣∣∣ bi∑

j∈S1
bj
− bi

∣∣∣∣∣ .
Thus, pS1

i (bS1
)Pip

S1∪{k}
i (bS1∪{k}). Hence, i ∈ S1 does not want to admit k ∈ N\S1 in S1.

Third, by the induction hypothesis, (µN\S1(bN\S1
), pN\S1(bN\S1

)) is an stable allocation at

bN\S1
; namely, for all S ∈ πN\S1(bN\S1

) and k ∈ N\S1 such that k /∈ S, either k does not want to

join S or there is some agent in S that does not want to admit k.

Finally, we check that no agent in S1 wants to leave and form a singleton coalition; namely, for

all i ∈ S1, p
S1
i (bS1

)Rip
{i}
i (bi). If bi = 0, the weak preference follows immediately. Assume bi > 0.

Then, the weak preference also holds because, by the definition of S1,∣∣∣∣∣ bi∑
j∈S1

bj
− bi

∣∣∣∣∣ = bi

∣∣∣1−∑j∈S1
bj

∣∣∣∑
j∈S1

bj
≤ bi
|1− bi|
bi

= |1− bi| .

Hence, Pµ
p

= (µp, p) is an stable rule. �

We finish this subsection by showing that not all weighted proportional rules are stable. To see

that, let w = (w1, ..., wn) ∈ (0, 1)n be a vector of weights such that
∑
i∈N wi = 1. The weighted

proportional solution wp = {wpS}S⊆N is defined as follows: for each non-empty subset of agents

S ⊆ N, each bS ∈ [0, 1]s and i ∈ S,

wpSi (bS) =


wibi∑
j∈S wjbj

if
∑
j∈S bj 6= 0

wi∑
j∈S wj

otherwise.

Given a partition function µ, define the weighted proportional rule as Wµ = (µ,wp).

The following example shows that there are vectors of weights w such that there is no partition

function µ for which the weighted proportional rule Wµ = (µ,wp) is stable.

Example 1 Let N = {1, 2, 3} and consider the vector of weights w = (0.4, 0.2, 0.4). Take the

profile b = (0.8, 0.5, 0.4). Then, the allocations corresponding to the five possible partitions func-

tions are: Wµ1(b) = ({1, 2, 3}, (0.552, 0.172, 0.276)), Wµ2(b) = ({{1}, {2, 3}}, (1, 0.385, 0.615)),

Wµ3(b) = ({{1, 3}, {2}}, (0.667, 1, 0.333)), Wµ4(b) = ({{1, 2}, {3}}, (0.762, 0.238, 1)) and Wµ5(b) =

({{1}, {2}, {3}}, (1, 1, 1)). But the strict preference wp1(µ2(b), b)P1wp1(µ1(b), b) implies that if all

agents were in the same coalition, agent 1 would prefer to leave and set a new coalition by him-

self. Thus, Wµ1 is not an stable rule. The two strict preferences wp3(µ3(b), b)P3wp3(µ2(b), b)

and wp1(µ3(b), b)P1wp(µ2(b), b) imply that if the partition was {{1}, {2, 3}} then agent 3 would

rather join the coalition formed by agent 1 alone and agent 1 would be happy to admit him.

Thus, Wµ2 is not an stable rule. Similarly, the three pairs (i) wp1(µ4(b), b)P1wp1(µ3(b), b) and

8



wp2(µ4(b), b)P2wp2(µ3(b), b), (ii) wp2(µ2(b), b)P2wp2(µ4(b), b) and wp3(µ2(b), b)P3wp3(µ4(b), b), and

(iii) wp1(µ3(b), b)P1wp1(µ5(b), b) and wp3(µ3(b), b)P3wp3(µ5(b), b) imply that Wµ3 , Wµ4 , and Wµ5

are not stable rules, respectively. �

3.2 Sequential Dictator Solutions

Let σ : N → N be a one-to-one mapping defining an ordering on the set of agents N ; namely, for

i, j ∈ N , σ(i) < σ(j) means that agent i comes before agent j in the ordering σ. Fix σ and S 6= ∅.
Define the sequential dictator solution associated to σ for S, denoted by σdS : [0, 1]s → [0, 1]s, as

follows: for each bS ∈ [0, 1]s and i ∈ S,

σdSi (bS) =

{
min{bi,max{1−

∑
{j∈S|σ(j)<σ(i)} bj , 0}} if i is s.t. ∃j ∈ S, σ(i) < σ(j)

max{1−
∑
{j∈S|σ(j)<σ(i)} bj , 0} otherwise.

The sequential dictator solution associated to σ is the family σd = {σdS}S⊆N , where for each

non-empty subset S ⊆ N, σdS is a sequential dictator solution associated to σ for S.

An ordering on the set of agents induces an ordering on each possible coalition. Given a

coalition, the sequential dictator solution uses this ordering to allocate the exact demand to the

agents until the unit is exhausted or there are no more agents in the coalition. This solution has

been extensively used to solve problems where a fixed set of indivisible objects have to be assigned

to a set of agents with ordinal preferences on the objects (see for instance Hylland and Zeckhauser

(1979)). Often, by randomizing on the set of orders ex-ante fairness can be obtained.

Given a partition function µ, define the sequential dictator rule as σDµ = (µ, σd). Proposition 2

establishes that there is always a partition function such that the sequential dictator rule is stable.

