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Abstract 27 

Geoffroea decorticans  (chañar), is widely distributed throughout Northwestern Argentina. Its fruit 28 

is consumed as flour, arrope or hydroalcoholic beverage. The chañar fruits flour was obtained and 29 

39 phenolic compounds were tentatively identified by HPLC-MS/MS
n
. The compounds comprised 30 

caffeic acid glycosides, simple phenolics (protocatechuic acid and vanillic acid), a glycoside of 31 

vanillic acid, p-coumaric acid and its phenethyl ester as well as free and glycosylated flavonoids. 32 

The polyphenols enriched extract with and without gastroduodenal digestion inhibited enzymes 33 

associated with metabolic syndrome, including α-amylase, α-glucosidase, lipase and hydroxyl 34 

methyl glutaryl CoA reductase.  The polyphenolic extract exhibited antioxidant activity by different 35 

mechanisms and inhibited the pro-inflammatory enzymes (ciclooxygenase, lipooxygenase and 36 

phospholipase A2). The polyphenolic extract did not showed mutagenic effect by Ames test against 37 

Salmonella typhimurium TA98 and TA100 strains.  38 

These findings add evidence that chañar fruit flour may be considered a functional food with 39 

preventive properties against diseases associated with oxidative stress, inflammatory mediators and 40 

metabolic syndrome.  41 

 42 
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1. Introduction 50 

The metabolic syndrome (MetS) is a state of insulin resistance, oxidative stress and chronic 51 

inflammation that affect 25% of the world population (Prasad, Ryan, Celzo, & Stapleton, 2012). 52 

MetS is characterized by the presence of at least three of the cardiovascular risk factors: obesity, 53 

excessive visceral fat storage, dyslipidemia, hypertension, hyperglycemia or type 2 diabetes. 54 

Treatments for MetS are mainly based on therapeutic lifestyle changes, often accompanied by 55 

pharmacological treatments of MetS-related factors (Prasad et al., 2012). Reduction of postprandial 56 

hyperglycemia by inhibition of enzymes involved in carbohydrate metabolism (α-glucosidase and 57 

α-amylase), inhibition of lipolytic enzymes including lipase, inhibition of oxidative stress and the 58 

delay of inflammatory process are the most common therapeutic approach to treat MetS. Plant-59 

derived foods represent a natural source of phytochemical positively associated with the prevention 60 

and regression of MetS clinical manifestations. In particular, plant antioxidants are known to reduce 61 

the oxidative stress and inflammatory process associated with obesity and cardiovascular alterations 62 

(Abete, Goyenechea, Zulet, & Martinez, 2011). The evidence suggests that a diet enriched in fibers 63 

and low in saturated fats, together with increased daily physical exercise, can reduce the incidence 64 

of diabetes in people with impaired fasting glucose tolerance by almost 60% (Wagh & Stone, 65 

2004). 66 

The tree Geoffroea decorticans (Gill.ex Hook. et Arn.) Burk (Fabaceae), known as chañar, occurs 67 

in the native forests of the Gran Chaco region (phytogeographical regions of “Parque chaqueño”, 68 

“Monte” and “Espinal”) in Argentina as well as in the Paraguayan and Bolivian Chaco and northern 69 

Chile (Scarpa, 2009). It is a xerophytic tree that forms extensive uniform colonies due to 70 

reproduction by gemmiferous root.  The ripe fruits (drupes) were consumed since pre-colonial 71 

times. At present, they are still part of the diets of aboriginal communities like the Wichis, Toba and 72 
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Chorotes (Arena & Scarpa, 2007). In summer time, each tree produces between 20 and 30 kg of 73 

orange brown colored fruits, which fall from the tree when mature (Figure 1). Under dry conditions, 74 

the fruits can be stored for one year before consumption. The fruits and seeds are used raw, roasted, 75 

boiled and/or fermented (beverage). The chañar flour was used as ingredient for soups and to make 76 

so-called chañar breads. The other popular product made of chañar fruits is a sweet jelly-like syrup 77 

called arrope. The arrope is recommended as a sweet for desserts and cocktails as well as the best 78 

cough syrup in traditional medicine. Chañar fruits flour and arrope can be used as functional food 79 

due to their high level of sugar, fiber and polyphenolic compounds (Costamagna, Ordoñez, 80 

Zampini, Sayago & Isla, 2013). The antinociceptive action and antioxidant activity of chañar fruits 81 

and arrope was reported (Costamagna et al., 2013; Reynoso, Vera, Aristimuño, Daud & Sánchez 82 

Riera, 2013).  83 

Chañar is relevant in the native Argentine forests and is often found associated with algarrobo 84 

(Prosopis) and mistol (Zyziphus) trees. The collection and processing of chañar fruits, that was 85 

important in the past, is now disappearing due to the clearance of the native forests for agriculture, 86 

mainly to produce transgenic soybean for export. Therefore, studies that add value to this species 87 

are important to promote their propagation, conservation and sustainable management in arid areas.  88 

The aim of the present study was to assess the polyphenolic profile of chañar fruits flour and to 89 

evaluate the efficacy of polyphenolic component against enzymes relevant in hyperglycemia, 90 

dyslipidemia, oxidative stress and inflammatory process related with metabolic syndrome. 91 

2. Materials and Methods       92 

2.1. Reagent and standards  93 

All chemicals and reagent used were either analytical reagent or HPLC grade. The chemicals, 94 

standard compounds and enzymes purchased from Sigma Aldrich Co., St. Louis, USA were:  p-95 
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nitrophenyl α-D- glucopyranoside (pNPG, BCBN2675V);  p-nitrophenyl palmitate 96 

(pNPP109K5200);  hydroxy methylglutaril CoA (HMG-CoA,  L 112M4102V); linoleic acid  97 

1393368) ; bovine serum albumin, (BSA,60F-0270); β-carotene (N° 117H2511); thiobarbituric acid 98 

(N°034K06055); NADH (D00079245); dinitrophenyl hydrazine (DNPH) (S16313-065);  ascorbic 99 

acid (A596050-81-7); quercetin (Q4951 ); ABTS ( 1392678); lipoxygenase (LOX-1,  L2630); 100 

secretory phospholipase A2 (sPLA2, 0424023-1); α-glucosidase (N° 117F8205); pepsin 101 

(128K7354V) and pancreatin (110M1429V). 102 

COX-2 enzyme immune assay EIA (Kit N° 560131) was obtained from Cayman Chemical, MI, 103 

USA.  104 

Lipase pancreatic (N° BCR693); α-amylase (N° 67688), ABTS (N° 11557) and BHT (B1215000) 105 

were purchased in Fluka. 106 

2.2. Plant material 107 

Fruits of Geoffroea decorticans were collected in January 2011 and January 2012 in Departmento 108 

Fernández, Provincia de Santiago del Estero, Argentina. The fruits were lyophilized and the pulp 109 

was ground to powder (Helix mill, Metvisa, Argentina). Then, the chañar flour was passed through 110 

a 4 mm mesh sieve. The tree growing in the natural habitat and details of the fruits are presented in 111 

