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Abstract. If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ H1
0 (Ω)n of

divu = f for f ∈ L2(Ω) with vanishing mean value, is a basic result in the analysis of
the Stokes equations. In particular it allows to show the existence of a solution (u, p) ∈
H1

0 (Ω)n × L2(Ω), where u is the velocity and p the pressure.
It is known that the above mentioned result holds when Ω is a Lipschitz domain and that

it is not valid for arbitrary Hölder-α domains.
In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there

exist solutions of divu = f in appropriate weighted Sobolev spaces, where the weights are
powers of the distance to the boundary. Moreover, we show that the powers of the distance
in the results obtained are optimal.

For some particular domains with an external cusp we apply our results to show the well
posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a
consequence the existence of a solution (u, p) ∈ H1

0 (Ω)n × Lr(Ω) for some r < 2 depending
on the power of the cusp.

1. Introduction

Let Ω ∈ Rn be a bounded open domain. We will use standard notations for Sobolev spaces
and, for 1 < p < ∞, Lp

0(Ω) will denote the subspace of functions in Lp(Ω) with vanishing
mean value.

The Stokes equations modeling the displacement of a viscous incompressible fluid contained
in Ω are given by





−∆u + ∇p = f in Ω
divu = 0 in Ω
u = 0 in ∂Ω.

(1.1)

where u is the velocity and p the pressure.
Variational analysis of this system of equations is fundamental for the development of finite

element numerical approximations as well as for the study of their accuracy. Consequently,
a lot of work has been done in this direction. However, the standard well known theory is
based on the assumption that Ω is a Lipschitz domain. Our goal is to extend the variational
analysis of the Stokes equations to a more general class of domains. With this purpose we
will work with Hölder-α domains.

For Lipschitz domains it is known that, for f ∈ H−1(Ω)n, there exists a unique solution
(u, p) ∈ H1

0 (Ω)n × L2
0(Ω) of (1.1) and moreover,

‖u‖H1
0 (Ω) + ‖p‖L2(Ω) ≤ C‖f‖H−1(Ω),

see for example [BS, BF, GR, T].
The basic result to prove this existence and uniqueness theorem is the following result

on solutions of the divergence: If Ω is a Lipschitz domain, for any f ∈ L2
0(Ω) there exists

u ∈ H1
0 (Ω)n such that
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divu = f in Ω (1.2)

and

‖u‖H1
0 (Ω) ≤ C‖f‖L2(Ω) (1.3)

where the constant C depends only on Ω.
The existence of solutions of (1.2) satisfying (1.3) is also closely connected with the Korn

inequality which is fundamental in the analysis of the elasticity equations (see [HP]).
Because of these applications, this problem, as well as it generalizations to the Lp case,

has been widely analyzed and several different arguments have been given to prove it under
different assumptions on the domain. We refer the reader for example to [ASV, Br, BB, BS,
B, GR, DM2]. Also, generalizations of this result to the case of fractional order Sobolev
spaces have been proved recently in [CM, GHH].

Moreover, in [ADM], the existence of solutions of (1.2) satisfying

‖u‖
W 1,p

0 (Ω)
≤ C‖f‖Lp(Ω), (1.4)

for 1 < p < ∞, was proved for the so called John domains, which form a large class containing
properly the Lipschitz domains. For the particular case of planar simply connected domains,
it is shown in [ADM] that being a John domain is also a necessary condition in the case
1 < p < 2. In particular, there exist bounded domains and values of p for which solutions of
(1.2) satisfying (1.4) do not exist.

Actually, this fact was previously well known, indeed, several arguments have been given to
show it. For example, in the old paper [Fr], Friedrichs proved that, for smooth planar domains,
the L2-norm of the conjugate of a harmonic function f (normalized in an appropriate way)
is bounded by the L2-norm of f times a constant depending only on the domain. Moreover,
he showed that this inequality is not valid if the domain has an external cusp of quadratic
type. It is easy to see that the Friedrichs inequality can be deduced from the existence of u
satisfying (1.2) and (1.3). Therefore, such a u cannot exist for that kind of domains. More
recently other examples have been given in [GG] and in an unpublished work of Gabriel
Acosta. Acosta’s examples are very elementary and applies to external cusps of power type
with any power γ > 1 and any 1 < p < ∞. We refer the reader to [Du1] where a particular
case has been reproduced.

On the other hand, existence and regularity of solutions of elliptic equations in domains
with external cusps have been considered by several authors. Let us mention for example
[AADL, Da, MP1, MP2, MP3, N, NT]. However, as far as we know, there are no results for
the Stokes equations on this kind of domains.

Therefore, it seems natural to ask whether the existence of solutions of (1.2) satisfying an
estimate weaker than (1.3) can be proved for the above mentioned domains. Moreover, if this
is the case, can these results be applied to show the well posedness of the Stokes problem in
appropriate Hilbert spaces?

In this paper we give some partial answers to these questions in the particular case of
planar domains. We consider simply connected planar Hölder α domains Ω, with 0 < α ≤ 1,
i. e., ∂Ω is locally the graph of a Hölder α function. For these domains we prove the existence
of solutions of (1.2) satisfying weaker estimates than (1.4) involving weighted norms where
the weights are powers of the distance to the boundary. For general Hölder α domains the
zero boundary condition will be imposed in a weak way. Afterwards, in some particular
examples, we will show that this weak boundary condition agrees with the usual one.

As an application we will prove the well posedness, in appropriate weighted norms, of the
Stokes equations for some cuspidal domains. As a consequence we will obtain in particular
that, for this kind of domains, given f ∈ H−1(Ω)2 there exists a unique solution (u, p) ∈
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H1
0 (Ω)2 × Lr

0(Ω) of the Stokes equations (1.1) satisfying

‖v‖H1
0 (Ω) + ‖p‖Lr(Ω) ≤ C‖f‖H−1(Ω)

for some 1 < r ≤ 2 which depends on the power of the cusp.
Our approach use some of the ideas of the papers [ADL, GK]. The existence of solutions

of the divergence is derived from appropriate Korn type inequalities. The weighted Korn
inequalities that we need are slight variants of those obtained in [ADL] but we include the
proofs for the sake of completeness.

Although our arguments to prove the existence of solutions of the divergence are two
dimensional, we write the proofs of the Korn type inequalities in the general n-dimensional
case because they have interest in themselves.

The rest of the paper is organized as follows. In Section 2 we introduce some notations and
prove the weighted Korn inequalities. Section 3 deals with our main results concerning the
existence of solutions of the divergence in appropriate weighted Sobolev spaces for Hölder α
domains. In Section 4 we apply the results of the previous section for the particular case of
domains having power type external cusps. We show that in this case our weak zero boundary
condition agrees with the usual one. Also in this section we prove optimality of our results.
In Section 5 we show how our results can be applied to prove the well posedness of the Stokes
equations in appropriate Hilbert spaces.