The proof is also constructive and proceeds by induction on the number of agents. An intuitive

explanation of the structure of such partitions is as follows. By simplicity we take σ (i) = i for

all i ∈ N. Let S̄ be the coalition that would result in the best allotment for agent n (of course

n ∈ S̄), according with σd applied to bS̄ . Two cases are possible: agent n obtains 0 in S̄ or agent n

obtains a positive share in S̄. First case, by induction hypothesis there exists a partition function

µσd(bN\{n}) such that σd is stable over N\{n}. We include n in the element of µσd(bN\{n}) in

which agent n obtains the best. With this new partition we prove that σd is stable over N . Second

case, by induction hypothesis there exists a partition function µp(bN\S̄) such that σd is stable over

N\S̄. We take µσd(b) =
{
S̄, µσd(bN\S̄)

}
and we prove that σd is stable.

Proposition 2 Let σ be an ordering on N. Then, there exists a partition function µσd such that

the rule σDµσd = (µσd, σd) is stable.

Proof Without loss of generality we assume that σ is such that σ(i) = i for all i ∈ N . In the

proof we will omit the reference to the ordering σ. The proof is by induction on n.

I Assume n = 1. The stability of σDµσd is obvious.

Induction Hypothesis: For all S ⊂ N with 1 ≤ #S < n, there exists a partition function µd,S

such that (µd,S , d = {dT }T⊆S) is stable.

I Given N and b ∈ [0, 1]n, select

S̄ ∈ AM = arg min
S⊂N
n∈S

∣∣∣∣∣1−∑
i∈S

bi

∣∣∣∣∣
9



with the property that #S̄ ≥ #S for all S ∈ AM. Hence, if bj = 0 then,

j ∈ S̄. (1)

Let v =
∣∣1−∑i∈S̄ bi

∣∣ = min
S⊂N\{n}

∣∣1−∑i∈S bi − bn
∣∣ . In particular

v ≤ |1− bn| . (2)

We will consider the following cases:

Case 1: v ≥ bn.

Notice that
∣∣1−∑i∈T bi − bn

∣∣ ≥ v for all T ⊆ N\{n}. By the induction hypothesis the allocation

(µd,N\{n}(bN\{n}), d
N\{n}(bN\{n})) is stable. Let Ŝ be such that Ŝ ∈ µd,N\{n}(bN\{n}) and, for all

S ∈ µd,N\{n}(bN\{n}),
∑
i∈S bi ≤

∑
i∈Ŝ bi. Define µd,N (b) =

{{
µd,N\{n}(bN\{n})\Ŝ

}
, Ŝ ∪ {n}

}
.

We want to show that (µd,N (b), dN (b)) is stable at b.

Assume first that Ŝ ∪ {n} = N . Observe that

dNn (b) =

{
0 if

∑
i∈N\{n} bi ≥ 1

1−
∑
i∈N\{n} bi otherwise.

Since v ≥ bn, for all j < n, d
N\{n}
j (bN\{n}) = dNj (b). By the induction hypothesis,

∣∣∣dN\{n}j (bN\{n})− bj
∣∣∣ ≤

|1− bj |. Thus,
∣∣dNj (b)− bj

∣∣ ≤ |1− bj | ; namely, j does not want to leave the set Ŝ ∪ {n} = N.

We will show that n does not want to leave N either. Assume the contrary,

|1− bn| <
∣∣dNn (b)− bn

∣∣ . (3)

If dNn (b) = 0 then, |1− bn| < |0− bn|; i.e., bn > 1
2 . By the hypothesis of Case 1 and (2), 1

2 <

bn ≤ v ≤ 1 − bn, a contradiction. If dNn (b) = 1 −
∑
i∈N\{n} bi > 0 then, by (3), bn ≤ v ≤

|1− bn| <
∣∣∣1−∑i∈N\{n} bi − bn

∣∣∣ . If 1−
∑
i∈N\{n} bi− bn > 0 then, 1− bn < 1−

∑
i∈N\{n} bi− bn,

a contradiction. If 1 −
∑
i∈N\{n} bi − bn < 0 then, by the alternative definition of v as the

min
S⊂N\{n}

∣∣1−∑i∈S bi − bn
∣∣ and the fact that v ≥ bn, bn ≤

∑
i∈N\{n} bi + bn − 1. Hence, 1 −∑

i∈N\{n} bi ≤ 0, a contradiction. Thus, ({{N}}, dN (b)) is an stable allocation at b.

Assume now that N\(Ŝ ∪ {n}) 6= ∅. We distinguish between the following two subcases.

Subcase 1.1:
∑
i∈Ŝ bi ≥ 1.

Then, d
Ŝ∪{n}
n (bŜ∪{n}) = 0 and for all i ∈ Ŝ,

d
Ŝ∪{n}
i (bŜ∪{n}) = dŜi (bŜ). (4)

First, by (4) and the induction hypothesis, no agent in Ŝ wants to leave Ŝ. Moreover, by the

hypothesis of Case 1 and (2), bn ≤ 1
2 and hence, n does not want to leave Ŝ ∪ {n} and to form a

singleton coalition.

Second, take any j ∈ N\(Ŝ ∪ {n}). Observe that j < n. Then, since
∑
i∈Ŝ bi ≥ 1,

d
Ŝ∪{j}∪{n}
j (bŜ∪{j}∪{n}) = d

Ŝ∪{j}
j (bŜ∪{j}). (5)
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By the induction hypothesis, the allocation (µd,N\{n}(bN\{n}), d
N\{n}(bN\{n})) is stable. Define

πN\{n} = µd,N\{n}(bN\{n}). Hence, and since Ŝ ∈ πN\{n} and j /∈ Ŝ, either there exists i ∈ Ŝ such

that

dŜi (bŜ)Pid
Ŝ∪{j}
i (bŜ∪{j})

or else

d
S
πN\{n} (j)

j (bS
πN\{n} (j))Rjd

Ŝ∪{j}
j (bŜ∪{j}).