Figure 1.  112 

2.3. Extraction and phenolic content determination 113 

 The flour sample (630 g) was extracted four times with methanol:water 70:30 v/v in a 1:2 114 

w/v ratio in an ultrasonic bath for 30 min at 25°C. Then, the combined extract was concentrated 115 

under reduced pressure and then lyophilized. The lyophilized extract was suspended in 116 

distilled water (acidified with HCl to pH 2) and mixed with Amberlite-XAD 7 resin (500 g) for 1 117 

hour under stirring. The resin was filtered on a Büchner funnel, washed three times with the 118 
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acidified water and the polyphenols bound to the resin were desorbed with methanol (MeOH). The 119 

phenolic-enriched MeOH solution was concentrated under vacuum to afford a crude MeOH extract 120 

that was stored at -20°C until use. Total polyphenols were determined by the Folin–Ciocalteau 121 

method (Singleton, Orthofer, Lamuela-Raventos, 1999). Results were expressed as mg gallic acid 122 

equivalents (g GAE)/100 g dry weight (DW) of soluble principles.  The flavonoids content was 123 

determined according to Popova, Silici, Kaftanoghu & Bankova, (2005) and expressed as µg 124 

quercetin equivalents per mg of dry weight (g QE/ 100 g DW). 125 

2.4. Enzyme inhibition and antioxidant assays 126 

2.4.1. Inhibitory activity of enzymes related to metabolic syndrome 127 

The inhibitory effect on enzyme related to metabolic syndrome was determined using polyphenolic 128 

extract with and without gastroduodenal digestion (GD). The polyphenolic extract was submitted to 129 

GD into three categories: salivary, gastric and duodenal digestion according to Tenore et al., 2015 130 

with minor modifications. Briefly: For the salivary digestion, the extract (4 mg GAE) were mixed 131 

with 6 mL of saliva at pH 6.8 (KCl [89.6 g/L], KSCN [20 g/L], NaH2PO4 [88.8 g/L], Na2SO4 [57.0 132 

g/L], NaCl [175.3 g/L], NaHCO3 [84.7 g/L], urea [25.0 g/L] and α-amylase [48.3 mg/mL]). The 133 

mixture was incubated for 3 min at 37°C.Then, for the gastric digestion, pepsin (14,800 U) 134 

dissolved in HCl 0.1 M was added, pH was adjusted to 2 and the mixture was incubated at 37°C 135 

during 2 h. For pancreatic (duodenal) digestion, the pH was adjusted to 6.5 with NaHCO3 (0.5 M).  136 

Then, pancreatin (8 mg/mL) and bile salts (50 mg/mL) (1:1, v/v), dissolved in water (20 mL), was 137 

added and the mixture was incubated at 37 °C for 2 h. After digestions, polyphenols were extracted 138 

with ethyl acetate and the organic phase was taken to dryness and resuspended in DMSO (2 mg 139 

GAE/mL).  140 

2.4.1.1. α-Glucosidase inhibition  141 
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The inhibition of α-glucosidase was determined using p-nitrophenyl α-D-glucopyranoside as 142 

substrate. The reaction mixture contained 160 µl of 0.1M sodium phosphate buffer (pH 6.9), 5 µL 143 

of enzyme (5.46 U/mL) and polyphenolic extract (0.17-1.36 µg/mL). After pre-incubation of the 144 

reaction mixture on ice for 5 min, the enzyme reaction was started by adding 5 µL of 25 mM  p-145 

nitrophenyl α-D-glucopyranoside into this mixture. The reaction was incubated 15 min at 37 °C.  146 

Then, 80 µL of 0.2 M sodium carbonate was added. The absorbance was measured at 405 nm in a 147 

microplate reader (BiotekELx808). Enzyme inhibition was calculated using the following equation: 148 

% inhibition= (A0 - As)/A0 x 100 149 

Where A0 is the absorbance of the control (blank, without extract) and As is the absorbance in 150 

presence of the extract. IC50 values denote the µg GAE/mL required to inhibit the enzyme by 50%. 151 

2.4.1.2. αααα-Amylase inhibition  152 

The α-amylase inhibitory activity using starch as substrate was assayed using Amilokit ® 153 

(Wiener Lab Group, Rosario, Argentina). The reaction mixture contained 800 µL of 0.01 M sodium 154 

phosphate buffer (pH 7.4), 5 µL of enzyme and polyphenolic extract (28-146 µg GAE/mL). After 155 

pre-incubation of the reaction mixture on ice for 5 min, the enzyme reaction was started by adding 156 

500 µL of reagent A (substrate) into the reaction mixture. Then, the reaction was incubated at 37 °C 157 

for 7 min. After that, 500 µL of reagent B (iodine solution) was added for color development and 158 

the reaction mixture was taken to a final volume of 5.3 mL with water. The absorbance was 159 

measured at 640 nm in a spectrophotometer (UV2400 PC). Enzyme inhibition was calculated using 160 

the following equation: 161 

% inhibition= (A0 - As)/A0 x 100 162 

Where A0 is the absorbance of the control (blank, without extract) and As is the absorbance in 163 

presence of the extract. IC50 values denote the µg GAE/mL required to inhibit the enzyme by 50%.  164 
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2.4.1.3. Lipase inhibition  165 

Lipase activity was assayed by measuring the enzymatic hydrolysis of  p-nitrophenyl palmitate to p-166 

nitrophenol in a microplate reader (BiotekELx808) at 400 nm. Lipase solution (1.0 mg/mL) was 167 

mixed with the polyphenolic extract (final concentration between 0.2 and 8.71 µg/mL) and pre-168 

incubated on ice for 5 min. The reaction mixture for standard assay contained 330 µL of sodium 169 

phosphate buffer 0.1 M (pH 7) supplemented with 0.6% (w/v) Triton X-100 and 0.15% (w/v) arabic 170 

gum, and 20 µL of 10 mM p-nitrophenyl palmitate. The enzyme reaction was started by adding 50 171 

µL of the lipase/ polyphenolic extract solution into the reaction mixture, and incubated at 37 °C for 172 

20 min. Enzyme inhibition was calculated using the following equation: 173 

% inhibition= (A0 - As)/A0 x 100 174 

Where A0 is the absorbance of the control (blank, without extract) and As is the absorbance in 175 

presence of the extract. IC50 values denote the µg GAE/mL required to inhibit the enzyme by 50%.  176 

2.4.1.4. HMG-CoA Reductase inhibition 177 

The HMG-CoA Reductase KIT Assay was used. The reaction mixture contained extract (0.7 to 13 178 

µg GAE/mL)  or 1µL of parvastatin (as inhibitor), 1x buffer to complete 182 µL, 4 µL of NADPH, 179 

12 µL of HMG-CoA and 2 µL of HMG-CoA reductase. The reaction was incubated at 37ºC during 180 

10 min. Readings were taken every minute for 10 minutes at 340 nm in a microplate reader. IC50 181 

values denote the µg GAE/mL required to inhibit the enzyme by 50%. 182 

2.4.2. Inhibition of pro-inflammatory enzymes 183 

2.4.2.1. Lipoxygenase 184 

Lipoxygenase (LOX) activity was determined using a spectrophotometric method based on the 185 

enzymatic oxidation of linoleic acid to the corresponding hydroperoxide. The reaction mixture 186 

contained substrate (50 µM linoleic acid in 0.2 M borate buffer pH 9), enzyme (0.9 nM soy LOX-1) 187 
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and different concentrations of polyphenolic extract (100-600 µg GAE/mL). The assay to obtain the 188 

