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Numerical approach to simulating interference phenomena in a cavity with two oscillating mirrors
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We study photon creation in a cavity with two perfectly conducting moving mirrors. We derive the dynamic
equations of the modes and study different situations concerning various movements of the walls, such as
translational or breathing modes. We can even apply our approach to one- or three-dimensional cavities and
reobtain well-known results of cavities with one moving mirror. We compare the numerical results with analytical
predictions and discuss the effects of the intermode coupling in detail as well as the nonperturbative regime. We
also study the time evolution of the energy density and provide analytic justifications for the different results
found numerically.
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I. INTRODUCTION

The mechanical interaction between a moving mirror and
the radiation field has always been an interesting issue of
study. This is due to not only its practical purposes but also
its representation of a fundamental system in quantum optics.
Besides the change in the zero-point energy of the quantum
vacuum provoked by static boundary conditions, there is a
yet even more fascinating feature of the quantum vacuum that
arises when considering dynamical boundary conditions. The
presence of moving boundaries leads to a nonstable vacuum
electromagnetic state, resulting in the generation of real
photons, which is an amazing demonstration of the existence
of quantum vacuum fluctuations of quantum electrodynamics
(QED), referred to in the literature as the dynamical Casimir
effect (DCE) [1] or motion-induced radiation. DCE is a
common name ascribed to the processes in which photons
are generated from vacuum due to the external time variation
of boundary conditions for some field [2–4]. For the usual
electromagnetic case this corresponds to the fast motion of a
mirror or modulation of the dielectric properties of the mirror
or intracavity medium [5].

Research in the field has mainly concentrated on one-
dimensional models, and a few works have studied more
realistic three-dimensional models [6–10]. Since the amount
of radiation generated is very small, much attention has been
paid to the study of the one-dimensional model for which
the effect is enhanced, for example, through the parametric
resonance condition. The main difference between one- and
three-dimensional cavities is that, while in one dimension the
cavity’s frequency spectrum is equidistant and leads to strong
intermode interactions, in three dimensions the spectrum is, in
general, nonequidistant and only a few modes may be coupled
[11,12]. A cavity made of two perfectly parallel reflecting
mirrors, one of which oscillates with a mechanical frequency
equal to a multiple of the fundamental of the static cavity (while
the other one is at rest), is a typical case in which the mentioned
enhancement takes place. In most works this problem has
been analytically studied through a perturbative expansion of
the equations of motion of the field in terms of the small
oscillation amplitude to find an approximative solution at short
times. Although the direct measurement of radiation generated

by moving mirrors is an important experimental challenge,
it was asserted [13] that photon creation induced by time-
dependent boundary conditions has been observed experimen-
tally in superconducting circuits. This experiment consists
of a coplanar waveguide terminated by a superconducting
quantum interference device, upon which a time-dependent
magnetic flux is applied. A related experiment involving a
Josephson metamaterial embedded in a microwave cavity has
been described in Ref. [14]. These experiments stimulated new
theoretical research on the role of dynamical Casimir physics
in quantum information processing, quantum simulations, and
engineering of nonclassical states of light and matter [15–19].
There are also ongoing experiments aimed at measuring the
photon creation induced by the time-dependent conductivity
of a semiconductor slab enclosed by an electromagnetic cavity
[20], as well as proposals based on the use of high-frequency
resonators to produce the photons and ultracold atoms to detect
the created photons via superradiance [21].

Recent studies have indicated that DCE could even be
implemented using a single two-level atom (qubit) with
time-dependent parameters, such as the transition frequency
or the atom-field coupling strength [22–26]. Generation of
excitation from vacuum occurs due to the counterrotating
terms in the Rabi Hamiltonian, which for many years had
been neglected under the rotating-wave approximation. On the
other hand, it has been proved that an ensemble of two-level
atoms collectively coupled to the electromagnetic field of a
cavity, driven at low frequencies and close to a quantum
phase transition, stimulates the production of photons from
the vacuum. This paves the way to an effective simulation of
the DCE [27].

The case of cavities with two moving mirrors has also
been considered via a perturbative treatment [28] and also
using a technique inspired in the renormalization-group
method, where the solution to the set of generalized Moore’s
equations is valid for both short and long times, improving
perturbative approaches [29]. The authors considered two
mirrors oscillating resonantly at the same frequency, allowing
for different amplitudes and dephasing between mirrors in one-
dimensional cavities. As we shall see, the radiation induced
strongly depends on the relation among the amplitudes, the
frequency, and the different phases in the wall oscillations.
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As predicted in [29], we show that for some relations among
the variables, there is constructive interference which leads to
an exponential growth of particles inside the cavity. For some
other relations, there is destructive interference and hence no
vacuum radiation. We also show that our solution accounts
for other physical solutions (the nonperturbative regime, for
example) as for one oscillating wall.