Thus, by (4) and (5), either

d
Ŝ∪{n}
i (bŜ∪{n})Pid

Ŝ∪{j}∪{n}
i (bŜ∪{j}∪{n})

or else

d
S
πN\{n} (j)

j (bS
πN\{n} (j))Rjd

Ŝ∪{j}∪{n}
j (bŜ∪{j}∪{n}).

Namely, either j is not admitted in Ŝ ∪ {n} or else j does not want to leave SπN\{n}(j) to join

Ŝ ∪ {n}.
Third, take any T ∈ µd,N (b)\(Ŝ ∪{n}) and consider the coalition T ∪{n}. If

∑
i∈T bi ≥ 1 then

d
T∪{n}
n (bT∪{n}) = d

Ŝ∪{n}
n (bŜ∪{n}) = 0 and n does not want to leave Ŝ∪{n} to join T . If

∑
i∈T bi < 1

then, d
T∪{n}
n (bT∪{n}) = 1−

∑
i∈T bi. Since

∣∣∣dT∪{n}n (bT∪{n})− bn
∣∣∣ =

∣∣1−∑i∈T bi − bn
∣∣ ≥ v ≥ bn =∣∣∣dŜ∪{n}n (bŜ∪{n})− bn

∣∣∣, dŜ∪{n}n (bŜ∪{n})Rnd
T∪{n}
n (bT∪{n}). Thus, n does not want to leave Ŝ ∪ {n}

to join T .

Subcase 1.2:
∑
i∈Ŝ bi < 1.

Notice that, by the definition of Ŝ, for all S ∈ πN\{n},∑
i∈S

bi < 1. (6)

First, take j ∈ S′ ∈ µd,N (b)\(Ŝ ∪ {n}). Using the fact that, by the induction hypothesis, j and

Ŝ did not generate an instability in the allocation (πN\{n}, dN\{n}(bN\{n})) we will show that j

and Ŝ ∪ {n} do not generate an instability in the allocation (µd,N (b), dN (b)). Assume

dS
′

j (bS′) 6= bj ; (7)

otherwise, j does not want to leave S′. By (6),
∑
i∈S′ bi < 1. Hence, j = maxi∈S′ i and dS

′

j (bS′) =

1−
∑
i∈S′\{j} bi > bj .

Assume
∑
i∈Ŝ bi + bj ≥ 1. Then, since

∑
i∈Ŝ bi < 1 and i < n for all i ∈ Ŝ,

d
Ŝ∪{j}
i (bŜ∪{j}) = d

Ŝ∪{j}∪{n}
i (bŜ∪{j}∪{n}). (8)

By the stability of the allocation (πN\{n}, dN\{n}(bN\{n})) either∣∣∣dS′j (bS′)− bj
∣∣∣ ≤ ∣∣∣dŜ∪{j}j (bŜ∪{j})− bj

∣∣∣ (9)

or else there must exist i′ ∈ Ŝ such that∣∣∣dŜi′(bŜ)− bi′
∣∣∣ < ∣∣∣dŜ∪{j}i′ (bŜ∪{j})− bi′

∣∣∣ . (10)
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If (9) holds then, by (8), ∣∣∣dS′j (bS′)− bj
∣∣∣ ≤ ∣∣∣dŜ∪{j}∪{n}j (bŜ∪{j}∪{n})− bj

∣∣∣ , (11)

namely, j does not want to leave S′ to join Ŝ ∪{n}. Assume (9) does not hold; i.e. j wants lo leave

S′ to join Ŝ. Then, (10) holds. Assume that j wants to leave S′ to join Ŝ ∪ {n}; that is,∣∣∣dS′j (bS′)− bj
∣∣∣ > ∣∣∣dŜ∪{j}∪{n}j (bŜ∪{j}∪{n})− bj

∣∣∣ .
Then, by (10), (8) and d

Ŝ∪{n}
i′ (bŜ∪{n}) = bi′ ,∣∣∣dŜ∪{n}i′ (bŜ∪{n})− bi′

∣∣∣ = 0 ≤
∣∣∣dŜi′(bŜ)− bi′

∣∣∣
<

∣∣∣dŜ∪{j}i′ (bŜ∪{j})− bi′
∣∣∣

=
∣∣∣dŜ∪{j}∪{n}i′ (bŜ∪{j}∪{n})− bi′

∣∣∣ .
Thus, i′ does not want to admit j in the coalition Ŝ ∪ {n}.

Assume
∑
i∈Ŝ bi + bj < 1. Then,

d
Ŝ∪{j}
j (bŜ∪{j}) =

{
bj if j is not the last in Ŝ ∪ {j}
1−

∑
i∈Ŝ bi if j is the last in Ŝ ∪ {j}.

Assume first that j is not the last in Ŝ ∪ {j}. Then, d
Ŝ∪{j}
j (bŜ∪{j}) = bj . By (7),

d
Ŝ∪{j}
j (bŜ∪{j})Pjd

S′

j (bS′). (12)

Let j∗ = maxi∈Ŝ i > j. For all i ∈ Ŝ\{j∗},

d
Ŝ∪{j}
i (bŜ∪{j}) = dŜi (bŜ). (13)

Moreover, since dŜj∗(bŜ) = 1−
∑
i∈Ŝ bi + bj∗ and d

Ŝ∪{j}
j∗ (bŜ∪{j}) = 1−

∑
i∈Ŝ bi + bj∗ − bj ,

∣∣∣dŜj∗(bŜ)− bj∗
∣∣∣ =

∣∣∣∣∣∣1−
∑
i∈Ŝ

bi

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣1−

∑
i∈Ŝ

bi − bj

∣∣∣∣∣∣ =
∣∣∣dŜ∪{j}j∗ (bŜ∪{j})− bj∗

∣∣∣ .
Hence,

d
Ŝ∪{j}
j∗ (bŜ∪{j})Rj∗d

Ŝ
j∗(bŜ). (14)

Conditions (12), (13), and (14) imply that j wants to leave S′ to join Ŝ and all agents in Ŝ want

to admit j, contradicting that (πN\{n}, dN\{n}(bN\{n})) is an stable allocation.