2. Preliminaries and Korn type inequalities

Let Ω be a bounded open subset of Rn and d(x) the distance of x ∈ Ω to the boundary
∂Ω. We will denote by Lp(Ω, γ) the Banach space given by the norm

‖u‖Lp(Ω,γ) := ‖u dγ‖Lp(Ω)

and, analogously, W 1,p(Ω, γ) will be the Banach space with norm

‖u‖W 1,p(Ω,γ) := ‖u dγ‖Lp(Ω) + ‖∇u dγ‖Lp(Ω). (2.1)

Whenever Lp(Ω, γ) ⊂ L1(Ω) we will call Lp
0(Ω, γ) the subspace of Lp(Ω, γ) formed by functions

of vanishing mean value. Since no confusion is possible we will use the same notations for
the norms of vector or tensor fields.

For a vector field u = (u1, · · · , un) defined in Ω we denote by Du the jacobian matrix,
namely, (Du)ij = ∂ui

∂xj
and by ε(u) its symmetric part (i.e., the linear strain tensor associated

with u), that is ε(u)ij = 1
2

(
∂ui
∂xj

+ ∂uj

∂xi

)
.

We start by giving a weighted Korn inequality for Hölder α domains. The statement
given in the following theorem is slightly stronger than the result in Theorem 3.1 of [ADL].
Therefore, we include the proof for the sake of completeness although the arguments are
essentially those given in that reference. In particular we will make use of the following
improved Poincaré inequality proved in [ADL, Theorem 2.1]. If Ω is a Hölder α domain,
0 < α ≤ 1, B ⊂ Ω a ball and φ ∈ C∞

0 (B) is such that
∫
B φ = 1 then, for α ≤ β ≤ 1 and f

such that
∫
B fφ = 0 there exists a constant C depending only on Ω, B and φ such that,

‖f‖Lp(Ω,1−β) ≤ C ‖∇f‖Lp(Ω,1+α−β). (2.2)

Theorem 2.1. Let Ω ⊂ Rn be a Hölder α domain, B ⊂ Ω a ball and 1 < p < ∞. Then, for
α ≤ β ≤ 1 the following inequality holds,

‖Du‖Lp(Ω,1−β) ≤ C
{
‖ε(u)‖Lp(Ω,α−β) + ‖u‖Lp(B)

}

where the constant C depends only on Ω, B and p.
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Proof. Following [KO], we can show that there exists v ∈ W 1,p(Ω)n such that

∆v = ∆u in Ω (2.3)

and

‖v‖W 1,p(Ω) ≤ C ‖ε(u)‖Lp(Ω). (2.4)

Now, let φ ∈ C∞
0 (B) be such that

∫
B φdx = 1. For i = 1, ..., n define the linear functions

Li(x) :=
(∫

B
∇(ui − vi)φ

)
· x

and L(x) as the vector with components Li(x).
Then,

DL =
∫

B
D(u− v)φ

and, integrating by parts and applying the Hölder inequality we obtain

|DL| ≤ ‖u− v‖Lp(B)‖∇φ‖Lp′ (B)

where p′ is the dual exponent of p.
Therefore, it follows from (2.4) that there exists a constant C depending only on Ω, p and

φ such that

‖DL‖Lp(Ω) ≤ C
{
‖u‖Lp(B) + ‖ε(u)‖Lp(Ω)

}
. (2.5)

Let us now introduce
w := u− v − L.

Then, in view of the bounds (2.4) and (2.5), it only remains to estimate w. But, from (2.3)
and the fact that L is linear we know that

∆w = 0

and consequently,
∆εij(w) = 0.

But, if f is a harmonic function in Ω, the following estimate holds

‖∇f‖Lp(Ω,1−µ) ≤ C‖f‖Lp(Ω,−µ)

for all µ ∈ R. Indeed, this estimate was proved in [De] (see also Lema 3.1 in [ADL], and [KO]
for a different proof in the case p = 2 and µ = 0).

Therefore, taking µ = β − α we obtain

‖∇εij(w)‖Lp(Ω,1+α−β) ≤ C‖εij(w)‖Lp(Ω,α−β)

and using the well known identity

∂2wi

∂xj∂xk
=

∂εik(w)
∂xj

+
∂εij(w)

∂xk
− ∂εjk(w)

∂xi

we conclude that

∥∥∥∥
∂2wi

∂xj∂xk

∥∥∥∥
Lp(Ω,1+α−β)

≤ C‖ε(w)‖Lp(Ω,α−β) (2.6)

for any i, j and k.
Since

∫
∂wi
∂xj

φ = 0 (indeed, we have defined L in order to have this property), it follows
from the improved Poincaré inequality (2.2) that∥∥∥∥

∂wi

∂xj

∥∥∥∥
Lp(Ω,1−β)

≤ C

∥∥∥∥∇
∂wi

∂xj

∥∥∥∥
Lp(Ω,1+α−β)

.
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Therefore, using (2.6), we obtain

‖Dw‖Lp(Ω,1−β) ≤ C‖ε(w)‖Lp(Ω,α−β) ≤ C‖ε(u)‖Lp(Ω,α−β)

concluding the proof. ¤

In the following corollary we give a weighted Korn inequality for Hölder α domains which
can be seen as a generalization of the so-called second case of Korn inequality. To state this
inequality we need to introduce the space of infinitesimal rigid motions, namely,

N = {v ∈ W 1,p(Ω)n : ε(v) = 0}.
Corollary 2.1. Let Ω ⊂ Rn be a Hölder α domain and 1 < p < ∞. Then, for α ≤ β ≤ 1
the following inequality holds,

inf
v∈N

‖u− v‖W 1,p(Ω,1−β) ≤ C‖ε(u)‖Lp(Ω,α−β). (2.7)

Proof. Take B and φ as in the previous theorem with B ⊂ Ω. Define xi =
∫
B xiφ(x) dx and

v ∈ W 1,p(Ω)n defined by

vi(x) = ai +
n∑

j=1

bij(xj − xj)

with

ai =
∫

B
uiφ and bij =

1
2|B|

∫

B

(
∂ui

∂xj
− ∂uj

∂xi

)
.

It is easy to check that v ∈ N . Now, since
∫
B(u−v)φ = 0, it follows from (2.2) (actually we

are using only a weaker standard Poincaré inequality with weights) and Theorem 2.1 that

‖u− v‖W 1,p(Ω,1−β) ≤ C
{
‖ε(u− v)‖Lp(Ω,α−β) + ‖u− v‖Lp(B)

}

and using now the Poincaré inequality in B we have

‖u− v‖W 1,p(Ω,1−β) ≤ C
{
‖ε(u− v)‖Lp(Ω,α−β) + ‖D(u− v)‖Lp(B)

}
. (2.8)

But, ∫

B

(
∂(u− v)i

∂xj
− ∂(u− v)j

∂xi

)
= 0

and therefore, the so-called second case of Korn inequality applied in B gives

‖D(u− v)‖Lp(B) ≤ C‖ε(u− v)‖Lp(B).