In this paper we present a detailed numerical analysis of
the particle creation rate, along with analytical considerations
of the cases mentioned above. This paper is organized as
follows. In Sec. II we present the equation of motion for
the field modes of the electromagnetic field. In Sec. IV, we
begin by analyzing the photon creation in the case where
one wall of the cavity is at rest and the other one oscillates
with a multiple frequency of the fundamental of the static
cavity. Therein, we shall consider three-dimensional as well
as one-dimensional cavities. In Sec. V, we concentrate on the
case of two oscillating mirrors, one at each end of the cavity.
We focus on the study of different cases of dephasing between
the oscillating walls, i.e., zero- and π -dephasing movements.
Finally, in Sec. VI we make our conclusions.

II. BOUNDARY CONDITIONS

We consider a rectangular cavity formed by perfectly
conducting walls with dimension Lx (also Ly and Lz if we
consider a three-dimensional cavity). The mirrors placed at
x = L(t) and x = R(t) are at rest for t < 0 and begin to
move at t = 0 following a given trajectory L(t) and R(t),
respectively. We assume these trajectories are as prescribed for
the problem and that they work as a time-dependent boundary
condition for the field.

We start with the field operator A(x,t) for the vector
potential which satisfies the wave equation � �A = 0. In terms

of the creation (a†
k) and annihilation (ak) operators, the field

operator can be expressed as

A(x,t) =
∞∑
k

[âkψk(x,t) + â
†
kψ

∗
k (x,t)]. (1)

In this equation, ψk(x,t) are the mode functions of the
field and are chosen to satisfy the boundary conditions, i.e.,
ψk(L(t),t) = 0 and ψk(R(t),t) = 0. We first consider the
instantaneous mode basis for the 1 + 1 field [30],

φk(x,t) =
√

2

R − L
sin

[
kπ (x − L)

R − L

]
, (2)

and write each mode as

ψk(x,t) =
∞∑

m=1

Qkm(t)φm(x,t), (3)

where m is a positive integer.
By considering small-amplitude motions of the walls, we

can write their trajectories as given by

L(t) = ALεL sin(�Lt + φL) (4)

and

R(t) = L0 − ARεR sin(φR) + ARεR sin(�Rt + φR), (5)

where L0 is the cavity length in the static situation, εR and εL

are small (dimensionless) parameters which characterize the
small deviations of the walls from the initial static positions,
and AL and AR are amplitudes. The mirrors can oscillate in
phase or not, depending on the values of φL and φR . Inserting
the expansion of field modes into the wave equation and
integrating over spatial dimensions lead to the equation of
motion for the canonical variables, expressed as

Q̈(n)
m + ω2

m(t)Q(n)
m = 1

L0

∑
s

bmsQ̇
(n)
s + 1

4L2
0

∑
s

{
gms + [3(Ṙ − L̇)2 + 2L0(R̈ − L̈)]ams + (

r1
ms + r2

ms

)}
Q(n)

s , (6)

where, in the general (3+1)-dimensional case, ωm(t) =
√

(mπ)2

[R(t)−L(t)]2 + k2
‖ is the mode frequency. The coefficients in the equation

are defined as follows:

ams =
{

1 if m = s,

0 otherwise,

bms =
{

4ms
(m2−s2) [Ṙ(−1)m+s − L̇] if m �= s,

0 otherwise,

gms =
{

ms
(m2−s2) {24L̇(Ṙ − L̇) − 24Ṙ(Ṙ − L̇)(−1)m+s + 8L0[R̈(−1)m+s − L̈]} if m �= s,

3(L̇ − Ṙ)2 − 2[L0(R̈ − L̈)] if m = s,

r1
ms =

{
16m3s

(m2−s2)2 L̇(Ṙ − L̇)[−1 + (−1)m+s] if m �= s,

2m2π2L̇(R̈ + L̈) if m = s,

r2
ms =

{ −16m3s
(m2−s2)2 (Ṙ − L̇)[L̇ + (L̇ − 2Ṙ)(−1)m+s] if m �= s,
2
3 (Ṙ − L̇)[3(L̇ − Ṙ) + m2π2(Ṙ + L̇)] if m = s.
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III. NUMERICAL METHOD