100% of LOX activity was performed with DMSO as solvent control.  Absorption at 234 nm was 189 

recorded as a function of time for 3 min. The polyphenolic concentration causing 50% inhibition of 190 

hydroperoxide-release (IC50) was calculated from the concentration–inhibition response curve by 191 

regression analysis. The extinction coefficient of 25 mM
−1

 cm
−1

 was used for hydroperoxide 192 

quantification. Naproxen was used as a reference anti-inflammatory compound. 193 

2.4.2.2. Cyclooxygenase  194 

The ability of the extracts and/or fractions to inhibit the conversion of arachidonic acid to 195 

prostaglandin (PG) by human recombinant  COX-2 was determined by enzyme immune assay, EIA. 196 

Cyclooxygenase catalyzes the first step in the biosynthesis of arachidonic acid to PGH2. PGF2α 197 

produced from PGH2 by reduction with stannous chloride was measured by EIA in a microplate 198 

reader (BiotekELx 808). The assays were performed in presence of 100-600 µg GAE/mL of 199 

polyphenolic extract or commercial anti-inflammatory drugs (nimesulide selective for COX-2). The 200 

assay to obtain the 100% of COX-2 activity was performed with and without DMSO as solvent 201 

control. Enzyme control was performed with inactivated enzymes by boiling during 3 min. 202 

Detection limit was 29 pg of PG/mL. The polyphenolic concentration causing 50% inhibition of 203 

enzyme (IC50) was calculated from the concentration–inhibition response curve by regression 204 

analysis. 205 

 2.4.2.3. Phospholipase A2 206 

Secretory phospholipase A2 activity was determined using 1,2-diheptanoylthio-207 

glycerophosphocholine (1,2 dHGPC)  and Triton X-100 as substrates. The mixture contained 50 µL 208 

of buffer Tris–HCl (10 mM, pH 8), 10 µL of 5,5′- dithiobis-2-nitrobenzoic acid (DTNB) (10 mM), 209 

10 µL of PLA2 enzyme (1 mg/mL) and 100-600 µg GAE/mL of the assayed samples dissolved in 210 
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DMSO or commercial anti-inflammatory drug (acetylsalicylic acid). The reaction was initiated by 211 

the addition of 150 µL of 1,2 dHGPC (1.66 mM) and maintained during 20 min at 25 °C. The 212 

absorbance was read at 414 nm during 20 min every 2 min in a microplate reader (BiotekELx808). 213 

The polyphenolic concentration causing 50% inhibition of enzyme (IC50) was calculated from the 214 

concentration–inhibition response curve by regression analysis. 215 

2.4.3 Antioxidant activity 216 

2.4.3.1. ABTS radical scavenging  217 

The assay was carried out by the improved ABTS
●+ 

method as described by Re, Pellegrini, 218 

Proteggente, Pannala, Yang, & Rice-Evans (1999). ABTS
●+

 was generated by reacting 7 mM ABTS 219 

and 2.45 mM potassium persulfate after incubation at room temperature (23 ºC) in the dark for 16 h.  220 

2.4.3.1.1.Autographic assay on TLC 221 

An aliquot of each fraction obtained from total polyphenolic extract after fractionation by 222 

Sephadex LH 20 was placed on Silica gel F254 plates (4x4 cm). The plates were developed with 223 

(toluene: ethyl acetate: formic acid; 4:2:1, v:v:v) as solvent system. After, 3 mL of soft medium 224 

(agar 0.9 %) containing 1mL ABTS
●+

 solution was distributed on TLC plate (Zampini, Ordoñez, & 225 

Isla, 2010)  After solidification, the plate was incubated at room temperature for 1 min in the dark.  226 

The antioxidant activity appeared as clear spots against a dark green-blue background. 227 

2.4.3.1.2. Total antioxidant capacity by spectrophotometric assay 228 

ABTS
●+ 

solution (1mL; absorbance of 0.7 + 0.02 at 734 nm) was added to the sample (1.35 to 229 

12.5µg GAE/mL) and mixed thoroughly. Absorbance was recorded at 734 nm after 6 min. The 230 

percentage of inhibition was measured by the following formula: 231 

% inhibition= (A0 - As)/A0 x 100 232 
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Where A0 is the absorbance of the control (blank, without extract) and As is the absorbance in 233 

presence of the extract. Results are presented as SC50 values in µg GAE/mL required to scavenge 234 

50% ABTS free radicals. 235 

2.4.3.2. Hydroxyl radical scavenging  236 

The reaction mixture contained 50 µL of 10.4 mM 2-deoxy-D-ribose and 100 µL of  50 µM FeCl3  237 

and extract (0.29-2.39 µg GAE/mL). The reaction was carried out with and without 100 µL of 52 238 

µM EDTA. To start the Fenton reaction, 50 µL of 10 mM H2O2 and 50 µL of 1.0 mM ascorbic acid 239 

were added. The mixture was incubated at 37°C for 60 min. Then, 500 µL of  2-thiobarbituric acid 240 

(1%, w/v) dissolved in trichloroacetic acid (3%, w/v) was added. The tubes were heated at 100°C 241 

for 20 min. The absorbance was measured at 532 nm. Reaction mixtures without the polyphenolic 242 

extract were used as positive control (100% MDA). The negative control contained the full reaction 243 

mixture without 2-deoxy-D-ribose. A modification was carried out without the addition of ascorbic 244 

acid. The negative control contained the full reaction mixture without 2-deoxy-D-ribose. The 245 

positive control was the H2O2/Fe
3+/

ascorbic acid system mixture lacking the extract (100% MDA). 246 

Results are presented as SC50 values in µg GAE/mL required to inhibit by 50% the degradation of 247 

2-deoxy-D-ribose. 248 

2.4.3.3. Hydrogen peroxide scavenging  249 

A solution of hydrogen peroxide (4 mM) was prepared in phosphate buffer (PBS, pH 7.4). 250 

Hydrogen peroxide concentration was determined spectrophotometrically from absorption at 230 251 

nm using the molar absorptivity 81 M
-1

.cm
-1

. Samples (7-82.7 µg GAE/mL) were added to the 252 

hydrogen peroxide solution (0.6 mL). Absorbance of hydrogen peroxide at 230 nm was determined 253 

10 min later against a blank solution containing extracts without hydrogen peroxide. Results are 254 

presented as SC50 values in µg GAE/mL required to inhibit by 50% the degradation of H2O2 255 
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2.4.3.4. Protection of protein against oxidative damage 256 

Bovine serum albumin (BSA, 40 mg/mL) in 10 mM sodium phosphate buffer pH 7 was mixed with 257 

1 mL of 1.5 mM FeSO4, 1 mL H2O2 3 mM and different concentrations of the samples. Then, 400 258 

µL of 7 mM  DNPH in 2 M HCl was added. The protein was precipitated by adding 500 µL of 259 

trichloroacetic acid (4% w/v). The pellet collected by centrifuging for 5 min at 14,000 x g was re-260 

dispersed in ethanol/ethyl acetate (1:1, v/v) in order to remove unreacted DNPH. Absorbance at 378 261 

nm was read and carbonyl concentration was calculated. Results are reported as PC50 values  in µg 262 