Assume now that j is the last in Ŝ∪{j}. Hence, for all i ∈ Ŝ, dŜ∪{j}i (bŜ∪{j})Rid
Ŝ
i (bŜ). Moreover,

since
∑
i∈S′ bi ≤

∑
i∈Ŝ bi and

∑
i∈Ŝ bi + bj < 1, if either bj 6= 0 or

∑
i∈S′ bi <

∑
i∈Ŝ bi then,

1−
∑
i∈S′

bi + bj > 1−
∑
i∈Ŝ

bi > bj .

Since dS
′

j (bS′) = 1 −
∑
i∈S′ bi + bj and d

Ŝ∪{j}
j (bŜ∪{j}) = 1 −

∑
i∈Ŝ bi, j wants to leave S′ to join

Ŝ and all agents in Ŝ want to admit j, contradicting that (πN\{n}, dN\{n}(bN\{n})) is an stable
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allocation. Assume now that bj = 0 and
∑
i∈S′ bi =

∑
i∈Ŝ bi. We can prove that j∗ wants to leave

Ŝ to join S′ and no agent of S′ rejects j∗. If bj∗ = 0 then, we get a contradiction of the stability

of (πN\{n}, dN\{n}(bN\{n})) proceeding as above. If bj∗ > 0 then, changing the roles of Ŝ and S′

and j∗ and j we will get a contradiction of the stability of (πN\{n}, dN\{n}(bN\{n})). Observe that

this can be done since bj = 0 and
∑
i∈S′ bi =

∑
i∈Ŝ bi.

Second, take any T ∈ µd,N (b)\(Ŝ ∪ {n}). We want to check that n does not want to leave

Ŝ ∪ {n} to join T . Since, by definition of Ŝ,
∑
i∈T bi ≤

∑
i∈Ŝ bi,

dT∪{n}n (bT∪{n}) = 1−
∑
i∈T

bi ≥ 1−
∑
i∈Ŝ

bi = dŜ∪{n}n (bŜ∪{n}) > bn,

where the strict inequality follows because otherwise, if d
Ŝ∪{n}
n (bŜ∪{n}) ≤ bn then, 1 −

∑
i∈Ŝ bi −

bn ≤ 0, implying that

bn ≤ v =

∣∣∣∣∣∣1−
∑
i∈S̄

bi

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣1−

∑
i∈Ŝ

bi − bn

∣∣∣∣∣∣ =
∑
i∈Ŝ

bi + bn − 1,

a contradiction with the hypothesis of Subcase 1.2 stating that
∑
i∈Ŝ bi < 1. Thus, by single-

peakedness, d
Ŝ∪{n}
n (bŜ∪{n})Rnd

T∪{n}
n (bT∪{n}). Hence, n does not want to leave Ŝ ∪ {n} to join

coalition T .

Third, we show that n does not want to leave Ŝ ∪ {n} to form a singleton coalition. Assume

otherwise; i.e.,

|1− bn| <

∣∣∣∣∣∣1−
∑
i∈Ŝ

bi − bn

∣∣∣∣∣∣ (15)

holds. If 1−
∑
i∈Ŝ bi−bn > 0 then, (15) implies that

∑
i∈Ŝ bi < 0, a contradiction. If 1−

∑
i∈Ŝ bi−

bn ≤ 0 then, and since bn ≤ v ≤ |1− bn|, (15) implies that bn ≤
∑
i∈Ŝ bi + bn − 1, a contradiction

with
∑
i∈Ŝ bi < 1.

Case 2: v < bn.

Recall that v =
∣∣1−∑i∈S̄ bi

∣∣ where S̄ ∈ AM = arg min
S⊂N
n∈S

∣∣1−∑i∈S bi
∣∣ with the property that

#S̄ ≥ #S for all S ∈ AM. Observe that ∑
i∈S̄\{n}

bi < 1; (16)

otherwise, if
∑
i∈S̄\{n} bi ≥ 1 then, v =

∑
i∈S̄\{n} bi + bn− 1. Hence, v− bn =

∑
i∈S̄\{n} bi− 1 ≥ 0,

which contradicts the assumption that v < bn.

First, assume that S̄ = N . Define µd(b) = {{N}}. To obtain a contradiction, suppose that

({{N}}, dN (b)) is not an stable allocation. By (16), for all i 6= n, dNi (b) = bi. Hence, it has

to be agent n who wants to leave N to form a singleton coalition; that is, d
{n}
n (bn)Pnd

N
n (b), or

equivalently, |1− bn| <
∣∣∣1−∑i∈S̄\{n} bi − bn

∣∣∣ = v, a contradiction with (2).

Thus assume that S̄ ( N. By the induction hypothesis, (µd,N\S̄(bN\S̄), dN\S̄(bN\S̄)) is an stable

allocation. Define µd,N (b) = µd,N\S̄(bN\S̄) ∪ S̄ ≡ πN . To prove that the allocation (πN , dN (b))

is stable, we first check that n does not want to leave S̄ to form a singleton coalition. Assume

otherwise; then, by (16), |1− bn| <
∣∣∣1−∑i∈S̄\{n} bi − bn

∣∣∣ = v, a contradiction with (2).
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We now distinguish between the following two subcases.

Subcase 2.1:
∑
i∈S̄ bi > 1.

By (16), dS̄n(bS̄) = bn − v > 0.