Using this inequality in (2.8) and that ε(v) = 0 we obtain

‖u− v‖W 1,p(Ω,1−β) ≤ C
{
‖ε(u)‖Lp(Ω,α−β) + ‖ε(u)‖Lp(B)

}

which implies (2.7) because B ⊂ Ω. ¤

Remark 2.1. It is possible to prove the above corollary directly, i.e., without using the Korn
inequality in the ball B, by using a standard compactness argument. Indeed, assuming that
(2.7) does not hold and using that W 1,p(Ω, 1− β) is compactly embedded in Lp(Ω, γ) for any
γ > (1−β−α)/α (see [KuOp, Theorem 19.11]) and Theorem 2.1 one obtains a contradiction.
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3. Solutions of the divergence in Hölder α domains

This section deals with solutions of divergence in planar simply connected Hölder α do-
mains. In what follows we restrict ourselves to the case n = 2.

For regular enough bounded domains Ω (for example Lipschitz) it is known that, if f ∈
Lp

0(Ω), 1 < p < ∞, there exists u ∈ W 1,p
0 (Ω)2 such that

div u = f (3.1)

and
‖u‖

W 1,p
0 (Ω)

≤ C‖f‖Lp(Ω) (3.2)

where the constant C depends only on Ω and p.
On the other hand, as we have mentioned in the introduction, it is known that for general

Hölder α domains this result is not valid. Our main goal is to prove a similar result for this
kind of domains but using weighted norms.

We will use the following notation. For a scalar function ψ we write curlψ = ( ∂ψ
∂x2

,− ∂ψ
∂x1

)
and for a vector field Ψ = (ψ1, ψ2), Curl Ψ denotes the matrix which has curl ψi as it rows.
Furthermore, if σ ∈ Lp(Ω)2×2, Div σ denotes the vector field with components obtained by
taking the divergence of the rows of σ.

We will impose the boundary condition in a weak form. To explain this weak condition
observe first that to solve the problem it is enough to find a solution u of (3.1) such that the
restriction to ∂Ω of both components of u are constant (whenever the domain is such that
this restriction makes sense). Of course, we should replace the estimate (3.2) by

‖Du‖Lp(Ω) ≤ C‖f‖Lp(Ω). (3.3)

Afterwards, (3.2) would follow by applying the Poincaré inequality to the solution obtained
by adding an appropriate constant vector field to u in order to obtain the vanishing boundary
condition.

Now, assume that Ω is a Lipschitz domain. Then, if ψ ∈ W 1,p(Ω) satisfies∫

Ω
curlψ · ∇φ = 0 ∀φ ∈ W 1,p′(Ω) (3.4)

it follows by integration by parts that∫

∂Ω

∂ψ

∂t
φ = 0 ∀φ ∈ W 1,p′(Ω) (3.5)

where ∂ψ
∂t indicates the tangential derivative of ψ. Therefore ∂ψ

∂t = 0 and then the restriction
of ψ to ∂Ω is constant.

For a general domain Ω the tangential derivative on the boundary might not even be
defined and therefore (3.5) would not make sense. However, condition (3.4) is well defined in
any domain and this is the condition that we will use. Therefore we introduce the space

W 1,p
const(Ω) ⊂ W 1,p(Ω)

defined by

W 1,p
const(Ω) =

{
ψ ∈ W 1,p(Ω) :

∫

Ω
curlψ · ∇φ = 0 ∀φ ∈ W 1,p′(Ω)

}

and more generally, for any γ ∈ R,

W 1,p
const(Ω, γ) =

{
ψ ∈ W 1,p(Ω, γ) :

∫

Ω
curlψ · ∇φ = 0 ∀φ ∈ W 1,p′(Ω,−γ)

}
.

The proof of the following lemma uses ideas introduced in [GK] with different goals.
For 1 < p < ∞ and γ ∈ R, Lp

sym(Ω, γ)2×2 denotes the subspace of symmetric tensors in
Lp(Ω, γ)2×2.
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Lemma 3.1. Let Ω ⊂ R2 be a Hölder α domain and u ∈ W 1,p(Ω, β − 1)2, with α ≤ β ≤ 1,
such that

∫
Ω divu = 0. Then, there exists σ ∈ Lp

sym(Ω, β − α)2×2 satisfying
∫

Ω
σ : D w =

∫

Ω
Curl u : Dw, ∀w ∈ W 1,p′(Ω, α− β)2

and
‖σ‖Lp(Ω,β−α)2×2 ≤ C‖Curl u‖Lp(Ω,β−1)2×2 .

Proof. Let H ⊂ Lp′
sym(Ω, α− β)2×2 the subspace defined as

H = {τ ∈ Lp′
sym(Ω, α− β)2×2 : τ = ε(w) with w ∈ W 1,p′(Ω, α− β)2}.

Let us see that the application

T : ε(w) 7→
∫

Ω
Curl u : Dw (3.6)

defines a continuous linear functional on H.
First of all observe that T is well defined. Indeed, it is enough to check that the expression

on the right of (3.6) vanishes whenever ε(w) = 0. But, it is known that in that case w(x, y) =
(a− cy, b + cx) and therefore ∫

Ω
Curl u : Dw = c

∫

Ω
divu = 0.

Now, we want to show that T is continuous on H. Using again that
∫
Ω Curl u : Dv = 0 if

ε(v) = 0 and applying Corollary 2.1 we have, for τ = ε(w) ∈ H,

|T (τ)| =
∣∣∣∣
∫

Ω
Curl u : Dw

∣∣∣∣
≤ ‖Curl u‖Lp(Ω,β−1)2×2 inf

v∈N
‖D(w − v)‖Lp′ (Ω,1−β)2×2

≤ C‖Curl u‖Lp(Ω,β−1)2×2‖ε(w)‖Lp′ (Ω,α−β)2×2

= C‖Curl u‖Lp(Ω,β−1)2×2‖τ‖Lp′ (Ω,α−β)2×2.

By the Hahn-Banach theorem the functional T can be extended to Lp′
sym(Ω, α− β)2×2 and

therefore, by the Riesz representation theorem, there exists σ ∈ Lp
sym(Ω, β −α)2×2 such that

T (τ) =
∫

Ω
σ : τ ∀τ ∈ Lp′

sym(Ω, α− β)2×2

and
‖σ‖Lp(Ω,β−α)2×2 ≤ C‖Curl u‖Lp(Ω,β−1)2×2 ,

where C depends on the constant in Corollary 2.1. In particular,

∫

Ω
σ : ε(w) =

∫

Ω
Curl u : Dw (3.7)

for every w ∈ W 1,p′(Ω, α − β)2. Then, we conclude the proof observing that, since σ is
symmetric, we can replace ε(w) in (3.7) by Dw. ¤

It is a very well known result that a divergence free vector field is a rotational of a scalar
function φ. Indeed, for smooth vector fields the proof is usually given at elementary courses
on calculus in several variables. On the other hand, if the vector field is only in Lp(Ω)2 but
∂Ω is Lipstchiz, it is not difficult to see that the vector field can be extended to a divergence
free vector field defined in R2 and then, the existence of φ can be proved by using the Fourier
transform. However, we need to use the existence of φ in the case where the domain and the
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vector field are both non-smooth. We have not been able to find a proof of this result in the
literature and so we include the following lemma.

