USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required software to e-Annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 11 or above). (Note that this document uses screenshots from Adobe Reader DC.) The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/reader/

Once you have Acrobat Reader open on your computer, click on the Comment tab (right-hand panel or under the Tools menu).

This will open up a ribbon panel at the top of the document. Using a tool will place a comment in the right-hand panel. The tools you will use for annotating your proof are shown below:

1. **Replace (Ins) Tool** – for replacing text.
 - How to use it:
 - Highlight a word or sentence.
 - Click on
 - Type the replacement text into the blue box that appears.

2. **Strikethrough (Del) Tool** – for deleting text.
 - How to use it:
 - Highlight a word or sentence.
 - Click on
 - The text will be struck out in red.

3. **Commenting Tool** – for highlighting a section to be changed to bold or italic or for general comments.
 - Use these 2 tools to highlight the text where a comment is then made.
 - How to use it:
 - Click on
 - Click and drag over the text you need to highlight for the comment you will add.
 - Click close to the text you just highlighted.
 - Type any instructions regarding the text to be altered into the box that appears.

4. **Insert Tool** – for inserting missing text at specific points in the text.
 - How to use it:
 - Click on
 - Click at the point in the proof where the comment should be inserted.
 - Type the comment into the box that appears.

Experimental data is available for UNPs to be had to meet all of the following criteria:

2. Absence of similarity to known proteins.
3. Absence of functional data which could n the real overlapping gene.
4. Greater than 25% overlap at the N-terminus with another coding feature; oN both ends; or ORF containing a tRNA.
5. **Attach File Tool** – for inserting large amounts of text or replacement figures.

Inserts an icon linking to the attached file in the appropriate place in the text.

How to use it:
- Click on
- Click on the proof to where you’d like the attached file to be linked.
- Select the file to be attached from your computer or network.
- Select the colour and type of icon that will appear in the proof. Click OK.

The attachment appears in the right-hand panel.

6. **Add stamp Tool** – for approving a proof if no corrections are required.

Inserts a selected stamp onto an appropriate place in the proof.

How to use it:
- Click on
- Select the stamp you want to use. (The Approved stamp is usually available directly in the menu that appears. Others are shown under Dynamic, Sign Here, Standard Business).
- Fill in any details and then click on the proof where you’d like the stamp to appear. (Where a proof is to be approved as it is, this would normally be on the first page).

7. **Drawing Markups Tools** – for drawing shapes, lines, and freeform annotations on proofs and commenting on these marks.

Allows shapes, lines, and freeform annotations to be drawn on proofs and for comments to be made on these marks.

How to use it:
- Click on one of the shapes in the Drawing Markups section.
- Click on the proof at the relevant point and draw the selected shape with the cursor.
- To add a comment to the drawn shape, right-click on shape and select Open Pop-up Note.
- Type any text in the red box that appears.

For further information on how to annotate proofs, click on the Help menu to reveal a list of further options:
Dear Author,

During the copyediting of your manuscript the following queries arose.

Please refer to the query reference callout numbers in the page proofs and respond to each by marking the necessary comments using the PDF annotation tools.

Please remember illegible or unclear comments and corrections may delay publication.

Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query reference</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AUTHOR: Please confirm that given names (red) and surnames/family names (green) have been identified correctly.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AUTHOR: Please check that authors and their affiliations are correct.</td>
<td></td>
</tr>
</tbody>
</table>

Funding Info Query Form

Please confirm that the funding sponsor list below was correctly extracted from your article: that it includes all funders and that the text has been matched to the correct FundRef Registry organization names. If a name was not found in the FundRef registry, it may not be the canonical name form, it may be a program name rather than an organization name, or it may be an organization not yet included in FundRef Registry. If you know of another name form or a parent organization name for a “not found” item on this list below, please share that information.