First, take j ∈ N\S̄ and consider the coalition S̄ ∪ {j}. Then, d
S̄∪{j}
n (bS̄∪{j}) = max{1 −∑

i∈S̄\{n} bi − bj , 0} < bn − v = dS̄n(bS̄) < bn, where the first strict inequality holds because by

(1), j /∈ S̄ implies bj > 0 and v =
∑
i∈S̄ bi − 1 implies that 1 −

∑
i∈S̄\{n} bi = bn − v. Thus, by

symmetric single-peakedness, dS̄n(bS̄)Pnd
S̄∪{j}
n (bS̄∪{j}). Hence, n does not want to admit j in S̄.

Second, by (16), dS̄i (bS̄) = bi, for all i ∈ S̄\{n}. Hence, no agent in S̄\{n} wants to leave S̄ to

join any other coalition.

Third, let T ∈ µd,N\S̄(bN\S̄) and consider the coalition T ∪ {n}. Then, d
T∪{n}
n (bT∪{n}) =

max{1 −
∑
i∈T bi, 0}. If 1 −

∑
i∈T bi ≥ 0 then, by the definition of S̄,

∣∣∣dT∪{n}n (bT∪{n})− bn
∣∣∣ ≥∣∣∣1−∑i∈S̄\{n} bi − bn

∣∣∣ = v =
∣∣∣dS̄n(bS̄)− bn

∣∣∣, and if 1 −
∑
i∈T bi < 0, then |0− bn| = bn > v =∣∣∣dS̄n(bS̄)− bn

∣∣∣ . In the two cases we have that dS̄n(bS̄)Rnd
T∪{n}
n (bT∪{n}). Hence, n does not want to

leave S̄ to join T .

Subcase 2.2:
∑
i∈S̄ bi < 1.

By definition of S̄, dS̄n(bS̄) = bn + v = 1−
∑
i∈S̄\{n} bi > bn.

First, take j ∈ N\S̄ and consider the coalition S̄ ∪ {j}. Then, d
S̄∪{j}
n (bS̄∪{j}) = max{1 −∑

i∈S̄\{n} bi − bj , 0}. If d
S̄∪{j}
n (bS̄∪{j}) = 0 then,

∣∣∣dS̄∪{j}n (bS̄∪{j})− bn
∣∣∣ = bn > v =

∣∣∣dS̄n(bS̄)− bn
∣∣∣.

If d
S̄∪{j}
n (bS̄∪{j}) = 1 −

∑
i∈S̄\{n} bi − bj > 0 then,

∣∣∣dS̄∪{j}n (bS̄∪{j})− bn
∣∣∣ =

∣∣∣1−∑i∈S̄∪{j} bi

∣∣∣ >
v =

∣∣∣dS̄n(bS̄)− bn
∣∣∣, where the strict inequality holds because, by (1), j /∈ S̄ implies bj > 0. Thus,

in both cases dS̄n(bS̄)Pnd
S̄∪{j}
n (bS̄{j}). Hence, n does not want to admit j in S̄.

Second, and since dS̄i (bS̄) = bi for all i ∈ S̄\{n}, no agent in S̄\{n} wants to leave S̄ to join

any other coalition.

Third, let T ∈ µd,N\S̄(bN\S̄) and consider the coalition T ∪ {n}. Then, d
T∪{n}
n (bT∪{n}) =

max{1 −
∑
i∈T bi, 0}. If 1 −

∑
i∈T bi > 0, and since

∣∣1−∑i∈T bi − bn
∣∣ ≥ v by definition of S̄, we

have that
∣∣1−∑i∈T bi − bn

∣∣ ≥ v =
∣∣∣dS̄n (bS̄)− bn

∣∣∣ . If 1 −
∑
i∈T bi ≤ 0 then, |0− bn| = bn > v =∣∣∣dS̄n (bS̄)− bn

∣∣∣ . Thus, in both situations
∣∣∣dT∪{n}n (bT∪{n})− bn

∣∣∣ ≥ ∣∣∣dS̄n(bS̄)− bn
∣∣∣, which implies that

dS̄n(bS̄)Rnd
T∪{n}
n (bT∪{n}). Hence, n does not want to leave S̄ to join T . �

3.3 Incompatibilities

In this subsection we show that stability is incompatible with other desirable properties such as

strategy-proofness, efficiency, anonymity, and envy-freeness.

Before proceeding with the formal definition of these properties a comment about these in-

compatibilities is in order. Since the proportional solution is not strategy-proof and the serial

dictatorship solution is not anonymous, it is natural that pairing them with a stable partition

function preserves these negative features. However, the reader may be surprised by the fact that

the other incompatibilities also hold; for instance, that anonymity can not be satisfied after pairing

the proportional solution with a stable partition function. But after all, this is not that surprising

since, as the examples at the end of Remarks 1 and 2 below show, stability at a particular profile
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with two identical agents might require that they belong to two different coalitions and hence, they

might receive different shares.

Strategy-proofness says that no agent obtains a better share by misreporting his best share.

Definition 2 A rule Φ = (µ, f) is manipulable at b ∈ [0, 1]n if there exist i ∈ N and b′i ∈ [0, 1]

such that

fi(µ(b′i, b−i), (b
′
i, b−i))Pifi(µ(bi, b−i), (bi, b−i)).

A rule Φ = (µ, f) is strategy-proof if it is not manipulable at any b ∈ [0, 1]n.

Efficiency says that the rule always selects efficient allocations.

Definition 3 An allocation (π, x) ∈ A is efficient at profile b ∈ [0, 1]n if it does not have a Pareto

improvement; that is, there does not exist another allocation (γ, y) ∈ A such that yiRixi for all

i ∈ N and yjPjxj for at least one j ∈ N.

A rule Φ = (µ, f) is efficient if for all b ∈ [0, 1]n, Φ(b) is an efficient allocation at b.