Lemma 3.2. Let Ω ⊂ R2 be a simply connected Hölder α domain and α ≤ β ≤ 1. Given a
vector field v ∈ Lp(Ω, 1− β)2 such that divv = 0, there exists φ ∈ W 1,p(Ω, 1− β) such that

curlφ = v and ‖φ‖W 1,p(Ω,1−β) ≤ C‖v‖Lp(Ω,1−β)

where C is a constant depending only on Ω.

Proof. Take ψ ∈ C∞
0 (B1) satisfying

∫
ψ = 1, where B1 is the unit ball centered at the origin.

For k ≥ 1, define ψk(x) = k2ψ(kx) and, extending v by zero to R2, vk = ψk ∗ v.
Let Ωn be a sequence of Lipschitz simply connected open subsets of Ω such that

Ωn ⊂
{

x ∈ Ω : d(x) >
1
n

}
and Ωn ↗ Ω.

Using that the distance between Ωn and ∂Ω is greater than 1/n and suppψk ⊂ B(0, 1
k ), it is

not difficult to see that divvk = 0 in Ωn for every k ≥ n.
Then, since vn ∈ C∞

0 (R2)2, there exists φn ∈ C∞
0 (Ωn) such that curlφn = vn. Moreover,

adding a constant we can take φn such that
∫
Ω1

φn = 0.
Now, by the Poincaré inequality we have, for any n, there exists a constant C depending

only on n such that

‖φk − φk′‖Lp(Ωn) ≤ C‖curl (φk − φk′)‖Lp(Ωn) = C‖vk − vk′‖Lp(Ωn) → 0

for k, k′ →∞.
Then, there exists φ ∈ L1

loc(Ω) such that φk|Ωn → φ in W 1,p(Ωn) and so curlφ = v in
Ωn, ∀n and consequently in Ω.

Finally, using Theorem 2.1 of [ADL] we have

‖φ‖Lp(Ω,1−β) ≤ C‖curlφ‖Lp(Ω,1−β+α) ≤ C‖v‖Lp(Ω,1−β)

and the Lemma is proved. ¤

We can now state and prove our results on solutions of the divergence on Hölder-α domains.
As we mentioned above, it is known that for this kind of domains a solution of (3.1) satisfying
(3.2) does not exist in general. Therefore, it is natural to look for solutions of (3.1) satisfying
a weaker estimate. There are two possibilities: to use a stronger norm on the right of (3.2)
or a weaker norm on the left. We will prove both kind of results but, to avoid technical
complications while presenting the arguments, we give first a particular case of our results
and postpone the generalization.

Theorem 3.1. Let Ω ⊂ R2 be a bounded simply connected Hölder-α domain, 0 < α ≤ 1.
Given f ∈ Lp

0(Ω), 1 < p < ∞, there exists u ∈ W 1,p
const(Ω, 1− α)2 such that

divu = f

and
‖Du‖Lp(Ω,1−α) ≤ C‖f‖Lp(Ω) (3.8)

Proof. Take v ∈ W 1,p(Ω)2 such that
divv = f (3.9)

and
‖v‖W 1,p(Ω) ≤ C‖f‖Lp(Ω). (3.10)

The existence of such a v is well known, for example, since no boundary condition on v is
required, we can extend f by zero and take the solution of problem (3.1) and (3.2) in a ball
containing Ω.
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To prove the theorem it is enough to show that there exists w ∈ W 1,p(Ω, 1−α)2 satisfying
divw = 0 and such that

v −w ∈ W 1,p
const(Ω, 1− α)2

and
‖Dw‖Lp(Ω,1−α) ≤ C‖f‖Lp(Ω). (3.11)

Indeed, in view of (3.9), u := v −w will be the desired solution.
But, since divv has vanishing mean value, we know from Lemma 3.1 that there exists

σ ∈ Lp
sym(Ω, 1− α)2×2 satisfying

‖σ‖Lp(Ω,1−α) ≤ C ‖Curl v‖Lp(Ω) (3.12)

and ∫

Ω
σ : Dr =

∫

Ω
Curl v : Dr , ∀r ∈ W 1,p′(Ω, α− 1)2.

Then, ∫

Ω
Div σ · r = −

∫

Ω
σ : Dr = −

∫

Ω
Curl v : Dr =

∫

Ω
Div Curl v · r = 0

for every r ∈ C∞
0 (Ω)2 and therefore Div σ = 0.

Now, from Lemma 3.2 we know that there exists w ∈ W 1,p(Ω, 1− α)2 such that

Curl w = σ and ‖w‖W 1,p(Ω,1−α) ≤ C‖σ‖Lp(Ω,1−α). (3.13)

We have to check that divw = 0, but since σ is a symmetric tensor we have

divw =
∂w1

∂x1
+

∂w2

∂x2
= −σ12 + σ21 = 0.

To conclude the proof observe that in view of (3.10), (3.12) and (3.13) we have (3.11) which
together with (3.10) yields (3.8). ¤

Now, it is natural to ask whether part or all the weight in the estimate (3.8) can be moved
to the right hand side. We will give a positive answer to this question. As we will show,
the proof of this more general result is similar to that of Theorem 3.2 but it requires some
non-trivial preliminary results. In particular, we will need an extra hypothesis on the domain.

We are going to use that some singular integral operators are continuous in weighted Lp-
norms, 1 < p < ∞, for weights in the Muckenhoupt class Ap. This well known result as well
as the definition of the Ap classes can be seen for example in the book [S2].

In what follows we consider the distance to ∂Ω, d(x), defined for every x ∈ Rn and not
only for x ∈ Ω. We will give sufficient conditions on ∂Ω and on the exponent µ such that dµ

belongs to Ap. We state and prove the lemma in the more general situation of the distance
to a compact set F contained in Rn since this result can be of interest in other situations and
its proof does not require any extra effort.

The following lemma generalizes the result proved in [DST] for smooth domains. Since
the proof is too technical we postpone it for an appendix and continue now with our main
results.

Given a compact set F ⊂ Rn, we will denote with dF (x) the distance from x to F .

Definition 3.1. For 0 ≤ m ≤ n, a compact set F ⊂ Rn is an m-regular set, if there exists
a positive constant C such that

C−1rm < Hm(B(x, r) ∩ F ) < Crm,

for every x ∈ F and 0 < r ≤ diam F , where Hm is the m-dimensional Hausdorff measure and
B(x, r) is the ball with radius r and center x. The restriction 0 < r ≤ diamF is eliminated
if F is a set with only one point.
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The reader who is not familiar with Hausdorff measure can think in the particular case that
F is a rectifiable curve in R2 and m = 1 (this will be the case in the example of application
to Stokes that we will give). In that case H1 is the length.