In this section we describe the numerical method used for
solving the equation of motion of the field modes determined
by Eq. (6). In order to solve the equation of motion of the n

modes, we perform a change of variables in order to obtain a
new system of equations:

Q̇m = Um,

U̇m = −ω2
m(t)Qm +

∑
s

Sms(t)Qs, (7)

where Sms(t) is a bracket proportional to Qs in Eq. (6). We have
dropped the supraindex for simplicity. The initial conditions,
specified for each field mode in all cases, are

Q
(n)
k (0) = 1√

2ωn

δk,n, Q̇
(n)
k (0) = −i

√
ωn

2
δk,n, (8)

which indicate that the field modes and their derivatives are
continuous at t = 0, as long as R(t), L(t), Ṙ(t), and L̇(t) are
smooth functions. For a time dependence of the boundary,
either R(t) or L(t), which is not sufficiently smooth (for
example, it has discontinuities in its time derivative), one may
expect spurious particle creation.

We have used an integration scheme based on a fourth-order
Runge-Kutta-Merson numerical method between t = 0 and a
maximum time tmax > 0. In all cases, the moving walls are
at rest at t = 0. and then the perturbation is turned on for
times in the range 0 < t < tF , with tF < tmax, where the walls
remain static again (this can be applied to either one or two
moving walls). For times t < 0 and t > tF , the cavity is a
static one, and we know the set of orthonormal functions. The
quantization of the system is straightforward through creation
and annihilation operators:

Qn(t < 0) = 1√
2ωn

(âne
−iωnt + â†

ne
iωnt ), (9)

with frequency ωn(t) = 1/L0

√
(πn)2 + k2

‖ , where L0 is the

initial length of the cavity and k‖ is associated with
the nondynamical dimensions of the cavity (Ly and Lz). The
time-independent annihilation and creation operators ân and â

†
n

associated with the particle notion for t � 0 are subject to the
commutation relations [ân,âm] = [â†

n,â
†
m] = 0 and [ân,â

†
m] =

δnm. The initial vacuum state |0,t � 0〉 is defined by

a†
n|0,t � 0〉 = 0 ∀ n. (10)

When the cavity dynamics is switched on at t = 0 and the
walls follow the prescribed trajectories L(t) and R(t), the field
modes are coupled. Then, Qn can be written as

Qn(t � 0) =
∑
m

1√
2ωm

[
âmεm

n (t) + â†
mε∗

n(t)
]
, (11)

with complex functions εm
n (t) that satisfy the equation of

modes. When the motion ceases and the walls are at rest again
for t > tF , Qn(t) can be expressed again as

Qn(t � tF ) = 1√
2ω1

n

(
Âne

−iω1
n(t−tF ) + Â†

ne
iω1

n(t−tF )
)
, (12)

with ω1
n = ω1

n(t � tF ) and the annihilation and creation opera-
tors Ân and Â

†
m corresponding to the particle notion for t � tF .

The final vacuum state |0,t � tF 〉 is defined by

A†
n|0,t � tF 〉 = 0 ∀ n. (13)

As expected, the initial-state particle operators ân and â
†
n are

linked to the final-state operators Ân and Â
†
n by a Bogoliubov

transformation Ân = ∑
m[Amn(tF )âm + B∗

mn(tF )â†
m]. The total

number of particles created in a mode n during the motion of
the wall is given by the expectation value of the particle number
operator Â

†
nÂn associated with the particle notion for t � tF

with respect to the initial vacuum state:

Nn(tF ) = 〈0,t � |A†
nA

†
n|0,t � 0〉 =

∑
m

|Bmn(tF )|2. (14)

In order to obtain the numerical results presented in the
following sections we proceed in the following way. Two cutoff
parameters 	 (for the field modes considered) and 	m (for the
number of canonical variables considered) are introduced to
make the system of differential equations finite and suitable
for a numerical treatment. The system of n × m coupled
differential equations is then evolved numerically from t = 0
up to a final time tF , and the expectation value of Eq. (14)
is calculated for several times in between. By doing so we
interpret tF as a continuous variable such that Eq. (14) becomes
a continuous function of time. Consequently, the stability of
the numerical solutions with respect to the cutoffs has to be
ensured. In particular 	 will be chosen such that the numerical
results for the number of particles created in single modes are
stable. In most cases, it is enough to choose 	m = 	. In our
units, the spectral modes kn = �n are given in units of 1/L0

(knL0 is dimensionless), and consequently, time is measured
in units of L0.