<table>
<thead>
<tr>
<th>FundRef name</th>
<th>FundRef Organization Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universidad Nacional del Litoral</td>
<td>Universidad Nacional del Litoral</td>
</tr>
<tr>
<td>Fondo para la Investigación Científica y Tecnológica</td>
<td>Fondo para la Investigación Científica y Tecnológica</td>
</tr>
<tr>
<td>Consejo Nacional de Investigaciones Científicas y Técnicas</td>
<td>Consejo Nacional de Investigaciones Científicas y Técnicas</td>
</tr>
<tr>
<td>Deutsche Forschungsgemeinschaft</td>
<td>Deutsche Forschungsgemeinschaft</td>
</tr>
<tr>
<td>Ministerio de Ciencia, Tecnología e Innovación Productiva</td>
<td>Ministerio de Ciencia, Tecnología e Innovación Productiva</td>
</tr>
<tr>
<td>Ministry of Education, Youth and Sport of the Czech Republic</td>
<td></td>
</tr>
<tr>
<td>Deutscher Akademischer Austauschdienst</td>
<td>Deutscher Akademischer Austauschdienst</td>
</tr>
</tbody>
</table>
Interplay between cytochrome c and gibberellins during Arabidopsis vegetative development

Sofia Racca¹, Elina Welchen¹, Diana E. Gras¹, Danuse Tarkowska², Veronika Tureckova², Veronica G. Maurino³,⁴ and Daniel H. Gonzalez¹,*

¹Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina,
²Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Faculty of Science, Palacky University, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic,
³Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany, and
⁴Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany

Received 13 March 2017; revised 4 January 2018; accepted 15 January 2018.
*For correspondence (e-mail dhgonza@fbcb.unl.edu.ar).

SUMMARY

We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild-type but with the same number of leaves. CYTc-deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc-deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild-type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone-dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.

Keywords: cytochrome c, gibberelin, DELLA protein, mitochondrion, Arabidopsis thaliana.

INTRODUCTION

The mitochondrial respiratory chain is composed of several complexes that catalyze the transfer of electrons from succinate and reduced coenzymes to O₂ (Millar et al., 2011). In addition to these complexes, two small electron carriers, ubiquinone and cytochrome c (CYTc), are required for electron transfer to Complex III, and between Complexes III and IV, respectively. CYTc is a small heme protein located in the mitochondrial intermembrane space. In addition to its role in respiration, CYTc acts in the import of proteins through the MIA40 pathway (Bihlmaier et al., 2007), ascorbic acid synthesis (Bartoli et al., 2000), α-lactate metabolism (Engqvist et al., 2009; Welchen et al., 2016) and programmed cell death (PCD; for reviews, see Ow et al., 2008; Welchen and Gonzalez, 2016). CYTc deficiency also affects the amount of respiratory complexes in several organisms, specifically of Complex IV in Arabidopsis (Welchen et al., 2012).

The respiratory chain is more complex in plants than in other organisms. Oxidation of NADH can proceed not only through Complex I, but also through rotenone-insensitive NAD(P)H dehydrogenases located on the inner or the outer surface of the inner membrane (Rasmusson et al., 2004). Like Complex I, these dehydrogenases are entry points to the respiratory chain. Unlike Complex I, however, they do not contribute to ATP synthesis. This also applies to the alternative oxidase (AOX) that accepts electrons from ubiquinone to reduce O₂, thus bypassing Complexes III and IV (Van Aken et al., 2009). This defines two different
pathways, a cyanide-sensitive or CYTc-dependent pathway, and a cyanide-insensitive or alternative pathway. The amount of energy produced by the oxidation of substrates will then strongly depend on the pathway of the electrons derived from these oxidation reactions.

The presence of an alternative pathway may help to cope with situations in which the cyanide-sensitive pathway is inhibited. As an example, flies expressing AOX are more resistant to cyanide and to defects in Complex IV (Fernandez-Ayala et al., 2009). The cyanide-sensitive pathway is essential in plants as knockout of genes encoding CYTc causes embryo lethality (Welchen et al., 2012). Dahan et al. (2014) were able to obtain plants that lack detectable Complex IV by in vitro cultivation of immature seeds. These plants have severe developmental alterations and apparently rely on an increased alternative respiratory activity.