Lemma 3.3. Let F ⊂ Rn be a compact set included in a m-regular set K. If

−(n−m) < µ < (n−m)(p− 1) ,

then dµ
F belongs to the class Ap.

Proof. See Apendix. ¤
As a consequence we have the following result on weighted estimates for solutions of the

divergence.

Lemma 3.4. Let Ω ⊂ R2 be a bounded domain such that its boundary is contained in a
1-regular set. Given f ∈ Lp(Ω, γ), 1 < p < ∞, with −1/p < γ ≤ 1 − 1/p there exists
v ∈ W 1,p(Ω, γ)2 such that

divv = f

and
‖v‖W 1,p(Ω,γ)2 ≤ C‖f‖Lp(Ω,γ)

Proof. Extend f by zero to R2. Then, it is well known that

φ(x) = − 1
2π

∫

Rn

log |x− y| f(y) dy

is a solution of ∆φ = f . Moreover, it follows from the theory of singular integral operators
(see for example [S2]) that, if w ∈ Ap,∫

R2

∣∣∣∣
∂2φ(x)
∂xi∂xj

∣∣∣∣
p

w(x) dx ≤
∫

R2

|f(x)|p w(x) dx.

But, since µ = γp satisfies the hypothesis of Lemma 3.3 with n = 2 and m = 1, dµ ∈ Ap and
therefore v := ∇φ is the desired solution. ¤

We can now give our more general result on solutions of the divergence.

Theorem 3.2. Let Ω ⊂ R2 be a bounded domain such that its boundary is contained in a
1-regular set. Given f ∈ Lp

0(Ω, β − 1), 1 < p < ∞, if α ≤ β ≤ 1 and −1/p < β − 1, there
exists u ∈ W 1,p

const(Ω, β − α)2 such that

divu = f

and
‖Du‖Lp(Ω,β−α) ≤ C‖f‖Lp(Ω,β−1) (3.14)

Proof. Since −1/p < β − 1, it follows from Lemma 3.4 that there exists v ∈ W 1,p(Ω, β − 1)2

such that
divv = f (3.15)

and
‖v‖W 1,p(Ω,β−1) ≤ C‖v‖W 1,p(Ω,β−α) ≤ C‖f‖Lp(Ω,β−1). (3.16)

The rest of the proof follows as that of Theorem 3.1. Now we have to show that there
exists w ∈ W 1,p(Ω, β − α)2 satisfying divw = 0 and such that

v −w ∈ W 1,p
const(Ω, β − α)2

and
‖Dw‖Lp(Ω,β−α) ≤ C‖f‖Lp(Ω,β−1).

The reader can easily check that the existence of w follows by using Lemma 3.1 as in Theorem
3.2. ¤
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4. Domains with external cusps

In this section we consider the particular case of the Hölder-α domain defined as

Ω =
{

(x, y) ∈ R2 : 0 < x < 1 , 0 < |y| < x1/α
}

(4.1)

with 0 < α ≤ 1.
We are going to show that in this case the weaker boundary condition imposed in Theorem

3.2 is equivalent to the standard one, i.e., that the solution of the divergence obtained in that
theorem can be modified, by adding a constant vector field, to obtain a solution which vanishes
on the boundary in the classic sense.

We will consider the particular case β = α of our general Theorem 3.2. Extension of the
arguments to other cases might be possible but it is not straightforward.

Theorem 4.1. Let Ω ⊂ R2 be the domain defined in (4.1) and 1 < p < ∞. If 1−1/p < α ≤ 1
then, given f ∈ Lp

0(Ω, α− 1) there exists u ∈ W 1,p
0 (Ω)2 such that

divu = f (4.2)

and
‖u‖

W 1,p
0 (Ω)

≤ C‖f‖Lp(Ω,α−1) (4.3)

with a constant depending only on Ω, p and α.

Proof. It is easy to see that Ω satisfies the hypotheses of Theorem 3.2. Therefore, it follows
from that theorem that there exists u ∈ W 1,p

const(Ω)2 which verifies (4.2).
We are going to prove that, for any ψ ∈ W 1,p

const(Ω), there exists a constant ψ0 ∈ R such
that

ψ − ψ0 ∈ W 1,p
0 (Ω) := C∞

0 (Ω).

Consequently, u can be modified by adding a constant to each of its components to obtain the
desired solution. Indeed, the estimate (4.3) will follow form (3.14) by the Poincaré inequality.

Given ψ ∈ W 1,p
const(Ω), let us show first that ψ is constant on ∂Ω. From the definition of

W 1,p
const(Ω) we have that

∫

Ω
curlψ · ∇φ = 0 ∀φ ∈ W 1,p′(Ω).

Now, let (x0, y0) be a point in ∂Ω different from the origin and B an open ball centered in
(x0, y0) such that 0 /∈ B. Taking φ ∈ C∞(B) we have

0 =
∫

Ω
curlψ · ∇φ = −

∫

B∩∂Ω
ψ

∂φ

∂t
∀φ ∈ C∞(B)

where ∂φ
∂t indicates the tangential derivative of φ. Consequently ∂ψ

∂t = 0 in the distributional
sense on B ∩ ∂Ω and then, since ∂Ω− (0, 0) is a connected set, we conclude that there exists
a constant ψ0 such that ψ = ψ0 on ∂Ω. To simplify notation we assume in what follows that
ψ0 = 0 and so, we have to see that ψ ∈ W 1,p

0 (Ω).
Now, let ζ ∈ C∞(R+) be such that

ζ ≡ 1 in [0, 1] ζ ≡ 0 in R+ − (0, 2) 0 ≤ ζ ≤ 1.

We decompose ψ as

ψ(x, y) = ζ(3x)ψ(x, y) + (1− ζ(3x))ψ(x, y) =: ψ1 + ψ2.

It is easy to see that ψ2 ∈ W 1,p
0 (Ω2) where Ω2 is the Lipschitz domain

Ω2 := Ω ∩
{

x >
1
3

}
.
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Thus, we can suppose that ψ = ψ1. Let now φn ∈ C∞(Ω) be a sequence satisfying φn → ψ
in W 1,p(Ω) and let γ := 1/α.

It is easy to check that, for y ∈ (0, 1),

|φn(x, xγ − y)| ≤ |φn(x, xγ)|+
∫ y

0

∣∣∣∣
∂φn

∂y
(x, xγ − t)

∣∣∣∣ dt.

Therefore, integrating and using the Hölder inequality we have

∫ 1

yα

|φn(x, xγ − y)|p dx ≤ C

(∫ 1

yα

|φn(x, xγ)|p dx + yp−1

∫ 1

yα

∫ y

0

∣∣∣∣
∂φn

∂y
(x, xγ − t)

∣∣∣∣
p

dt dx

)
.