IV. ONE MOVING MIRROR

We can start by studying photon creation when only one
wall is moving following R(t) and the other one is at rest
in x = 0 (for example, by setting εL = 0 and εR �= 0). In
this case, we can take any value of φR , say, φR = 0. If we
excite the cavity with an external frequency �R such that
�R = 2ω1, we shall produce parametric resonance induced
by the moving mirror at x = R(t). We can consider either a
one-dimensional cavity or a three-dimensional one since this
approach can be applied to either 1 + 1 or 3 + 1 dimensions
by taking into account that in the latter case, the “moving
walls” are in the x direction, while the field satisfies Dirichlet
boundary conditions in the other walls of the cavity (y and
z directions). The important difference between one- and
higher-dimensional cavities is that the frequency spectrum in
only one spatial dimension is equidistant, while it is, in general,
nonequidistant for more spatial dimensions. An equidistant
spectrum yields strong intermode coupling, whereas in the case
of a nonequidistant spectrum only a few or even more modes
may be coupled, allowing for exponential photon creation
in a resonantly vibrating three-dimensional cavity. For both
Dirichlet boundary conditions, the eigenfrequencies inside the

032115-3



VILLAR, SOBA, AND LOMBARDO PHYSICAL REVIEW A 95, 032115 (2017)

cavity satisfy the following condition:

ωn = 1

L0

√
(πn)2 + M2, (15)

where n is natural number and we have set M2 ≡ k‖2. If the
field is massless (which corresponds to a one-dimensional
cavity), then the spectrum is equidistant; that is, the differ-
ence between two consecutive eigenfrequencies is constant.
Otherwise, if M has arbitrary nonzero values, the spectrum is
nonequidistant, corresponding to that of a three-dimensional
cavity.

1. Three-dimensional cavity

As we stressed at the end of the previous section, when
considering a three-dimensional cavity, the parallel component
of the wave number k‖ = π

√
(ny/Ly)2 + (nz/Ly)2 can be

associated with the nondynamical cavity dimensions and
can be identified with the “mass” of a massive field [10].
Consequently, the number of TE-mode photons created in a
three-dimensional cavity equals the number of scalar particles
of mass k‖ created in a one-dimensional cavity. Then, we
perform the simulations by considering � = �R = 2ω1 and
different values of a mass M for simulating the particle
creation in a three-dimensional cavity. In Fig. 1, we can see the
behavior of the |B|2 coefficient of mode n = 1 of the field for
different values of M , say, M = 1, M = 5, and M = 10. The
particle creation is expected to be exponential as the frequency
spectrum becomes more nonequidistant. This is achieved more
clearly for bigger values of M � π/L0. In a resonant vibrating
cavity, the number of TE-mode photons created in the resonant
mode n increases exponentially in time as [10]

Nn(t) = sinh

(
n2π2εRt

2�L2
0

)2

. (16)

We can see in Fig. 1 the expected exponential behavior as the
mass increases. The gray solid curve (parallel to M = 10)
represents N1(t) as computed for M = 10 in [10] using
Eq. (16). We can also see that the behavior is similar, although
in our cavity it is attenuated by the multiplicative factor
included in the relationship between the number of created

particles Nn and the coefficient |Bn|2. As we decrease the
value of M , we reach a region of values where we can neglect
the mass term inside the frequency definition and obtain an
equidistant spectrum. In Fig. 1(b) we can see that the behavior
induced by the resonant frequency � = 2ω1 when M → 0
changes considerably and cannot be fitted by Eq. (16) any
longer.

2. One-dimensional cavity

When studying the case M = 0, the numerical results
should converge towards the well-known results for the
massless case where all modes are coupled. In this case, we
know that an eigenfrequency k is defined by ωn = (nπ/L0).
Then, if we excite the system with � = 2ω1, we should obtain
a quadratic behavior for the field mode at times �t � 1/ε.
For a later time, we should expect a linear behavior. In Fig. 2,
we present the behavior of |B1|2 for a value of ε = 0.01. For
very short times, we can observe a quadratic behavior and then
a linear one. However, for values bigger than �t � 1/ε we
can see that the growth becomes exponential. The exponential
behavior for longer times is equivalent to what has been found
in Ref. [31]. The coupling to a large number of field modes
derives in exponential growth at longer times in the very
nonperturbative regime.