Anonymity says that the name of the agents should not matter. Let o : N → N be a one-to-one

mapping and let b ∈ [0, 1]n be a profile. Define the profile bo = (bo(1), ..., bo(n)) ∈ [0, 1]n.

Definition 4 A rule Φ = (µ, f) is anonymous if for all one-to-one mapping o : N → N and all

b ∈ [0, 1]n, fi(µ(b), b) = fo(i)(µ(bo), bo) for all i ∈ N.

Envy-freeness says that no agent strictly prefers the share of another agent.

Definition 5 A rule Φ = (µ, f) is envy-free if for all b ∈ [0, 1]n and all i, j ∈ N, fi(µ(b), b)Rifj(µ(b), b).

Remark 1 There is no partition function µ for which the proportional rule (µ, p) is stable and sat-

isfies one of the following properties: strategy-proofness, efficiency, anonymity, and envy-freeness.

To see that stability and strategy-proofness are incompatible, let N = {1, 2} and consider the

profile b = (0.5, 0.4). The only stable allocation is (µp(b), p(µp(b), b)) = ({{1, 2}}, (0.56, 0.44)).

Let b′2 = 0, 33. Then, µp(b1, b
′
2) = {{1, 2}} and p(µp(b1, b

′
2), (b1, b

′
2)) = (0.6, 0.4). Thus, 0.4 =

p2(µp(b1, b
′
2), (b1, b

′
2))P2p2(µp(b), b) = 0.44 and hence (µp, p) is not strategy-proof.

To see that stability and efficiency are incompatible, let N = {1, 2} and consider the profile

b = (0.4, 0.9). Now, the only stable allocation is (µp(b), p(µp(b), b)) = ({{1}, {2}}, (1, 1)). However,

the allocation ({{1, 2}}, (0.1, 0.9)) is a Pareto improvement.

To see that stability and anonymity or envy-freeness are incompatible, let N = {1, 2, 3}
and consider the profile b = (0.3, 0.3, 0.8). It is easy to see that the only stable allocations are

({{1}, {2, 3}}, (1, 0.3
1.1 ,

0.8
1.1 )) and ({{2}, {1, 3}}, ( 0.3

1.1 , 1,
0.8
1.1 )). Agent 1 and agent 2 have the same best

shares but in both allocations they receive a different share and either agent 1 envies agent 2 (first

allocation) or the opposite (second allocation). �

Remark 2 Fix an ordering σ on N . There is no partition function µ for which the sequen-

tial dictator rule (µ, σd) is stable and satisfies one of the following properties: strategy-proofness,

efficiency, anonymity, and envy-freeness.

To see that stability and strategy-proofness are incompatible, let N = {1, 2, 3} and consider

σ(i) = i for each i = 1, 2, 3, and the profile b = (0.6, 0.5, 0.6). The only stable allocation at b is

(µσd(b), σd(b)) = ({{1}, {2, 3}}, (1, 0.5, 0.5)). Take b′1 = 0.4. Since the only stable allocation at
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b′ = (b′1, b2, b3) is (µσd(b′), σd(b′)) = ({{1, 3}, {2}}, (0.4, 1, 0.6)) and 0.4P11, we conclude that for

every µ for which (µ, σd) is stable, (µ, σd) is not strategy-proof.

Moreover, stability and efficiency are incompatible. To see it, let N = {1, 2} and consider

σ(1) = 1, σ(2) = 2, and the profile b = (0.5, 0.8). The only stable allocation at b is (µσd(b), σd(b)) =

({{1}, {2}}, (1, 1)), but the allocation ({{1, 2}}, (0.3, 0.7)) is a Pareto improvement.

To see that stability and anonymity or envy-freeness are incompatible, let N = {1, 2} and

consider σ(1) = 1, σ(2) = 2, and the profile b = (0.6, 0.6). Then, the allocation ({1, 2}, (0.6, 0.4))

is stable but the two agents have the same best shares, receive a different share and agent 2 envies

agent 1. Finally, the allocation ({{1}, {2}}, (1, 1)) is not stable since 1 wants to join {2} and 2

wants to admit 1. �

4 Final Comments

We finish the paper with three comments. First we discuss other widely used solutions: the uniform

solution and the equal gain-losses. Second, we provide a positive result on the existence of efficient

rules and finally, we discuss the assumption of symmetry of preferences.

4.1 Uniform and Equal Gains-losses Solutions

Although we do not have a proof for the existence of stable rules associated to the uniform and

equal gains-losses solutions, we conjecture, based on simulations, that there exist such stable rules.

Below we provide an algorithm that computes the stable partition given a vector of best shares for

both the uniform and the equal gains-losses solutions. The algorithm is not proven to converge,

and hence cannot be used as a proof of existence; however, we have never found a vector of best

shares for which it does not converge.9

The uniform solution u = {uS}S⊆N is defined as follows: for each non-empty subset of agents

S ⊆ N , each bS ∈ [0, 1]s and i ∈ S,

uSi (bS) =

{
min{bi, λ(bS)} if

∑
j∈S bj ≥ 1

max{bi, ν(bS)} otherwise,

where λ(bS) is the unique solution of the equation
∑
j∈S min{bj , λ(bS)} = 1 and ν(bS) is the unique

solution of the equation
∑
j∈S max{bj , ν(bS)} = 1.

Whenever the sum of the best shares exceeds the unity, the solution gives everyone his best

share as long as it is below a bound that is determined endogenously to satisfy the feasibility

constraint that the sum of shares adds up to one. Analogously, when the sum of the best shares is

below the unity, the solution gives everyone the maximum between his best share and a bound that

is determined endogenously so that the sum of the shares adds up to one. The uniform solution is

widely used for its good properties. Sprumont (1991) showed that the uniform solution is the only

one satisfying simultaneously strategy-proofness, efficiency and anonymity.