Thus, using the continuity of the trace in the Lipschitz domain Ω ∩ {x > yα} we have

∫ 1

yα

|ψ(x, xγ − y)|p dx = lim
n→∞

∫ 1

yα

|φn(x, xγ − y)|p dx

≤ C lim
n→∞

(∫ 1

yα

|φn(x, xγ)|p dx + yp−1

∫ 1

yα

∫ y

0

∣∣∣∣
∂φn

∂y
(x, xγ − t)

∣∣∣∣
p

dt dx

)

= C yp−1

∫ 1

yα

∫ y

0

∣∣∣∣
∂ψ

∂y
(x, xγ − t)

∣∣∣∣
p

dt dx. (4.4)

Now we will show that the sequence ψm defined by

ψm(x, y) := ψ(x, y) (1− ζm(xγ − |y|)) ,

where ζm(t) := ζ(mt), converges to ψ in W 1,p(Ω). Moreover, it is easy to see that suppψm ⊂
Ω.

By symmetry we can assume that Ω = Ω ∩ {y > 0}. Using the dominated convergence
theorem we obtain

lim
m→∞ ‖ψ − ψm‖p

Lp(Ω) = lim
m→∞

∫

Ω
|ψ(x, y)ζm(xγ − y)|p = 0.

On the other hand,

∂ψm

∂x
(x, y) =

∂ψ

∂x
(x, y)

(
1− ζm(xγ − y)

)
−m ψ(x, y) ζ ′γxγ−1

and then,

∫

Ω

∣∣∣∣
∂ψ

∂x
− ∂ψm

∂x

∣∣∣∣
p

≤
∫

Ω

∣∣∣∣
∂ψ

∂x
(x, y) ζm(xγ − y)

∣∣∣∣
p

+ Cmp

∫

Ω

∣∣ψ(x, y)χ{y>ψ(x)−2/m}
∣∣p

=: I + II.

Thus, using again dominated convergence, it is easy to check that I → 0. So, it only
remains to analyze II.
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Now, by the change of variables defined by (x, y) 7−→ (x, xγ − y) and using (4.4) it follows
that

II = C mp

∫ 2/m

0

∫ 1

yα

|ψ(x, xγ − y)|p dx dy

≤ C mp

∫ 2/m

0
yp−1

∫ 1

yα

∫ y

0

∣∣∣∣
∂ψ

∂y
(x, xγ − t)

∣∣∣∣
p

dt dx dy

≤ C mp

∫ 2/m

0
yp−1

∫ 2/m

0

∫ 1

tα

∣∣∣∣
∂ψ

∂y
(x, xγ − t)

∣∣∣∣
p

dx dt dy

≤ C mp

(
2
m

)p ∫ 2/m

0

∫ 1

tα

∣∣∣∣
∂ψ

∂y
(x, xγ − t)

∣∣∣∣
p

dx dt

≤ C

∫

Ω

∣∣∣∣
∂ψ

∂y
(x, y)χ{y>ψ(x)−2/m}

∣∣∣∣
p

−→ 0

An analogous argument can be applied to prove that ∂ψm

∂y → ∂ψ
∂y in Lp(Ω).

Consequently, we conclude the proof by observing that ψm belongs to W 1,p
0 (Ω). ¤

In the following theorem we show that the estimate (4.3) is optimal in the sense that it is
not possible to improve the power of the distance in the right hand side. Recall that p′ = p

p−1

is the dual exponent of p.

Theorem 4.2. Let Ω be the domain defined in (4.1). If for some β ≤ 0 and for any
f ∈ Lp

0(Ω, β) there exists u ∈ W 1,p
0 (Ω)2 such that

divu = f

and
‖u‖

W 1,p
0 (Ω)

≤ C‖f‖Lp(Ω,β)

with a constant C independent of f then, β ≤ α− 1.

Proof. For s < 1−βp′+α
αp′ define fs(x, y) = x

− s
p−1 d(x, y)−p′β. Then, calling Ω+ = Ω ∩ {y > 0},

we have

‖fs‖p
Lp(Ω,β) = 2

∫

Ω+

x−sp′d(x, y)−βpp′+βp dxdy = 2
∫

Ω+

x−sp′d(x, y)−βp′ dxdy

and therefore, using that for y > 0, d(x, y) ' x1/α − y, we obtain

‖fs‖p
Lp(Ω,β) ' 2

∫

Ω+

x−sp′(x1/α − y)−βp′ dxdy

but,
∫

Ω+

x−sp′(x1/α − y)−βp′ dxdy =
∫ 1

0

∫ x
1
α

0
x−sp′(x1/α − y)−βp′ dydx

=
1

1− βp′

∫ 1

0
x−sp′x(1−βp′)/α dx =

1
1− βp′

1

p′(1−βp′+α
αp′ − s)

where we have used s < 1−βp′+α
αp′ . Therefore,

‖fs‖p
Lp(Ω,β) '

1
A− s

(4.5)

where A := 1−βp′+α
αp′ and with constants in the equivalence independent of s.
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Now, let B be a ball such that B ⊂ Ω and ω ∈ C∞
0 (B) such that

∫
B ω = 1. From our

hypothesis we know that, if cs =
∫
Ω fs, there exists vs ∈ W 1,p

0 (Ω)2 such that

divvs = fs − csω and ‖vs‖W 1,p(Ω) ≤ C‖fs − csω‖Lp(Ω,β).

But, since β ≤ 0,
|cs| = ‖fs‖L1(Ω) ≤ C‖fs‖Lp(Ω,β) (4.6)

and so,
‖vs‖W 1,p(Ω) ≤ C‖fs‖Lp(Ω,β) (4.7)

where we have used that ‖ω‖Lp(Ω,β) ≤ C because the support of ω is contained in B. Then,

‖fs‖p
Lp(Ω,β) =

∫

Ω
fp−1

s (fs − csω) dpβ +
∫

Ω
fp−1

s csω dpβ

=
∫

Ω
fp−1

s divvs dpβ +
∫

Ω
fp−1

s csω dpβ

=
∫

Ω
x−s divvs +

∫

Ω
fp−1

s csω dpβ.

Using again that the support of ω is at a positive distance from the boundary, together with
(4.6), it follows that ∫

Ω
fp−1

s csω dpβ ≤ C‖fs‖Lp(Ω,β).

On the other hand,
∫

Ω
x−s divvs = s

∫

Ω
x−s−1 vs,1 = s

∫

Ω

∂(y x−s−1)
∂y

vs,1

= −s

∫

Ω
y x−s−1 ∂vs,1

∂y
≤ s‖y x−s−1‖Lp′ (Ω) ‖vs‖W 1,p(Ω)

≤ Cs‖y x−s−1‖Lp′ (Ω) ‖fs‖Lp(Ω,β)

where for the last inequality we have used (4.7).
Therefore,

‖fs‖p−1
Lp(Ω,β) ≤ C{s‖y x−s−1‖Lp′ (Ω) + 1} (4.8)

But, an elementary computation shows that

‖y x−s−1‖p′

Lp′ (Ω)
' 1

B − s
(4.9)

where B := 1−(α−1)p′+α
αp′ and with constants in the equivalence independent of s.