GAE/mL required to inhibit by 50% the degradation of BSA. 263 

2.4.3.5. Protection of lipid against oxidative damage:  β-Carotene bleaching  264 

Antioxidant activity was determined according to the β-carotene bleaching method following the 265 

procedure described by Ordoñez, Gomez, Vattuone, & Isla (2006). The initial absorbance at 470 nm 266 

was registered at time zero (t0) and during 120 min. Antioxidant activity (AA%) was calculated as 267 

the percent inhibition relative to control using the following equation: 268 

                                AA% = [(Rcontrol – Rsample)/ Rcontrol] x 100 269 

Where Rcontrol and Rsample are the bleaching rates of β–carotene in the reactant mix without 270 

antioxidant and in presence of the extracts, respectively. SC50 values denote the µg 271 

GAE/mLrequired to inhibit  β–carotene bleaching by 50%. 272 

2.5. Mutagenicity 273 

2.5.1. Salmonella mutagenicity assay 274 

The mutagenic effect of chañar fruits flour extracts was evaluated on two S. typhimurium strains 275 

(TA98 and TA100). The plate incorporation assay was performed according to Maron & Ames 276 

(1983), by adding 0.1 mL of the overnight bacterial culture, 0.1 mL of chañar polyphenolic extracts 277 

at different concentrations (25-100 µg GAE/plate) and 2 mL of top agar on minimal agar. The 278 
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plates were then incubated at 37 °C for 48 h. After incubation, his+ revertant colonies were counted 279 

and compared to the number of revertant colonies in the controls.  280 

For the experiment with S9 metabolic activation, the S9 mixture was freshly prepared before the 281 

assay and kept on ice until needed. The S9 mixture consisted of S9 fraction (Moltox – Molecular 282 

Toxicology Inc., USA) containing NADP (Maron & Ames, 1983). The experiment was repeated as 283 

above and the only difference was that 500 µL of S9 was added in place of the phosphate.  After 72 284 

h of incubation at 37 °C His
+  

revertants were counted. The positive controls employed were 4-nitro-285 

O-phenylenediamine (4-NPD; Aldrich Chemical Co.), (10 µg/plate) and 2-aminofluorene (2-AF; 286 

Merck) (10 µg/ plate). Solvent control was carried out adding 100 µL DMSO/plate. An extract was 287 

considered mutagenic when the mean number of revertants was double or greater than two times 288 

that of the negative control. Three plates per experiment and two separate experiments were used 289 

for each concentration tested and for positive and negative controls. 290 

2.6. Fractionation of the polyphenolic extract 291 

A sample of the polyphenolic extract (1.6 g) obtained from chañar fruits flour was dissolved in 292 

MeOH and permeated on Sephadex LH-20. MeOH was used as mobile phase. The eluates with 293 

similar TLC profiles (toluene: ethyl acetate: formic acid; 4:2:1, v:v:v), revealed with diphenylboric 294 

acid ethanolamine complex, were pooled in four major fractions. All of them were taken to dryness 295 

and kept at 4°C for further use. The yields were as follow. F-I: 151 mg; F-II: 1100  mg;  F-III: 200 296 

mg; F-IV: 64.7 mg. The fractions F-III and F-IV showed the highest antioxidant activities by 297 

autographic assays. The FIII and FIV were analyzed by HPLC-DAD y HPLC-MS/MS
n
. Then, FIII 298 

and FIV were re-chromatographed on Sephadex LH 20 and eluted with Metanol:H2O, (8:2, v:v)  299 

Nine subfractions (SF-1 to SF-9) were obtained from FIII and eight sub-fractions (SF-1 to SF-8) 300 



  

14 

 

were obtained from FIV. All fractions and sub-fractions were dried by evaporation and lyophilized. 301 

Dry extracts were kept at 4°C for further experimental use. 302 

2.7. Identification of  phenolics  303 

2.7.1. HPLC-DAD analysis  304 

The most active fractions of the polyphenolic extract (F-III and F-IV) and subfractions obtained 305 

from them were analyzed by HPLC coupled to a diode array detector to set the conditions for 306 

HPLC-DAD-MS/MS studies. The HPLC system used for DAD analysis was a Shimadzu 307 

(Shimadzu Corporation, Kyoto, Japan) equipment consisting of a LC-20AT pump, a SPD-M20A 308 

UV diode array detector, CTO-20AC column oven and a LabSolution software. A MultoHigh 100 309 

RP 18-5µ (250x4.6 mm) column (CS-Chromatographie Service GmbH- Germany) maintained at 35 310 

°C was used. The samples were dissolved in 1 mL MeOH, filtered through a 0.45 µm PTFE filter 311 

(Waters) and submitted to HPLC-DAD and HPLC-ESI-MS/MS analysis. The compounds occurring 312 

in the mixtures were monitored at 254 and 330 nm, and UV spectra were recorded from 200 to 600 313 

nm for peak characterization. The HPLC analyses were performed using a linear gradient solvent 314 

system consisting of  0.1% acetic acid in water (A) and methanol 0.1% acetic acid as follow: 90% 315 

A to 43% A over 45 min, followed by 43% A to 0% A from 45 to 60 min, 0% A to 0% A from 60 316 

to 5 min. The flow rate was 0.5 mL/min and the volume injected was 20 µL.   317 

2.7.2. Identification of phenolics by HPLC-ESI-MS/MS 318 

Data were recorded on a HPLC-ESI-MS/MS system which consisted of the HPLC HP1100 (Agilent 319 

Technologies Inc, CA-USA) connected through a split to the mass spectrometer Esquire 4000 Ion 320 

Trap LC/MS(n) system (Bruker Daltonik GmbH, Germany). Ionization was performed at 3000 V 321 

assisted by nitrogen as nebulizing gas at 24 psi and as drying gas at 365ºC and a flow rate of 6 322 
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L/min. Negative ions were detected using full scan (m/z 20-2200) and normal resolution (scan 323 

speed 10,300 m/z/s; peak with 0.6 FWHM/m/z). The trap parameters were set in ion charge control 324 

(ICC) using manufacturer default parameters, and maximum accumulation time of 200 ms. 325 

Collision induced dissociation (CID) was performed by collisions with helium background gas 326 

present in the trap and automatically controlled through SmartFrag option. 327 

2.8. Statistical analysis 328 

Sampling and analyses were performed in triplicate, and the data are presented as mean ± standard 329 

deviation (S.D.). The correlation between the main polyphenolic compounds content of the extracts, 330 

and the biological activities was analyzed by the Pearson test correlation coefficients with 95% 331 

confidence. Statistical analysis was performed by one way ANOVA followed by Tukey’s multiple 332 

comparison test (p<0.05). All statistical analyses were carried out using the Infostat software. 333 

3. Results and discussion 334 

The macronutrient and phytochemical composition of chañar fruits flour was previously reported 335 

(Costamagna et al., 2013). The carbohydrates were the major component (19.75 %) followed by 336 

proteins (5%). Furthermore, the chañar fruits flour could be considered a source of dietary fiber 337 

(12%), of potassium and polyphenolic compounds (1.5 %) (Costamagna et al., 2013). In the present 338 

paper, a polyphenols-enriched hydroalcoholic extract was obtained from chañar fruits flour.  The 339 

polyphenolic compounds content and flavonoids of the extract were 12.5 ± 1.0 g GAE/100 g dry 340 

weight of soluble principle and 2.0 ± 0.2 g QE/100 g dry weight of soluble principle, respectively. 341 