For an equidistant spectrum, we can see that the coupling
between an infinite number of modes leads to quadratic growth
in time of the number at short time scales [∼ 1/(�εR)] and a
linear one in the long-time limit [∼ 1/(�2ε2

R)], as expected.
In Figs. 2(a) and 2(b) we show the dependence upon ε of the
quadratic and linear regimes. For example, for εR = 0.001,
we can observe the same behavior but in a different temporal
scale, as shown in Fig. 2(b). We can even compute the energy
density for the case of a moving mirror for a one-dimensional
field. In this case, the frequency spectrum is equidistant, and
the energy grows quadratically for short times, as in Fig. 2. In
Fig. 3, we show the energy behavior for εR = 0.001.

In order to show that the behavior at very long times is
much enhanced by the finiteness of the number of modes, we
show a comparison of different values of 	 in Fig. 4. Therein,
we show with the solid blue line the simulation for a cavity

M�1

M�5

M�10

0 500 1000 1500
t

10�4

0.001

0.010

0.100

(a) (b)

1

10
B1 2

FIG. 1. (a) Behavior of the |B1|2 coefficient as a function of the dimensionless time for different values of M under the perturbation of
� = 2ω1. The gray solid (upper) curve represents the analytical solution for the number of particles created when M = 10, while the blue
solid (lower) curve is the numerical solution obtained for the right-moving mirror. (b) Behavior of the |B1|2 coefficient as a function of the
dimensionless time for smaller values of M , i.e., M = 0.01, M = 0.05, and M = 1. Parameters used are ε = 0.001, 	 = 10.
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(a) (b)

FIG. 2. In both plots, we can see the behavior of the |B1|2 coefficient of the mode ω1 of the field as a function of the dimensionless time.
For times smaller than 1/ε, the behavior can be fitted by a quadratic curve, while for times �t ∼ 1/ε it can be fitted with a linear-in-time curve.
For very long times, we find an exponential behavior, as shown in Ref. [31]. (a) We use εR = 0.01 and. (b) We set εR = 0.001. Parameters used
are M = 0, 	 = 10.

containing 10 field modes. The red dashed line represents a
50-mode field cavity, while for the dotted black line, the cavity
contains 100 modes. The upper curves represent the |B1|2
coefficient, while the lower ones are for |B2|2. It is evident
that at short times, all cavities yield the same results, but at
very long times it is wiser to consider a larger number of
modes. However, the qualitative behavior remains the same;
we obtain lower exponential growth as the number of modes
considered increases. In this section we have mainly proved
numerically previous results and investigated some regions
beyond the analytical studies. In the following section we will
analyze the more general case of two moving mirrors.

V. TWO MOVING MIRRORS

Reference [29] presented a unified analytic treatment of
the dynamical Casimir effect in a one-dimensional resonantly
oscillating cavity for arbitrary amplitude and dephasing.
Therein, it was shown that for certain cases there is destructive

150 200 250 300 350
t

0.8

1.0

1.2

1.4

E

FIG. 3. Energy density for a moving wall located at x = R(t) as
a function of the dimensionless time. The density of energy grows
quadratically with time in the one-dimensional case of one moving
mirror. Parameters are ε = 0.001, 	 = 10. In our units, energy is
measured in units of 1/L0.

interference and no radiation is generated. For others, there is
constructive interference, and motion-induced photons appear.
When this takes place, the way the energy and number of
created photons inside the cavity grow in time depends on
the relation among several parameters. For certain motions
the growth of the energy density is exponential, and for
some others it is a power law. In this section, we shall
simulate the photon creation of two moving walls for different
situations. We will assume the case where M � (nπ )/(R − L)
in order to reobtain the results presented in Ref. [29], i.e.,
a one-dimensional cavity. We will also consider the three-
dimensional case by including a mass term in the frequency of
the field in a nonperturbative treatment.