The effect of partial loss of individual components of the cyanide-sensitive pathway in plants is less clear. Mitochondria from Arabidopsis mutants in PPR40, which encodes a pentatricopeptide repeat protein that associates with Complex III, show decreased cyanide-sensitive respiration, but normal Complex III levels. These plants are smaller than wild-type (WT), and hypersensitive to abscisic acid (ABA), salt and oxidative stress (Zsigmond et al., 2008). Heterozygous Arabidopsis mutants in the heme o synthase gene COX10 show about 50% decrease in Complex IV activity and early senescence (Mansilla et al., 2015). In both cases, however, because the mutations do not directly affect structural components of the respiratory pathway, it is difficult to ascertain if the observed phenotypes are due to a decreased activity of the cyanide-sensitive pathway or to a specific role of the mutated gene. In the case of CYTc, Arabidopsis mutants with significantly reduced CYTc levels were isolated (Welchen et al., 2012). Mitochondria from these mutants show increased cyanide-insensitive respiration and decreased Complex IV activity. In the present work, we further investigated the impact of decreasing CYTc levels in plants. We found that CYTc deficiency delays growth and development and causes carbohydrate accumulation, and that this is related to changes in gibberellin (GA) homeostasis. In addition, increasing CYTc levels expedite growth and development in a GA-dependent manner, suggesting that CYTc action is closely linked to GA metabolism.

RESULTS

CYTc deficiency delays plant growth and development

Single and double T-DNA insertion mutants in CYTc-1 and CYTc-2, the genes encoding CYTc in Arabidopsis, were previously described (Welchen et al., 2012). In this work, we analyzed two double mutant lines with considerably reduced CYTc levels due to the presence of T-DNA insertions in the 3′-UTR of CYTC-1 (mutant 1b in Figure S1), and either exon 1 or exon 3 of CYTC-2 (mutants 2a or 2b in Figure S1). We will refer to these lines as cytc mutants 1b2a and 1b2b throughout the paper. CYTc deficiency affects plant biomass, measured as either rosette fresh or dry weight. Three- and 4-week-old cytc mutants grown under long-day (LD) photoperiod showed about 30–50% of the biomass of WT plants of the same age (Figure 1a). This difference was diminished and eventually lost after 5 weeks, mainly because the rosettes of WT plants stopped growing while those of mutants showed an extended growing period. Similar results, although over a longer time, were observed when plants were grown under short-day (SD) conditions (Figure S2). The decrease in rosette weight is the consequence of a decrease in both rosette size and the number of leaves of cytc mutants compared with WT plants of the same age (Figures 1a and S2). Because leaf number is associated to flowering, we measured the transition to reproductive development in WT and cytc mutants. Under both LD and SD conditions, the cytc mutants flowered several days later than WT plants (Figure 1b,c). However, when the number of leaves at flowering was measured, no difference was observed (Figure 1b,c). To analyze if the delay in flowering time could be related to differences at early developmental stages (i.e. seedling establishment), we measured the time required for the emergence of the first two leaves (stage 1.02 according to Boyes et al., 2001). A delay of approximately 1 day in the appearance of the first two leaves was observed in cytc mutants relative to WT plants (Figure 1b,c). These results indicate that CYTc deficiency affects both seedling establishment and the duration of the vegetative phase.

We also analyzed the growth of single cytc mutants. Mutant 1b showed delayed growth, while both mutants in CYTC-2 showed no difference with WT (Figure S3a). An independent knockout mutant in CYTc-1 (1a; Figure S1) also showed retarded growth (Figure S3b). This suggests that the developmental delay observed in the double mutants is mainly due to defects in CYTc-1. However, the double mutants showed a more pronounced phenotype and were used for subsequent studies.

CYTc deficiency causes increased starch accumulation

We analyzed metabolite levels 1 h before (end of the night, ZT23) and 1 h after (beginning of the day, ZT1) the start of the illumination period in rosettes of cytc mutants grown under SD conditions (Table S1). Glucose and fructose levels were twice those of WT plants in both cytc mutant lines at ZT1 (Figure 2a). Statistically significant changes were also observed for other metabolites, such as increases in lysine and aspartic acid at ZT23, and in fumarate, phenylalanine and hydrophobic amino acids (isoleucine, leucine and valine) at ZT1 (Figure 2a). No significant
Interplay between cytochrome c and gibberellins

Differences in sucrose levels were observed (Table S1). Increased glucose and fructose levels led us to analyze the photosynthetic performance and starch accumulation. While photosynthetic parameters were not altered (Figure S4), we found that cytc mutants contained higher starch levels than WT plants (Figure 2c).