Thus, from (4.5), (4.8) and (4.9) we conclude that there exists a constant independent of
s such that

1
A− s

≤ C
1

B − s

therefore, B ≤ A and it follows immediately that β ≤ α− 1. ¤

Remark 4.1. If we put some part of the weight in the left hand side as in (3.14), it is
possible to prove a more general result, namely, under some restriction on the exponents in
the weights, the difference between the powers in the right and left sides cannot be less than
1− α (see [?]).
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5. An application to the Stokes equations

In this section we show how our results can be applied to the analysis of the Stokes
equations when Ω is the domain defined in (4.1).

We are going to use the well known theory developed by Brezzi (see for example [BF,
Du2, GR]) but modifying the usual Hilbert spaces and the bilinear form corresponding to
the divergence free restriction in the weak formulation of the Stokes equations.

Theorem 5.1. Let Ω be the domain defined in (4.1) with 1/2 < α ≤ 1. Then, if f ∈ H−1(Ω)2,
there exists a unique weak solution (u, p) ∈ H1

0 (Ω)2 × L2
0(Ω, 1 − α) of the Stokes equations

(1.1). Moreover, there exists a constant C depending only on α such that

‖v‖H1
0 (Ω) + ‖p‖L2(Ω,1−α) ≤ C‖f‖H−1(Ω). (5.1)

Proof. Let us introduce the spaces

V =
{
v ∈ H1

0 (Ω)2 : divv ∈ L2(Ω, α− 1)
}

which is a Hilbert space with the norm

‖v‖2
V := ‖v‖2

H1
0 (Ω) + ‖divv‖2

L2(Ω,α−1),

and
Q = L2

0(Ω, α− 1).

Define the bilinear forms a : V × V → R and b : V ×Q → R by

a(u,v) =
∫

Ω
Du : Dv

and

b(v, q) =
∫

Ω
divv q d2α−2.

We are going to show that the problem

a(u,v)− b(v, q) =
∫

Ω
f · v ∀v ∈ V (5.2)

b(u, r) = 0 ∀r ∈ Q (5.3)

has a unique solution (u, q) ∈ V ×Q.
Using the Schwarz inequality it is easy to check that the bilinear forms a and b are con-

tinuous and, since f ∈ H−1(Ω)2, that the linear functional defined by the right hand side of
(5.2) is continuous.

Let
W =

{
v ∈ V : b(v, r) = 0 ∀r ∈ Q

}
.

According to Brezzi’s theory it is enough to see that a is coercive in W and b satisfies the
inf-sup condition

inf
r∈Q

sup
v∈V

b(v, r)
‖r‖Q ‖v‖V

> 0 (5.4)

Since divV ⊂ Q we can take r = divv in the equation b(v, r) = 0 and conclude that
W = {v ∈ H1

0 (Ω)2 : divv = 0}. Therefore, coerciveness of a in W follows from the Poincaré
inequality.

On the other hand, from Theorem 4.1 we know that given r ∈ L2
0(Ω, α − 1) there exists

w ∈ H1
0 (Ω) such that

divw = r and ‖w‖H1
0 (Ω) ≤ C‖r‖L2

0(Ω,α−1)
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where C is a positive constant which depends only on α. Moreover, from the definition of
the norm in V it follows immediately that

‖w‖V ≤ C1‖r‖Q

for another constant depending only on α. Then,

sup
v∈V

b(v, r)
‖r‖Q ‖v‖V

≥
∫
Ω divw r d2α−2

‖r‖Q ‖w‖V
=
‖r‖Q

‖w‖V
≥ C−1

1

and therefore the inf-sup condition (5.4) is proved.
Summing up we have proved that the problem given in (5.2) and (5.3) has a unique solution

(u, q) ∈ V ×Q. Moreover, it follows also from the general theory that there exists a constant
C depending only on C1 such that

‖v‖V + ‖q‖Q ≤ C‖f‖H−1(Ω). (5.5)

Now, define p = q d2α−2. It is easy to see that p ∈ L2(Ω, 1 − α) and moreover, it follows
from (5.3) that divu = 0 and from (5.2) that (u, p) verifies

∫

Ω
Du : Dv −

∫

Ω
divv p =

∫

Ω
f · v ∀v ∈ V.

Therefore, since C∞
0 (Ω) ⊂ V , (u, p) is a solution of the Stokes equations (1.1) in the sense

of distributions as we wanted to prove. Finally, since ‖p‖L2(Ω,1−α) = ‖q‖Q, (5.1) follows
immediately from (5.5). ¤

We end this section with a corollary which gives an estimate for the pressure in a standard
Lr-norm.

Corollary 5.1. Let Ω be the domain defined in (4.1) with 1/2 < α ≤ 1 and (u, p) ∈ H1
0 (Ω)2×

L2
0(Ω, 1 − α) be the solution of the Stokes equations (1.1). If f ∈ H−1(Ω)2 and 1 ≤ r <

2/(3−2α) then (u, p) ∈ H1
0 (Ω)2×Lr(Ω). Moreover, there exists a constant C depending only

on α such that
‖u‖H1

0 (Ω) + ‖p‖Lr(Ω) ≤ C‖f‖H−1(Ω)

Proof. We only have to prove that p ∈ Lr(Ω) and that

‖p‖Lr(Ω) ≤ C‖f‖H−1(Ω). (5.6)

Observe that
∫
o dβ < +∞ for any β > −1. Indeed, this follows easily by using that

d(x, y) ' x1/α − |y|. Then, applying the Hölder inequality with exponent 2/r, we have

‖p‖r
Lr(Ω) =

∫

Ω
|p|rd(1−α)rd(α−1)r ≤ ‖p‖r

L2(Ω,1−α)

(∫

Ω
d

2(α−1)r
2−r

) 2−r
2

but the integral in the right hand side is finite because (2(α − 1)r)/(2 − r) > −1. So
‖p‖Lr(Ω) ≤ C‖p‖L2(Ω,1−α) and therefore, (5.6) follows immediately from (5.1). ¤

6. Appendix

To prove Lemma 3.3 we will work with Whitney decompositions. If F is a compact non-
empty subset of Rn, then Rn \ F can be represented as a union of closed dyadic cubes with
pairwise disjoint interior Qk

j satisfying

Rn \ F =
⋃

k∈Z

Nk⋃

j=1

Qk
j (6.1)
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where the edge length of Qk
j is 2−k. The decomposition (6.1) is called a Whitney decomposition

of Rn \ F and the collection {Qk
j : j = 1, ..., Nk} is called the kth generation of Whitney

cubes. Furthermore, the Whitney cubes satisfy

`k ≤ d(Qk
j , F ) ≤ 4`k

where d(Qk
j , F ) denotes the distance of the cube to F and `k the diameter of Qk

j (see for
example [S]).

For x0 ∈ F and R > 0, Nk (B(x0, R)) denotes the number of Whitney cubes of F c in the
kth generation contained in B(x0, R).