1. Non-particle-induced modes

For a particular case of equal amplitudes εR = εL and
excitation frequency �R = �L = ωn, where n indicates the

FIG. 4. In this plot, we have used ε = 0.01, 	 = 10 for the blue
solid curves, 	 = 50 for the red dashed curves, and 	 = 100 for
the black dotted ones. In the upper values of the |B|2 axis we plot
|B1|2 for the n = 1 mode of the field, while in the lower part of the
axis we show |B2|2 of the field as a function of the dimensionless
time. We need to use a large number of modes 	 in order to get total
convergence into the final values. This plots show the dependence on
	 and a tendency to exponential growth of created particles.
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100 200 300 400
t

10�5

0.001

0.100

10

Bn 2

100 200 300 400
10�6

10�5

10�4

0.001

0.010

0.100

1
Bn 2

t

(a) (b)

FIG. 5. (a) |B|2 coefficient as a function of the dimensionless time for different field modes: |B3|2 (red dotted line), |B5|2 (blue dashed
line), and |B7|2 (blue solid line) under �R = �L = ω5 and φR = π . (b) |B|2 coefficient for different field modes: |B3|2, |B4|2, and |B5|2 for
�R = �L = ω4 and φR = 0. Parameters used are φL = 0, ε = 0.01, 	 = 10.

mode field, the energy inside the cavity oscillates around the
static Casimir value, and there is no motion-induced radiation.
This was first reported in [28] for a perturbative treatment. It
can be shown that for an even value of n and φR = 0 or an
odd value of n and φR = π , there is destructive interference
among the two moving mirrors [29] (assuming φL = 0 in all
cases). This particular behavior is represented in Figs. 5(a)
and 5(b), where we show destructive interference and no
creation of particles.

2. Dephased mirrors

In this section we follow the study of the cavity with two
moving mirrors, analyzing the case where the mirrors move in
dephased trajectories. In particular, in Fig. 6 we show different
cases in which particle creation for odd modes depends on the
different values of the phase φR for a fixed value of φL = 0.

R�0.25

R�0.35

R�0.5

100 200 300 400 500
t

1

104

108

1012

1016

B3 2

FIG. 6. We present the behavior of an odd field mode |B3|2 as a
function of the dimensionless time for different values of φR under
a perturbation � = ω5. In the case of φL = φR = 0 (dotted gray
line), we see there is another slope (solid red line) which corresponds
to a dephasing of φL = φR = π/4. Both cases are examples of a
translational oscillation mode, a case which is considered separately.
With the blue dashed line we present φL = 0 and φR = π/4, and
we show φL = 0 and φR = 0.35π with the dot-dashed black line.
Both examples show exponential growth with time of the number of
particles created with excitation � = w5 for mode n = 3. Parameters
used are ε = 0.01, 	 = 10.

In this general case, the number of created particles grows
exponentially with time for dephased motion and oscillates
nonexponentially for the particular case of φL = 0 and φR =
π/2 (solid pink line in Fig. 6) when the excitation is � =
ω5. This case is in agreement with the result obtained in the
previous section since it is equivalent to the total destructive
interference example where there is no particle creation. We
have also included cases of trajectories in phase (translational
oscillation mode) as φL = 0 and φR = 0 (dotted gray line
in Fig. 6) and φL = φR = π/4 (solid red line in Fig. 6) in
which the behavior is also exponential, as we will see in the
following section. Furthermore, with the dashed blue line we
show φL = 0 and φR = π/4, and we show φL = 0 and φR =
0.35π with the dot-dashed black line. Both examples show an
exponential growth in time of the number of particles created
with excitation � = ω5 for mode n = 3.

3. Translational modes

For the particular situation where εR = εL = ε, �R = �L,
and φL = φR = 0, the cavity oscillates as a whole. In this
case, the mechanical length is kept constant and is pictorially
called an “electromagnetic shaker” [29]. As in the previous
examples, it is well known that, due to parametric resonance,
a naive perturbative solution of Eq. (6), in powers of ε, breaks
down after a short amount of time. In order to find an analytical
solution valid for longer times one can use the multiple-scale
analysis (MSA) technique [11,32]. The MSA provides us with
a simple technique equivalent to summing the most secular
terms to all orders in the perturbative treatment. In this way, it
is possible to get a solution valid for a period of time longer
than the perturbative case. We shall introduce a second time
scale τ = εt and write Eq. (9) as

Qn(t,τ ) = An(τ )√
2ωn

e−iωnt + Bn(τ )√
2ωn

eiωnt , (17)

where the functions An and Bn are slowly varying and
contain the cumulative resonant effects. To obtain differential
equations for them, we insert this ansatz into Eq. (6), expand in
powers of ε up to first order, and neglect second derivatives of
An and Bn. The basic idea of MSA is to impose the condition
that any term on the right-hand side of the previous equation
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(a) (b)

FIG. 7. (a) Solid lines are for |B8|2 and |B5|2; the others lines correspond to |B3|2, |B2|2, and |B1|2. Parameters used are ε = 0.01, 	 = 10,
M = 10. (b) All modes are parametrically excited for a bigger value of the mass. Parameters used are ε = 0.001, 	 = 10, M = 50. Excitation
frequency � = ω2 + ω3.