Quantification of starch levels at different times of the illumination period in plants of the same developmental stage (12 leaves) grown under SD conditions indicated that higher starch levels were mainly due to an increased rate of starch accumulation during the day (Figure 3a, left panel). The starch contents of the mutants at the beginning of the day were not significantly different from those of WT plants. The difference in starch content at the end of the night was more pronounced in plants grown under LD conditions (Figure 3a, middle panel). Due to the shorter...
night period in this condition, the starch reserves in the mutants were not exhausted during the night. To evaluate starch degradation independently of the preceding day/night cycles, we grew plants under continuous light and then transferred them to darkness. cytc mutants grown under continuous light also had higher starch content than WT plants (Figure 3a, right panel). In addition, starch degradation in the mutants took place at a higher rate than in the WT when the light was turned off (Figure 3a, right panel). We conclude that higher starch levels in cytc mutants are mainly the result of increased synthesis during the day. It is possible that the higher hexose levels observed after the onset of illumination triggered starch accumulation during the day. Indeed, glucose levels in cytc mutants were higher than WT during the entire light period under SD and LD conditions (Figure 3b,c).

The expression of sugar-responsive genes is altered in cytc mutants
Sugar levels regulate many aspects of plant physiology, including the expression of a large set of genes (Rolland et al., 2006). High sugar levels promote the expression of genes involved in sugar utilization and reserve accumulation, while a decrease in sugar levels induces the expression of genes known as ‘starvation’ genes. As cytc mutants have higher levels of soluble sugars, we analyzed the expression of the sugar-induced genes APL3 and MIPS1 (Villadsen and Smith, 2004; Usadel et al., 2008) in plants of the same developmental stage. APL3 and MIPS1 transcript levels were higher in cytc mutants than in WT plants at ZT1 (Figure 3d). We further analyzed the expression of a set of sugar-repressed or ‘starvation’ genes. These genes respond negatively to sugar levels and their expression is maximal at the end of the night when carbohydrate reserves are almost exhausted (Villadsen and Smith, 2004; Usadel et al., 2008). Transcript levels of four of these genes (ASN1, SEN1, SKIP20 and ATL8) were lower in the mutants than in the WT at ZT23 (Figure 3d). The observed changes in expression of these sugar-modulated genes agree with the fact that cytc mutants contain higher glucose levels than WT, and indicate that the response of genes to sugar is not altered in the mutants.

GA treatment abolishes the developmental delay of cytc mutant plants
The cytc mutants show increased carbohydrate accumulation and slow growth. Increased carbohydrate accumulation at the expense of growth was observed in plants that
undergo carbon starvation episodes (Gibon et al., 2004; Smith and Stitt, 2007). This response probably occurs to adjust growth to carbohydrate and/or energy availability, and is due to a decrease in the levels of bioactive GAs (Smith and Stitt, 2007; Paparelli et al., 2013). We then analyzed the effect of GA treatment on the growth of cytc

Figure 3. cytc mutants accumulate starch and glucose during the day.
(a) Starch accumulation patterns during the illumination period in wild-type (WT) plants and cytc mutants grown under short-day (SD) (left panel) or long-day (LD) (middle panel) photoperiod, and starch degradation pattern in plants grown under continuous illumination at different times after the light was turned off (right panel).
(b,c) Glucose content in plants grown under SD (b) or LD (c) photoperiod.
(d) Transcript levels of sugar-responsive genes in WT and cytc mutant plants grown under SD conditions 1 h before (ZT23) and 1 h after (ZT1) the beginning of the illumination period. The bars represent the mean ± SD of three biological replicates, and different letters indicate significant differences in transcript levels at the same ZT ($P < 0.05$; LSD Fisher test).
Plants of the same developmental stage were used in these experiments. In (a–c), asterisks indicate significant differences ($P < 0.01$) of both mutants with WT plants (LSD Fisher test; three biological replicates).
mutants. For this purpose, rosette biomass and rosette leaf number were measured after treating 10-day-old plants grown under LD conditions with 50 μM GA_{4,7}. GA treatment produced an increase in rosette leaf number relative to untreated plants of the same age in the mutants, but did not affect leaf number in WT plants (Figure 4a). As a consequence, the difference in rosette leaf number between WT plants and cytc mutants was progressively abolished after the treatment, and cytc mutants flowered at the same time and with the same number of leaves as WT plants under this condition (Figure 4b-d). These results suggest that the developmental delay of cytc mutants may be associated to defects in GA homeostasis. Meanwhile, the differences in rosette size between WT plants and the mutants were maintained after the GA treatment (Figure S5).