The aim of the present study was to determine the efficacy of polyphenolic component against 342 

enzymes involved in hyperglycemia, dyslipidemia, and inflammatory process related with 343 

metabolic syndrome and oxidative stress. 344 

3.1. Enzyme inhibition 345 
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The metabolic syndrome is a metabolic disorder of multiple etiologies characterized by chronic 346 

hyperglycemia and disturbances of carbohydrate and fat metabolisms. The activity of the chañar 347 

fruits flour polyphenolic extract was assessed towards enzymes associated with metabolic 348 

syndrome, including α-glucosidase and α-amylase, pancreatic lipase and HMGCoA reductase, pro-349 

inflammatory enzymes (COX-1, COX-2, LOX, sPLA2) and as antioxidant. The effect of the chañar 350 

polyphenols on the different enzymes is summarized in Table 1. Furthermore, the fraction was 351 

evaluated for a possible mutagenic effect by the Ames test. 352 

3.1.1. αααα-Glucosidase and αααα-amylase inhibition 353 

One therapeutic approach to decrease postprandial hyperglycemia is to suppress the production 354 

and/or absorption of glucose from the gastrointestinal tract through inhibition of the enzymes α-355 

amylase or α-glucosidase (Abete et al., 2011). Hypoglycaemic agents used in clinical practice, such 356 

as acarbose, competitively inhibit α-glucosidase in the brush border of the small intestine, which 357 

consequently delay the hydrolysis of carbohydrates and alleviate postprandial hyperglycemia. 358 

However, the continuous administration of these agents may cause several adverse effects, such as 359 

diarrhea, abdominal discomfort, flatulence, and hepatotoxicity. Therefore, α-glucosidase novel 360 

natural inhibitors are necessary given the therapeutic challenge of type II diabetes mellitus. Phenolic 361 

compounds of chañar fruits flour may freely interact with enzymes present in the digestive tract 362 

modulating their activity (Abete et al., 2011; Xiao, Chen, & Cao, 2014). The inhibitory activity of 363 

polyphenolic extract obtained from chañar flour towards α-amylase was low (IC50 values of 25 µg 364 

GAE/mL). However, this extract was very active against α-glucosidase (IC50 = 0.68 µg GAE/mL) 365 

with a relation dose-response with polyphenolic concentration until IC50 values (R
2
= 0.95), 366 

presenting better effect than the reference compound acarbose (IC50 = 25 µg/mL), Table 1. These 367 

results suggest that chañar fruit flour polyphenols might be able to reduce glucose 368 
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uptake/absorption. The selective inhibition of α-glucosidase is the preferred effect for plant extracts 369 

to control glucose uptake. Simultaneous inhibition of both enzymes would result in abnormal 370 

bacterial fermentation in the colon due to the presence of undigested carbohydrates.  Other plants, 371 

many of them used traditionally to control diabetes or hyperglycaemia were reported to exert strong 372 

inhibition of α-glucosidase and moderate or negligible effect on α-amylase activity (Ranilla, Kwon, 373 

Apostolidis, & Shetty, 2010). The activity of polyphenolic extract from chañar fruits flour on α-374 

glucosidase was higher than the activity of hydroalcoholic blueberry extract (Boath, Stewart, 375 

McDougall, 2012), pomegranates (Medjakovic & Jungbauer, 2013) and maqui (Rubilar, et al., 376 

2011) fruits. In this sense, chañar fruits flour may offer dietary coadjuvants (therapeutic 377 

complements) to control hyperglycemia in diabetic patients. However, further evaluation of their in 378 

vivo hypoglycemic activity is necessary to verify these beneficial effects.  379 

3.1.2. Pancreatic lipase and HMGCoA reductase inhibition 380 

The inhibition of pancreatic lipase, which splits triacylglycerols into absorbable monoacylglycerol 381 

and fatty acids, is the main prescribed treatment for weight management and obesity in developed 382 

countries. Orlistat, one of the two clinically approved drugs for obesity treatment, has been shown 383 

to act through inhibition of pancreatic lipase. In order to find alternative natural sources for obesity 384 

prevention and treatment, we evaluated the chañar polyphenolic extract on lipase activity. Results 385 

are showed in Table 1. The inhibitory activity of chañar polyphenolic extract on lipase (IC50: 4 µg 386 

GAE/mL) was higher than that reported for white and green tea polyphenols (Gondoin, Grussu, 387 

Stewart, & McDougall, 2010). Polyphenols from common plant foodstuffs such as tea, soybean, 388 

mate tea, peanut, or grapevine have been reported as pancreatic lipase inhibitors (Garza, Milagro, 389 

Boque, Campion, & Martinez, 2011). A positive correlation between lipase inhibitory activity of  390 
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chañar flour and total phenolics (R
2
=0.95)

 
 was demonstrated as well as in several dietary 391 

supplements and fruits (Garza et al., 2011).  392 

Hypercholesterolemia and cardiovascular disease are major health problems. One approach to 393 

reduce hypercholesterolemia is to use medicines that inhibit the enzymes essential for cholesterol 394 

biosynthesis. HMGCoA reductase catalyzes the rate-limiting step in cholesterol biosynthesis. 395 

Inhibition of cholesterol synthesis lowers the hepatocyte cholesterol content and increase expression 396 

of low density lipoprotein cholesterol (LDL-c) receptors, responsible for LDL-c uptake via 397 

receptor-mediated endocytosis, and consequently LDL-c is rapidly cleared from the bloodstream. 398 

Statins (lovastatin, simvasatin, pravastatin, fluvastatin, atorvastatin, pitavastatin) are HMG-CoA 399 

reductase inhibitors which are highly effective therapeutic agents for the treatment of 400 

hypercholesterolemia. However, statins cause side effects such as new-onset diabetes mellitus 401 

(DM). The polyphenolic extract of chañar fruits flour is a natural source of HMG-CoA reductase 402 

inhibitors that was able to suppress HMG-CoA reductase activity with a low IC50 value of 6 µg 403 

GAE/mL, Table 1. Phenolic compounds prevent de novo synthesis of cholesterol in the liver via the 404 

suppression of HMG-CoA reductase. According to these results, we suggest that chañar 405 

polyphenols may help reducing blood cholesterol and triglycerides by inhibition of lipid digestion 406 

and absorption as well as by the inhibition of the cholesterol biosynthesis. 407 

3.1.3. Effect of polyphenolic extract after treatment with digestive enzymes 408 

Since a large part of nutrient and non-nutrients are gastro-sensitive, the effect of gastroduodenal 409 

digestion on bioactive compounds was studied. The polyphenolic extract after treatment with 410 

digestive enzymes is able to inhibit enzymes such as α glucosidase and lipase with similar potency 411 

to polyphenolic extract without digestion and consequently decreasing the bioavailability of food 412 

nutrients (IC50 of    0.80±0.05 and  4.50± 0.20 µg GAE/mL, respectively). Furthermore, the 413 
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polyphenolic extract after treatment was active on α-amylase (IC50  58±2  µg GAE/mL)  with lower 414 

potency than undigested extract (IC50 25±1µg GAE/mL). 415 

3.1.4. Inhibition of pro-inflammatory enzymes 416 

The effect of chañar fruit flour polyphenols extract was measured against the pro-inflammatory 417 

enzymes COX, LOX and sPLA2 (Table 1). Products of these enzymes (PGs, leukotrienes and 418 

hydroperoxide) are important mediators of inflammation. The extract showed an IC50 value of 124 419 