with a time dependency of the form e±iωnt must vanish. If not,
these terms would be in resonance with the left-hand-side term,
and secularities would appear. We will follow this procedure in

order to get some analytical predictions about particle creation
in the translational mode. After imposing the requirement that
no term e±iωnt will appear, we get

dAn

dτ
= A0�

4L0ωn

∑
m

ωmb̃(1)
nm{[δ(� + ωm − ωn) + δ(� − ωm + ωn)]Am − [δ(� − ωm − ωn) + δ(� + ωm + ωn)]Bm}

− A

16L2
0ωn

∑
m

g̃(1)
nm{[δ(� + ωm − ωn) − δ(� − ωm + ωn)]Am + [δ(� − ωm − ωn) − δ(� + ωm + ωn)]Bm}, (18)

dBn

dτ
= − A0�

4L0ωn

∑
m

ωmb̃(1)
nm{[δ(� + ωm + ωn) + δ(� − ωm − ωn)]Am − [δ(� − ωm + ωn) + δ(� + ωm − ωn)]Bm}

+ A

16L2
0ωn

∑
m

g̃(1)
nm{[δ(� + ωm + ωn) − δ(� − ωm − ωn)]Am + [δ(� − ωm + ωn) − δ(� + ωm − ωn)]Bm}, (19)

where A0 is the amplitude of the mirror displacement and the first-order coefficients are given by

b̃(1)
nm = 4nm

n2 − m2
[(−1)n+m − 1], g̃(1)

nm = − nm

n2 − m2
8L0�

2[(−1)n+m − 1]. (20)

In these equations, there is not a time-dependent frequency
term from which one can get one resonant mode evolution
when exciting the system with � = 2ωn. Therefore, in this
case, the perturbation part of the mode equation is given in
terms of an infinite sum of resonant terms. It is easy to see
that, in the small amplitude of the perturbative regime, we
will obtain an exponential-in-time number of created particles
when � = |ωn ± ωm| [with n + m being an odd number from
Eq. (20)]. Therefore, only those modes n and m will be
parametrically excited [11,31], and other modes will not be
excited. In order to set a simple example, we can suppose that
the external frequency is given by � = ω2 + ω3. In this case,
the linear equations are given by

Ä2 −
(

6A0�

5L0

)2 (ω3 − ω2)2

ω2ω3
A2 = 0, (21)

B̈2 −
(

6A0�

5L0

)2 (ω3 − ω2)2

ω2ω3
B2 = 0, (22)

and the solution for the B2 coefficient is B2(t) ∼ exp(�εt),
where the rate � = (6A0/5L0)(ω2

3 − ω2
2)/

√
ω2ω3. This will

make N2 be exponential with time.
The same conclusion could be obtained for the mode n =

3, and that would make N3 also an exponential function of
time. All other modes different from n = 2 and n = 3 are not
parametrically excited in the perturbative regime under MSA.

However, for given values of ε and M , the perturbation in
the Eqs. (18) and (19) is large, and the perturbative and MSA
approaches are no longer valid. Nonetheless, our numerical
evidence goes beyond the perturbative regime and the MSA
improvement itself, and we can study the mode fields at longer
times. In Fig. 7, we show an example of a nonperturbative
result in which we find an exponentially growing number of
created particles for most (or all) modes after exciting the
system with � = ω2 + ω3. This is, in principle, a result not
expected from the perturbative approach mentioned above.
In Fig. 7(a), we can see the behavior of some field modes
for the excitation � = ω2 + ω3, where some modes oscil-
late while other are already excited for time �t ∼ 1/ε. In
Fig. 7(b), for a larger mass, we can see that all modes are
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(a) (b)

FIG. 8. (a) For the breathing modes, we have the |B|2 coefficient versus time for different field modes n = 2 (|B2|2), n = 4 (|B4|2), and
n = 6 (|B6|2) under �R = �L = ω4 and φL = π . Field modes n = 1 (|B1|2) and n = 3 (|B3|2) seem to get excited at longer times. (b) Energy
density as a function of the dimensionless time. Parameters used are ε = 0.01, 	 = 10. In our units, energy is measured in units of 1/L0.

parametrically excited for the same time scale, even though ε is
smaller.