Given a partition function µ, we define the uniform rule as Uµ = (µ, u).

9Observe that our algorithm is more general since it can be applied to any solution. If it converges, the outcome

is a stable partition for the solution.
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The equal gains-losses solution e = {eS}S⊆N is defined as follows: for each non-empty subset

of agents S ⊆ N, each bS ∈ [0, 1]s and i ∈ S,

eSi (bS) =

{
bi +

1−
∑
j∈S bj

#S if
∑
j∈S bj ≤ 1

max{0, bi − λ(bS)} otherwise,

where λ(bS) is the unique solution of the equation
∑
j∈S max{0, bj − λ(bS)} = 1.

As its name suggests, the equal gains-losses solution shares the surplus or shortage of the

demand of a coalition equally across all its members with the limitation that in case of excess

demand, the solution should not assign a negative share to any agent.

Given a partition function µ, define the Equal Gains-losses rule as Eµ = (µ, e).

Conjecture 1 There exist partition functions µu and µe such that the uniform rule (µu, u) and

the equal gains-losses rule (µe, e) are stable.

Fix a solution f and a vector of best shares b ∈ [0, 1]s. The algorithm proceeds as follows. In

Step 0 we start with the partition formed by all individual coalitions. The set V represents the

set of players that remain to be checked given a partition to guarantee stability. Each time a new

partition is formed the set V is reinitiated to N .

Given a partition π, in Step 1 we apply the solution f to the partition π and we select the

agent whose best share is further away from the allotment assigned to him by the solution (if there

are more than one, we select the one with smaller index). We denote this agent by i0. The set K
denotes the set of the indices of the coalitions in partition π. Whenever we select a new agent to

check, this set is reinitiated to incorporate all the indices in the partitions (i.e. all the coalitions).

Given an agent i0, a partition π, and the set of coalitions that remain to be checked, in Step 2,

we find the coalition Sk0 , with k0 ∈ K, that agent i0 would most prefer to join (or a new individual

coalition) and check if i0 is strictly better off by joining the new coalition (again, if there are more

than one such coalitions, we select the one with smallest index). If that was not the case, we

discard i0 and move to the next worse off agent (Step 1).

If i0 strictly prefers to move to the new coalition, then we check whether the members of the

receiving coalition would like to accept him. If this is the case, we modify the partition accordingly,

set V = N and start Step 1 again. If the new coalition does not want to admit i0, we discard

coalition Sk0 and look for the next coalition i0 would most prefer to join (Step 2). This process

goes till no agent who would like to move is allowed to do so, and hence we have a stable partition.

Algorithm:

Input: A solution f and a profile b.

Step 0: π = {{1}, ..., {n}} and V = N .

Step 1:
If V = ∅ then go to Step 3.

Else, set i0 = min(arg max
i∈V
|bi − fi(π, b)|) and

let K = {1, ...,K} be the set of indeces of the partition π.

Step 2:
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If K = ∅ then set V = V \{i0} and go to Step 1.

Else, set k0 = min(arg min
k∈K
|bi0 − fi0(π−i0,k, b)|).

If |bi0 − fi0(π−i0,k0 , b)| ≥ |bi0 − fi0(π, b)|
then set V = V \{i0} and go to Step 1.

Else If Sk0 = Sπ(i0)

then set π = π−i0,k0 and V = N and go to Step 1.

Else If max
j∈Sk0

{|bj − fj(π−i0,k0 , b)| − |bj − fj(π, b)| > 0

then set K = K\{k0} and go to Step 2.

Else set π = π−i0,k0 and V = N and go to Step 1.

Step 3:

No one who wants to move is allowed to do so.

The partition π is stable at b for f.

End.

Examples 2 and 3 below show that for the uniform and the equal gains-losses rules stability is

also incompatible with strategy-proofness, efficiency, anonymity and envy-freeness.

Example 2 Consider the uniform rule and assume µu is a partition function such that the

rule (µu, u) is stable. Let N = {1, 2, 3} and b = (0.4, 0.5, 0.7). The only stable allocation

at b is (µu(b), u(µu(b), b)) = ({{1, 3}, {2}}, (0.4, 1, 0.6)). Let b′2 = 0.35. Then, µu(b1, b
′
2, b3) =

{{1}, {2, 3}} and u(µu(b1, b
′
2, b3), (b1, b

′
2, b3)) = (1, 0.35, 0.65). Since 0.35P21, (µu, u) is not strategy-

proof.

LetN = {1, 2} and b = (0.4, 0.9). The only stable allocation at b is ({{1}, {2}}, (1, 1)). However,

the allocation ({{1, 2}}, (0.1, 0.9)) is a Pareto improvement.

Finally, let N = {1, 2, 3} and b = (0.3, 0.3, 0.8). The are only two stable allocations at b, which

are ({{1, 3}, {2}}, (0.3, 1, 0.7)) and ({{1}, {2, 3}}, (1, 0.3, 0.7)). But in none of them agent 1 and

agent 2 receive the same shares and either agent 2 envies agent 1 or the opposite, so the uniform

rule is neither anonymous nor envy-free. �

Example 3 Consider the equal gains-losses rule and assume µe is a partition function such

that the rule (µe, e) is stable. Let N = {1, 2} and b = (0.4, 0.9). The only stable allocation

at b is (µe(b), e(µe(b), b)) = ({{1}, {2}}, (1, 1)). Let b′1 = 0.1. Then, µe(b′1, b2) = {{1, 2}} and

u(µe(b′1, b2), (b′1, b2)) = (0.1, 0.9). Since 0.1P11, (µe, u) is not strategy-proof. Moreover, the allo-

cation ({{1, 2}}, (0.1, 0.9)) is a Pareto improvement over the stable allocation, so the rule is not

efficient. Finally, let N = {1, 2, 3} and b = (0.3, 0.3, 0.9). The only stable allocations at b are

({{1, 3}, {2}}, (0.2, 1, 0.8)) and ({{1}, {2, 3}}, (1, 0.2, 0.8)). But in none of them agent 1 and agent

2 receive the same shares and either agent 2 envies agent 1 or the opposite, so the equal gains-losses

rule in neither anonymous nor envy-free. �

4.2 Efficiency

Even though we have seen that stable rules are not necessarily efficient the following result holds.