µg GAE/mL against COX-2 while the reference drug nimesulide presented an IC50 of 0.39 µg/mL.  420 

The IC50 value of the extract for LOX was 48 µg/mL with naproxen (selective inhibitor of LOX) 421 

presenting an IC50 value of 14 µg/mL. The extract was also active on sPLA2 with an IC50 value of 422 

225 µg GAE/mL. Therefore, the polyphenolic extract of chañar fruits was able to inhibit the three 423 

pro-inflammatory enzymes while other Argentinian fruits  such as mistol or algarrobo were 424 

selective inhibitors of LOX or COX, respectively (Cardozo et al., 2010; Pérez, et al., 2014). These 425 

findings, together with the antioxidant activity observed in the polyphenolic extract of chañar 426 

suggest that its consumption may contribute to the reduction of inflammation and could prevent or 427 

ameliorate oxidative stress related diseases.  428 

3.2. Effect of polyphenolic extracts on oxidative stress  429 

Four basic mechanisms of antioxidant action have been described and are applicable to 430 

polyphenolic compounds: (1) free radical scavenging activity, (2) quenching of singlet oxygen, (3) 431 

chelating of transition metals, and (4) inhibition of free radical producing enzymes. The antioxidant 432 

capacity of polyphenolic-enriched chañar fruits flour extract was determined using five different 433 

experimental models. The polyphenolic extract exhibited effect as ABTS, hydroxyl radical and 434 

H2O2 scavenger (Table 2), with higher antioxidant potency as HO
•
 scavenger.  Furthermore, the 435 

extract showed electron or hydrogen donor capacity on ABTS (Table 2). In all experiments, the 436 
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polyphenols-enriched extract showed a dose-response relation with antioxidant capacity (R
2
 = 437 

0.998, 0.989, 0.977 and 0.964 for ABTS, H2O2, HO
•

 and β-carotene assays, respectively (Table 2).  438 

Similar antioxidant activity on ABTS radicals was reported for the fruit of Ziziphus mistol (SC50= 439 

7.38 µg GAE/mL) and Prosopis species (SC50 values between 7 and 29 µg GAE/mL), native food 440 

plants that grows in northern Argentina (Cardozo, Ordoñez, Alberto, Zampini, & Isla, 2011; Pérez 441 

et al, 2014). Chañar extract was 28-folds more active (SC50: 0.3 µg GAE/mL) than mistol as 442 

hydroxyl radical scavenger (SC50: 14.13 µg GAE/mL). Mistol ethanolic extract was also able to 443 

protect linoleic acid from oxidation in the β-carotene system with IC50 value of 10.87 µg GAE/mL, 444 

with better activity than chañar. 445 

3.3. Mutagenicity 446 

In light of the potential nutritional and functional applications of chañar fruits flour, it is important 447 

to prove the safety of products obtained from this fruit. The current study reports the results of in 448 

vitro mutagenicity studies. In the Ames test, both on TA98 and TA100 S. typhymurium strains, 449 

different doses of phenolic-enriched extract did not changed significantly the mutation frequencies 450 

when compared to spontaneous ones, either in the presence or absence of metabolic activation (S9 451 

mixture). The results indicate that G. decorticans fruit polyphenolic-enriched extract did not contain 452 

compounds that could cause base substitution (detected in TA100) and frameshift (detected in 453 

TA98) mutations. Furthermore, the extracts did not show the presence of pro-mutagenic 454 

compounds. The absence of such an effect by G. decorticans fruits against S. typhimurium bacterial 455 

strains is a positive step towards determining its safe traditional use. Taking together, the promising 456 

chemopreventive activity and lack of mutagenic effect of chañar polyphenols in bacterial systems is 457 

highly relevant for a possible agroindustrial development of this native fruit.  458 

3.4. Identification of polyphenolics  459 



  

21 

 

The polyphenolic extract was fractionated by Sephadex LH-20. From the most active antioxidant 460 

fractions of G. decorticans fruits flour, 39 phenolics were tentatively identified by HPLC-MS/MS
n
 461 

(Table 3).  The assignation was based on comparison with literature, interpretation of the mass 462 

spectra and co-chromatography with standards when available. The identity of the sugars and the 463 

exact placement of the carbohydrate moieties in the aglycones remain to be established. HPLC 464 

traces of the active fractions with the compound number are shown in Figure 2. The structure of the 465 

compounds tentatively identified in the chañar flour polyphenolic fractions is presented in Figure 3. 466 

Neutral loss scan experiments were carried out to identify the glycosides occurring in the samples. 467 

The glycosides were assigned based on the neutral losses of 132, 146, 162 or 176 amu for a pentose, 468 

rhamnose, hexose or glucuronic acid moieties from the M-1 ion, leading to the corresponding 469 

aglycones (Barros, Dueñas, Ferreira, Carvalho, & Santos-Buelga, 2011; Simirgiotis, Theoduloz, 470 

Caligari, & Schmeda-Hirschmann, 2009). The aglycones were identified by the [M-1] ions at 301 471 

for quercetin, 315 for isorhamnetin, 285 for kaempferol and luteolin, 287 for the dihydro derivatives 472 

eriodictyol and dihydro kaempferol, 269 for apigenin and 271 for naringenin. Further fragmentation 473 

of the m/z ion of the aglycones yielded diagnostic MS
3
 fragments that allowed identification of the 474 

genines. For quercetin, the ion at m/z 301 led to fragments at 179 and 151 amu, while isorhamnetin 475 

yields fragments at m/z 300 and 151 from the  [M-1] ion at 315 amu (Schieber, Keller, Streker, 476 

Klaiber, & Carle, 2002).  The differentiation of the genines kaempferol and luteolin, was based on 477 

the MS
3
 experiments who allows a clear distinction based on the fragments of the aglycones (Fabre, 478 

Rustan, de Hoffmann, & Quetin-Leclercq, 2001). While kaempferol give fragment ions of low 479 

intensity,  luteolin shows clear ions at m/z 241, 199 and 175 amu (Fabre et al., 2001). Flavanones 480 

were assigned based on the work of Portet, Fabre, Rozenberg, Habib-Jiwan, Moulis, & Quetin-481 

Leclercq (2008) and Fabre et al. (2001). Eriodictyol fragments to a base ion of m/z 151 while 482 
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dihydrokaempferol shows the loss of water. The compounds tentatively identified comprised caffeic 483 

acid glycosides, simple phenolics (protocatechuic acid and vanillic acid), a glycoside of vanillic 484 

acid, p-coumaric acid and its phenetyl ester and several flavonoids. The flavonoids included free or 485 

glycosylated flavonols (kaempferol, kaempferol methyl ether, quercetin, isorhamnetin), flavones 486 

(luteolin and apigenin), dihydroflavones or flavanone (naringenin and eriodictyol) and 487 

dihydroflavonols (dihydrokaempferol and taxifolin). Monoglycosides, diglycosides and 488 

triglycosides occurs in the extract.  489 

The main compounds were protocatechuic acid 4, vanillic acid 6 and p-coumaric acid 9 in the 490 