4. Breathing modes

We next consider the case in which εR = εL, �R = �L =
ωn, and φR = π (φL = 0), representing the situation in which
the mirrors oscillate symmetrically with respect to the center
of the cavity. The mechanical length changes periodically as
an “antishaker” in relation to the previous example in which
the cavity moves as a whole. This is simulated in Fig. 8.
The dashed blue line shows the mode n = 2, the dot-dashed
magenta line shows n = 4, and the solid line is for n = 6. The
odd modes, such as n = 1 and n = 3, activate at longer times,
as shown in Fig. 8(a). In Fig. 8, we excite the system with
�R = �L = ω4 and φL = π with a negligible mass, yielding
ω4 = 4π/L0. Therein, we can observe that all even modes are
getting excited, while the odd modes become excited at longer
times (they appear at times �t ∼ 500). In the end, all modes
become exponentially excited in a nonperturbative example.

5. Three-dimensional cavities with two moving mirrors

We can even study particle creation in the three-dimensional
cavity with two moving mirrors. We start increasing the value

of the mass and see how the explosive cocktail of Fig. 9 starts
changing considerably. In Fig. 9, we show the behavior of the
coefficient for field mode n = 1, |B1|2 under a perturbation
defined by �R = �L = ω5, and φL = 0 for different values of
the mass value: M = 0.01 (dotted line), M = 1 (dashed line),
and M = 5 (solid line). In Fig. 9(a), we show the energy as a
function of time for the same values of the parameters. Therein,
we see that for M = 0.01, the energy has an exponential
behavior, while for M = 5 it does not.

It is easy to see in Fig. 9 the different results for the number
of created particles between one- and three-dimensional
cavities. In fact, it is important to note in Fig. 9(a) that
the smaller the mass value is, the bigger the growth of the
coefficient |B1|2 is. Then, one-dimensional cavities with two
oscillating mirrors produce a bigger excitation of modes than
the corresponding cubic cavity in three dimensions. The same
mass hierarchy can be seen in Fig. 9(b) for the energy density
inside the cavities (one-dimensional cavity when M → 0 and
three-dimensional ones for bigger M).

VI. CONCLUSIONS

In this paper we presented a detailed numerical analysis
of particle creation for a quantum field in a cavity with

(a) (b)

FIG. 9. (a) B1 coefficient for field mode 1 under �R = �L = ω5 and φL = 0 for different values of the mass: M = 0.01 (red dotted line),
M = 1 (blue dashed line), and M = 5 (black solid curve). (b) Energy as a function of time. Parameters used are ε = 0.01, 	 = 10. In our
units, energy is measured in units of 1/L0.
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two perfectly conducting moving mirrors. This approach
was applied to one-dimensional and three-dimensional cavity
boxes. We derived the equation of motion of the field modes
and numerically evaluated the Bogoliubov transformation
between in and out states. From Bogoliubov coefficients, we
were able to numerically calculate the number of created
particles after the mirrors stop moving and return to the
unperturbed position.

In the case of one moving wall at x = R(t) while the wall
at x = 0 remains at rest, we recovered the very well known
results. In that case, we showed that the rate of particle produc-
tion depends strongly on whether the frequency spectrum is
equidistant or not, obtaining the correct behavior with respect
to the number of created particles. Quadratic behavior for a
short time scale and linear growth for larger temporal scales
were found when the spectrum was equidistant. We also found
that, beyond perturbative predictions, the dependence on the
number of created particles is exponential with time for very
large times. In the case of three-dimensional cavities with one
moving mirror, we showed that our results are in agreement
with the literature for the perturbative or MSA regions and
provided numerical evidence of the behavior of the number of
created particles even in the nonperturbative case.

In the case of two moving walls, we showed that the
rate of particle creation depends strongly on the relation

among the amplitudes, the frequency, and the phase difference
in the mirrors’ oscillations. We showed that in some cases
constructive interference leads to exponential growth of
particles inside the cavity, while for other relations there exists
destructive interference with no vacuum radiation. We went
beyond analytical studies by considering a massive field and
computing the energy density inside the cavity.

We also studied nonperturbative regimes for translational
modes and found that all modes in the cavity grow ex-
ponentially when the amplitude of the perturbation in the
mode equation is large (compared with perturbative expan-
sion analysis). Then, we reported an exponentially growing
number of created particles when exciting with external
frequencies � = |ωn ± ωm| (with n + m being an odd num-
ber). We will present further analysis of the translational
mode oscillation with analytical and more numerical support
elsewhere [33].
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