There exists a partition function µef such that for any efficient solution f the rule (µef , f) is
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efficient.10 However, (µef , f) may not be stable.

Proposition 3 There exists a partition function µef such that for every efficient solution f the

rule (µef , f) is efficient.

Proof Given b ∈ [0, 1]s select arbitrarily a partition such that

µef (b) ∈ arg min
π∈Π

π={S1,...,SK}

K∑
k=1

∣∣∣∣∣1−∑
i∈Sk

bi

∣∣∣∣∣ ,
and, from now on, denote it by π = {S1, ..., SK}. We check that the allocation (π, x) is efficient at

b, where x = f(π, b).

First, notice that
K∑
k=1

∣∣∣∣∣1−∑
i∈Sk

bi

∣∣∣∣∣ =

K∑
k=1

∣∣∣∣∣∑
i∈Sk

(xi − bi)

∣∣∣∣∣ .
Since f is an efficient solution, in every coalition Sk ⊆ N , fSk(bSk) has the property that either

(i) fSki (bSk) ≥ bi for all i ∈ Sk or else (ii) fSki (bSk) ≤ bi for all i ∈ Sk. In particular, if the sum

of the best shares is larger (or smaller) than 1 then, all agents in Sk receive less (more) than their

best shares. Thus, every (xi − bi) has the same sign for all i ∈ Sk, implying that∣∣∣∣∣∑
i∈Sk

(xi − bi)

∣∣∣∣∣ =
∑
i∈Sk

|xi − bi| .

Therefore,

K∑
k=1

∣∣∣∣∣1−∑
i∈Sk

bi

∣∣∣∣∣ =

K∑
k=1

∑
i∈Sk

|xi − bi| =
∑
i∈N
|xi − bi| .

We now proceed by contradiction. Suppose that (x, π) is not efficient at b. Then, there exists

an allocation (γ, y) such that for all i ∈ N , |yi − bi| ≤ |xi − bi|, and for at least one j ∈ N ,

|yi − bi| < |xi − bi|. Hence, ∑
i∈N
|yi − bi| <

∑
i∈N
|xi − bi| .

Without loss of generality we can assume that y is Pareto optimal with respect to the partition

γ = {S′1, ..., S′K′}. Following the above reasoning,

K′∑
k=1

∣∣∣∣∣∣1−
∑
i∈S′k

bi

∣∣∣∣∣∣ =
∑
i∈N
|yi − bi| <

∑
i∈N
|xi − bi| =

K′∑
k=1

∣∣∣∣∣1−∑
i∈Sk

bi

∣∣∣∣∣ ,
which contradicts the selection of π . �

10Kar and Kibris (2008) have a similar result in a setting where the number of goods to be shared is fixed. In our

case however, the number of goods, and hence the number of coalitions in the partition, is endogenous and depend

on the preferences of the agents.
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4.3 Symmetric Preferences

First, without the symmetry assumption on preferences the complexity of the problem significantly

increases. The reason is that then the associated partition function of a stable rule will require

the use of much more information on the preference profile, than just the vector of best shares.

For instance, let n = 2 be the number of agents and let b = (0.7, 0.7) be the vector of best shares.

Consider the proportional solution p. If single-peaked preferences are symmetric and the rule (µ, p)

is stable then µ(0.7, 0.7) = {{1, 2}}, because the share 0.5 is strictly preferred to 1, which is not

necessarily the case if preferences are not symmetric. Moreover, our results do not hold if the set of

admissible single-peaked preferences are not symmetric. In particular, the proportional rule may

not admit a partition function to constitute together a stable rule. To see that, let n = 3 be the

number of agents and consider the profile of single-peaked preferences R = (R1, R2, R3) depicted

in Figure 1. Observe that agent 1’s preferences are symmetric around b1 = 0.7 while agents 2 and

3’ preferences are not and have the property that b2 = 0.4 and b3 = 0.5.
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Figure 1

Observe that

• the partition {{1, 2}, {3}} is not stable because 2 and 3 are better off together since 0.4P20.36

and 0.5P31;

• the partition {{1, 3}, {2}} is not stable because 1 and 2 are better off together since 0.63P10.583

and 0.36P21;

• the partition {{1}, {2, 3}} is not stable because 1 and 3 are better off together since 0.583P11

and 0.416P30.5;

• the partition {{1}, {2}, {3}} is not stable because 1 and 3 are better off together since

0.583P11 and 0.416P31; and

• the partition {{1, 2, 3}} is not stable because 2 is better off alone since 1P20.25.

A similar example can be exhibited for the sequential dictator solution. However, in many settings

the hypothesis of symmetry seems natural since agents may evaluate equally loses and gains; for

instance, when preferences are cardinal and the cost of moving away from the best share is equally

perceived by the agent, independently on whether the movement is above or below the best share.
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Finally, the example also suggests that even under strong domain restrictions our results may not

hold; for instance, under the domain of single-peaked preferences that are representable by utility

functions which are linear on either of the best share, but that potentially have different slopes on

the two sides.
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