Fraction III, while Fraction IV afforded luteolin 26, kaempferol rhamnoside hexoside 27, apigenin 491 

35 and dihydroxy methoxy flavone 36 as main constituents. The sub-fractions were also analyzed 492 

and all compounds identified in F-III y F-IV were confirmed in each sub-fraction. The sub-fraction 493 

7 of F-IV yielded a mixture that was not found previously in F-IV : isorhamnetin  30, isorhamnetin 494 

rhamnoside hexoside 31, dihydroxy methoxy flavone isopentyl and isoprenyl esters 38 and 39 as 495 

accompanying compounds. The tentative identification and structure of the compounds is presented 496 

in Table 3 and Figure 3, respectively.  Four quercetin glycosides were identified, including a 497 

hexoside, a pentosylhexoside, a rhamnosylhexoside and a dihexosiderhamnoside. 498 

Isorhamnetinhexoside, hexoside pentoside, hexoside rhamnoside and rhamnosylhexoside occurs in 499 

the complex mixtures. Kaempferol hexoside, rhamnosyl hexoside and hexosyl rhamnoside are 500 

constituents of the extract as well as the rhamnosyl glucuronate of kaempferol methyl ether. The 501 

flavone luteolin occurs as hexoside, hexosyl rhamnoside and rhamnosyl dihexoside while the 502 

dihydro derivatives naringenin, eriodictyol and dihydrokaempferol were identified as 503 

monohexosides. In the fruits, apigenin, luteolin, kaempferol, quercetin, isorhamnetin, and 504 

dihydroxymethoxyflavone also occurs as aglycones.  505 
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From the flowers of chañar, Silva, López de Ruiz, & Ruiz, (2004) described the isolation and 506 

identification of several flavonoid aglycones, including 3,3´,4´-trihydroxyflavone, kaempferol, 507 

quercetin, rhamnetin, isorhamnetin, morin, penduletin, jacein, jaceidin, patuletin, artemetin, 508 

myricetin, naringenin, tricin, diosmetin, zapotin, 5,7-dihydroxy-2´-methoxyflavone, apigenin,  509 

baicalin, quercetagetin hexamethyl  ether,  gossypetin, quercetin 3’,4’,5,7-tetramethyl ether and  510 

5,7-dihydroxy-4´-methoxyflavone. From the stem bark of chañar collected in the Bolivian Chaco, 511 

Vila, Balderrama, Bravo, Almanza, Codina, Bastida, Connolly (1998) reported the isolation of 512 

several isoflavanones, including (3R)-5,7,2',3'-tetrahydroxy-4'-methoxy-5'-prenylisoflavanone; 513 

(3R)-7,2',3'-trihydroxy-4'-methoxy-5'-prenylisoflavanone and (3S)-3,7,2',3'-tetrahydroxy-4'-514 

methoxy-5'-prenylisoflavanone. Our finding shows a complex mixture of phenolic acids and 515 

flavonoids differing in the oxidation patterns, number and placement of the sugar moieties. Further 516 

work should be undertaken to fully characterize the compounds and to establish the chemical 517 

variability in different populations of this valuable food resource of arid environments. 518 

The content of major component of F- III such as protocatechuic acid (PCA), vanillic acid (VA) and 519 

p-coumaric acid could be responsible for the effect of chañar flour extract on enzymes involved in  520 

metabolic syndrome, mainly α-glucosidase and α-amilase (D’Archivio, Scazzocchio, Giovannini, 521 

& Masella, 2014, Xiao, Chen, & Cao, 2014).  It has been shown that the beneficial effects of PCA 522 

and VA are mostly associated with its antioxidant as well as antihyperglycemic activities 523 

(D’Archivio et al., 2014). PCA and VA have a key role in counteracting inflammation, due to its 524 

ability to inhibit the synthesis and/or activity of most inflammatory mediators and regulatory 525 

pathways involved in inflammation (D’Archivio et al., 2014). Furthermore, both acids seems to 526 

have chemopreventive potential because they inhibits in vitro chemical carcinogenesis and exerts 527 
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pro-apoptotic or antiproliferative effects in different tissues (Tanaka, Tanaka, & Tanaka, 2011; 528 

D’Archivio et al., 2014).  529 

In relation to flavonoids of chañar flour, flavones from F-IV such as luteolin and apigenin and its 530 

derivatives  exhibits antioxidant and anti-inflammatory activities mainly as  potential inhibitors of 531 

COX-2 (González-Castejón & Rodriguez-Casado, 2011; Ya-Di et al., 2011). Luteolin inhibited α-532 

glucosidase in a noncompetitive mechanism and the luteolin-enzyme binding was driven mainly by 533 

hydrophobic interactions with conformational changes of the enzyme. The luteolin had a high 534 

affinity close to the active site pocket of α-glucosidase and indirectly inhibited the catalytic activity 535 

of the enzyme.  Recently it was also reported that the glycosylation of flavonoids lowered the 536 

inhibition against α-glucosidase depending on the conjugation position and the class of sugar 537 

moieties. The decreased inhibitory effect against α-glucosidase after glycosylation may be due to 538 

the increasing molecular size and polarity, and the non-planar structure. When a hydroxyl moiety is 539 

substituted by a glycoside, the steric hindrance may happen, which weakens the binding interaction 540 

between flavonoids and α-glucosidase (Xiao et al., 2014).  541 

Flavonols such as kaempferol and quercetin and its derivates were found to be especially effective 542 

lipoxygenase inhibitors while quercetin was found to be an effective inhibitor of PLA2 in human 543 

leukocytes (Kim et al., 2014). 544 

The hypocholesterolemic activity of polyphenolic extract of chañar flour could be related to the 545 

presence of flavanone such as naringenin and eryodictiol. In previous report was demonstrated that 546 

the statin-like flavanones extracted from bergamot peel, exert a similar behavior respect to 547 

commercial simvastatin on a model of hypercholesterolaemic rats (Di Donna et al., 2014). Other 548 

studies showed eriodictyol as an inhibitor of rat platelet 5- and 12-lipoxygenases which are 549 

involved in the biosynthesis of several bioregulators that are closely related to the pathogenesis of 550 
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diseases such as allergy, atherosclerosis and cancer (González-Molina, Domínguez-Perles, Moreno, 551 

& García-Viguera, 2010). Flavanones show strong antioxidant and radical scavenging activity, 552 

antiviral, antimicrobial activities, beneficial effects on capillary fragility, and an ability to inhibit 553 

human platelet aggregation as well as anti-ulcer properties (Tomás-Navarro, Vallejo, & Tomás-554 

Barberán, 2014).  555 

4. Conclusion 556 

The chañar fruits have been a relevant food source for the South American amerindians since pre-557 

hispanic times. Different ethnic groups of Argentina consider the chañar tree as a gift from God and 558 

are cared for by the Pachamama (mother earth). On the other hand, are considered as health- and 559 

energy-giving trees. At present, the sweet and pleasant tasting fruits are still consumed raw or 560 

processed into several products used in the local cuisine. The ripe fruits flour contains a complex 561 

mixture of polyphenols (phenolic acids and flavonoids) that present relevant functional properties.  562 

These findings further support the idea that a diet including chañar fruits flour or chañar fruits, may 563 

be preventive against diseases that are associated with oxidative stress, inflammatory mediators and 564 

metabolic syndrome. Our results on the functional properties of chañar fruits flour encourages 565 

further clinical studies to determine optimal dietary regimens to achieve the desired beneficial 566 

health effects.  In addition, components of chañar fruits flour are attractive targets for the scientific 567 

community to develop novel food products for treatment/prevention of these life-threatening 568 

diseases. The nutritional and functional properties that were demonstrated for the chañar fruits flour 569 

could stimulate the preservation of chañar forests including sustainable development and 570 

management for commercial purposes, contributing to regional development in arid zones.  571 

 572 
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Figures 

Figure 1: Geoffroea decorticans tree growing in the Provincia de Tucumán, Argentina. A: Detail of 

the tree trunk and bark; B: Tree in the “parque chaqueño” formation; C: Ripe fruits in the tree; D: 

Ripe fruits are ready to be collected when they fall from the tree. 