Lemma 6.1. Let F ⊂ Rn be a compact set included in an m-regular set K. Given x0 ∈ F
and 0 < R < diam F/3, there exists a constant C depending only on K such that

Nk (B(x0, R)) ≤ C Rm 2km

Proof. We can assume that 2−k ≤ R, if not Nk (B(x0, R) = 0. The number of Whitney cubes
of F c in the kth generation contained in the ball B(x0, R) can be estimated in terms of the
number of balls of radius 2−k and center contained in F necessary to cover F ∩ B(x0, 2R).
Indeed, suppose there exist balls B(xi, 2−k) with xi ∈ F , 1 ≤ i ≤ N , such that

F ∩B(x0, 2R) ⊆
N⋃

i=1

B(xi, 2−k) (6.2)

and let Qk be a Whitney cube in the kth generation contained in B(x0, R). Then, it is easy
to check that

d(Qk, F ) = d(Qk, F ∩B(x0, 2R)).
Thus, if yQ ∈ F is a point satisfying d(Qk, F ) = d(Qk, yQ), there exists some i, 1 ≤ i ≤ N ,

such that yQ ∈ B(xi, 2−k). So, using that Qk is a Whitney cube in the kth generation it
follows that

Qk ⊂ B(xi, 6`k).
But, B(xi, 6`k) cannot contain more than a finite number c(n) of Whitney cubes Qk. Then,
by (6.2) it follows that

Nk (B(x0, R)) ≤ c(n)N
Therefore, to complete the proof we have to show that there exists N balls satisfying (6.2)
with N ≤ C Rm 2km.

Let r = 2−(k+1). For K0 := K ∩B(x0, 2R) we define the numbers

Hm(K0, r) := min
{

Nrm : K0 ⊆
N⋃

i=1

B(xi, r), with xi ∈ K0

}

and

P (K0, r) := max
{

N : there exists disjoint balls B(xi, r), i = 1, . . . , N,with xi ∈ K0

}
.

Then, using that K is an m-regular set we have

Hm(K0, r) ≤ P
(
K0,

r

2

)
rm = 2m P

(
K0,

r

2

)(r

2

)m

< 2m C

P (K0,r/2)∑

i=1

Hm
(
B

(
xi,

r

2

)
∩K

)

= 2m C

P (K0,r/2)∑

i=1

Hm
(
B

(
xi,

r

2

)
∩K ∩B(x0, 3R)

)

≤ 2m CHm (K ∩B(x0, 3R)) < C26m Rm.
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Thus, using the definition of Hm(K0, r) we obtain

K ∩B(x0, 2R) ⊆
N⋃

i=1

B(xi, 2−(k+1)) and N ≤ C Rm 2(k+1)m. (6.3)

Now, F is contained in K and therefore it is possible to cover F∩B(x0, 2R) with
⋃N

i=1 B(xi, 2−(k+1)).
Then, if B(xi, 2−(k+1)) intersects F , for x′i ∈ F ∩B(xi, 2−(k+1)) we have that

B(xi, 2−(k+1)) ⊆ B(x′i, 2
−k).

Thus, it is easy to see that the balls B(x′i, 2
−k) satisfy (6.2), concluding the proof. ¤

Before proving Lemma 3.3 let us recall the definition of the Muckenhoupt class Ap. For
1 < p < ∞ a non-negative function w is in Ap if

sup
B⊂Rn

(
1
|B|

∫

B
w(x) dx

)(
1
|B|

∫

B
w(x)−

1
p−1 dx

)p−1

< ∞. (6.4)

where the supremum is taken over all the balls B.

Proof of Lemma 3.3: Let B be a ball in Rn, rB its radius and d(B) the distance of B to
F .

If rB ≤ d(B), given x in B we have d(B) ≤ d(x) ≤ 3d(B). Then,
(

1
|B|

∫

B
dµ

)(
1
|B|

∫

B
d
− µ

p−1

)p−1

≤ C

(
1
|B|

∫

B
d(B)µ

)(
1
|B|

∫

B
d(B)−

µ
p−1

)p−1

≤ C

On the other hand, if rB ≥ d(B), there exists x0 ∈ ∂Ω such that B ⊆ B(x0, 3rB). Then,
without loss of generality, we can assume that B is centered at a point in F .

We consider two cases:
a) If rB < diam F/6, from the Whitney decomposition of F we have

(
1
|B|

∫

B
dµ

)(
1
|B|

∫

B
d
− µ

p−1

)p−1

≤ Cr−np
B


∑

Qk

∫

Qk

dµ





∑

Qk

∫

Qk

d
− µ

p−1




p−1

=: I

where the sum is taken over all Whitney cubes Qk intersecting B. But it is enough to consider
the Whitney cubes contained in the ball 2B.

Observe that if Qk is contained in 2B then the diagonal of Qk is smaller than the diagonal
of 2B. So, 2−k ≤ 4√

n
rB. Thus, if we call k0 the minimum k such that there exists Qk

contained in B, it satisfies that 2−k0 ≤ CrB.
Now, using that d(x) ' d(Qk) ' 2−k for every x ∈ Qk and Lemma 6.1 we obtain

I ≤ Cr−np
B


∑

Qk

2−kµ2−kn





∑

Qk

2
µk

p−1 2−kn




p−1

≤ Cr−np
B




∞∑

k=k0

Nk(B(x0, 2rB))2−kµ2−kn







∞∑

k=k0

Nk(B(x0, 2rB))2
µk

p−1 2−kn




p−1

≤ Cr−np
B




∞∑

k=k0

rm
B 2−k(µ+n−m)







∞∑

k=k0

rm
B 2−k

(
n−m− µ

p−1

)


p−1

= II.

Then, since −(n−m) < µ < (p− 1)(n−m), we obtain
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II ≤ C r
−p(n−m)
B

(
2−k0(µ+n−m)

)(
2−k0

(
n−m− µ

p−1

))p−1

≤ C r
−p(n−m)
B

(
2−k0

)p(n−m)
≤ C

b) If rB ≥ diamF/6, let xF be a point in F independent of B. Then, since x0 ∈ F and
rB > diamF/6 we can assume that B is the ball with radius rB > 3diamF and center xF .
On the other hand, if B1 denotes the ball of radius 2 diamK centered at xF we can see that
dµ and d

− µ
p−1 are locally integrable. Then,

∫

B1

dµ ≤ C y
∫

B1

d
− µ

p−1 ≤ C.

But, it is easy to see that d(x) ' d(x, xF ) for all x ∈ B \B1. Therefore,
∫

B
dµ =

∫

B1

dµ +
∫

B\B1

dµ ≤ C

(
1 +

∫

B\B1

|x− xF |µ
)

≤ C

(
1 +

∫ rB

2 diam F
ρµρn−1

)
≤ Crµ+n

B .

Analogously we can show that
∫

B
d
− µ

p−1 ≤ Cr
− µ

p−1
+n

B

and therefore,

(
1
|B|

∫

B
dµ

)(
1
|B|

∫

B
d
− µ

p−1

)p−1

≤ C
1
|B|p rµ+n

B r
−µ+n(p−1)
B ≤ C.

and the lemma is proved.
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