Figure 2: HPLC chromatograms of polyphenolic extract from Geoffroea decorticans fruits 

Ultraviolet (UV) detection at 254 nm. A) Fraction III; B) Fraction IV; C) Sub fraction -7. 

Figure 3: Compounds tentatively identified in chañar fruits. *Identified by comparison with 

standards.  
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Table 1: Effect of polyphenols enriched extract of Chañar flour and reference compounds on 

Enzymes related to carbohydrate metabolism, fat metabolism and inflammatory processes. Results 

are reported as IC50 values in µg GAE/mL. 

 

 

Different letters (a, b, c) in the same column in each biological assay show significant differences 

among effect of polyphenols on enzyme activity according to Tukey’s test (p ≤ 0.05). 

 

Enzyme Polyphenols enriched 

extract 

IC50 values (µg 

GAE/mL) 

Reference compound 

 

Reference compounds 

IC50 values (µg/mL) 

Enzymes related to 

carbohydrate 

metabolism 

   

α amylase 25.00±1.00
b 

Acarbose 1.25±0.10 

α-glucosidase 0.68±0.05
a 

Acarbose 25.00 ± 1.00 

    

Enzymes related to fat 

metabolism 

   

Lipase 4.00±0.20
a 

Orlistat 0.08±0.01 

Hydroxymethyl glutaril 

CoA reductase 

6.00±1.00
a 

Pravastatin (SIGMA 

I5909) 

1µl  inhibition 18% 

    

Enzymes related to 

inflammatory 

processes 

   

COX-2 124±5
b 

Nimesulide 0.39±0.10 

LOX 48±2
a 

Naproxen 14.00 ±1.00 

PLA2 225±5
c 

Acetylsalicylic acid 65.00± 1.00 
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Table 2: Antioxidant activity of polyphenols enriched extract of Chañar flour. Results are presented 

as SC50 or IC50 in  µg GAE/mL 

 

 

Different letters (a, b, c) in the same column show significant differences among antioxidant effect 

of polyphenols by different mechanisms according to Tukey’s test (p ≤ 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

Assay Polyphenols enriched 

extract  

Reference compound 

 

Reference compounds 

IC50 values (µg/mL) 

ABTS
•+

  (SC50)  2.8±0.2
b 

Quercetin 6.7±0.3 

  BHT 7.7±0.4 

H2 02   (SC50)  23.0±1.0
c 

Quercetin 

 

12.0±1.0 

HO
•
 (SC50) 0.30±0.05

a 
Quercetin 

 

30.0±2.0 

% Lipid protection  

β-Carotene (IC50)  

22.0±1.0
c 

Quercetin 

 

9.8 ±0.9 

  BHT 3.9 ±0.2 

BSA protection (50% 

protection) 

18.0±1.0
c 

Quercetin           15.0±1.0 
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Table  3. Tentative identification of phenolic compounds in the most active antioxidant fractions of 

chañar fruit 

 Rt (min) [M-H]
¯
 MS/MS Tentative identification 

1 6.2 487  341, 179, 161 Caffeic acid hexosiderhamnoside 

2 6.3 683 341 (2M-1) Caffeic acid hexoside 

3 6.6 503 341 Caffeic acid dihexoside 

4 16.7-18.0 153 109 Protocatechuic acid  

5 18.0-19.1 329 167 Vanillic acid hexoside 

6 19.1-21.3 167 152, 123, 107 Vanillic acid  

7 20.3 449 287 Dihydrokaempferolhexoside 

8 20.6 433 271, 151 Naringeninhexoside 

9 22.0-23.9 163 119 p-coumaric acid 

10 22.7-23.0 595 301, 179, 151 Q-hexosidepentoside 

11 22.9 477 315 Isorhamnetin/Rh hexoside 

12 23.1-23.2 771 301, 179, 151 Q-dihexosiderhamnoside 

13 23.2 609 477, 315, 300 Isorhamnetin/Rh  hexosidepentoside 

14 23.5 609 301, 179, 151 Q-rhamnosidehexoside 

15 23.5 463 301, 179, 151 Q hexoside 

16 23.6-23.9 449 287, 151 Eriodictyolhexoside 

17 23.8 755 609, 285 Luteolinrhamnosidedihexoside 

18 24.0 579 447, 285 Kaempferolhexosidepentoside 

19 24.7 593 447, 285 Kaempferolhexosiderhamnoside 

20 24.8 447 285 K hexoside 

21 24.9-25.0 623 477, 315, 207 Isorhamnetin/Rh hexosiderhamnoside 

22 26.3 447 285 Luteolinhexoside 

23 26.8-29.5 593 285 Luteolin hexose rhamnose 

24 27.6 545 477, 315, 300 Prenylisorhamnetinhexoside 

25 28.3 621 299, 284 K methyl ether rhamnosideglucuronate 

26 28.6-28.7 285 267, 241, 217, 199, 175 Luteolin 

27 28.7 593 285 K rhamnosidehexoside 

28 29.7-31.7 285 257, 239, 199, 119 Kaempferol 

29 29.7 299 284, 151 Kaempferol methyl ether 

30 29.7 315 300 Isorhamnetin/Rhamnetin 

31 29.9 623 315, 299, 285, 236 Isorhamnetin/Rhrhamnosidehexoside 

32 30.4 561 269 Apigenindirhamnoside 

33 30.4 591 299, 269 K methyl ether dirhamnoside 

34 30.4 621 299 K methyl ether rhamnosideglucuronate 

35 30.2-30.4 269 225, 177, 149, 133 Apigenin 

36 32.4 283 268 Dihydroxymethoxy flavoneGenkwanin 

37 32.9 267 163, 119 p-coumaric acid phenethyl ester 

38 38.5 367 283,  176 Dihydroxymethoxyflavoneisopentyl ester 
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39 43.0-44.1 365 283 Dihydroxymethoxyflavoneisoprenyl ester 



  

42 

 

The Geoffroea decorticans fruits (chañar) are consumed in Argentina as flour, arrope or beverage 

39 phenolic compounds were tentatively identified in the polyphenolic extract of chañar flour 

Polyphenols from chañar fruits flour affects enzymes involved in metabolic syndrome  

Polyphenols from chañar fruits flour exhibited antioxidant and anti-inflammatory activities 

Chañar flour could be used as functional food alone or combined with other flours 

 

 

 

 

 

 

  

 