To evaluate in more detail the changes in leaf production caused by GA, we analyzed WT and mutant plants grown under a 12 h light/12 h dark regime. Under these conditions, all plants have an extended vegetative period and flower with a higher number of leaves than plants grown under long days, thus allowing more accurate measurements. As observed under LD conditions, GA treatment caused a progressive increase in rosette leaf number in the mutants, compared with untreated plants (Figure S6). After 6 days of treatment (day 21 after sowing), the number of leaves of treated mutant plants was significantly higher than that of untreated mutant plants, but was still lower than that of either treated or untreated WT plants (Figure S6). The differences between GA-treated mutant plants and WT plants were abolished after 9 days of treatment (Figure S6).

The GA treatment did not change the starch content in the mutants (Figure 4e). Glucose levels measured at ZT1, however, were significantly reduced by a single GA treatment performed 2 h earlier (Figure 4f), suggesting that the observed increase in glucose levels is related to GA deficiency. In agreement with the observed decrease in glucose levels, a single GA treatment caused a decrease in the expression of the glucose-induced gene APL3 to levels similar to those of WT plants at ZT1 (Figure 4g).

CYTc deficiency alters GA homeostasis and the levels of DELLA proteins

In view of the results obtained after GA treatment, we compared the levels of different endogenous GAs in WT and cytc mutant plants. Significant differences were observed for GA1, GA3, and GA29, which showed lower levels in the mutants, and for GA15, with levels that were higher (Figures 5a and S7). GA1 and GA3 are active GAs, and this may explain why GA treatment rescues the developmental delay of cytc mutants. GA29 is a catabolic product of GA20, a direct biosynthetic precursor of GA1. GA15 belongs to a group of GA precursors (Hedden and Thomas, 2012). This suggests that the decrease in the levels of active GAs is probably due to reduced synthesis from metabolic intermediates and not to enhanced catabolism. In addition, we measured the levels of ABA, which is antagonistic to GAs in several processes (Razem et al., 2006), and found no differences between WT and cytc mutant plants (Figure S7).

To further analyze GA responses in cytc mutants, we measured the expression of GA-responsive genes. GA20ox and GA30ox genes encode enzymes involved in GA biosynthesis and are subjected to negative feedback regulation by GAs (Rieu et al., 2008; Hedden and Thomas, 2012; Middleton et al., 2012). We observed an induction of GA20ox1, GA20ox2, GA20ox3 and GA30ox1 in cytc mutants in comparison with WT plants either at ZT1 or ZT23 (Figure 5b). We also measured the expression of two genes induced by GAs: GA2ox1, involved in GA catabolism (Thomas et al., 1999); and GAS44 (Aubert et al., 1998). Transcript levels of both genes were lower in cytc mutants than in WT plants (Figure 5c). The differences in expression of GA-responsive genes between WT and cytc mutant plants at ZT1 were abolished in most cases after a single GA treatment performed 2 h earlier (Figure 5d). The expression data are consistent with the hypothesis that cytc mutants show defects in GA homeostasis.

Gibberellin action depends on DELLA proteins, which act as inhibitors of GA responses (Figure 5e; Sun, 2010). Upon binding to their receptors, GAs trigger DELLA proteins degradation. As DELLA protein levels are commonly used to monitor GA metabolism (Dill et al., 2001; Griffiths et al., 2006; Achard et al., 2007), we analyzed the levels of the DELLA protein RGA in vivo using plants that express a fusion of RGA to green fluorescent protein (GFP) under the control of the RGA promoter (pRGA::GFP-RGA; Silverstone et al., 2001). We crossed a line expressing this fusion to cytc mutant f1 (Figure S1) and then analyzed GFP-RGA fluorescence in homozygous plants (Figure 6a-d). Consistent with previous observations (Achard et al., 2007), GFP-RGA nuclear fluorescence was detected in WT plants grown under illumination shortly after the light was turned off (Figure 6b), but the signal was barely detectable after prolonged incubation in darkness (Figure 6d). In the case of cytc mutant plants, increased nuclear fluorescence, indicative of higher GFP-RGA levels, was consistently observed under both conditions (Figure 6a,c). Quantification of the images obtained from 20 plants of each genotype indicated that both the number of nuclei with detectable fluorescence over background and the fluorescence intensity of these nuclei were higher in the cytc mutant than in WT plants (Figure 6e). We also analyzed RGA protein levels in WT and cytc mutant plants using specific antibodies. Western blot analysis indicated that RGA levels were higher in cytc mutants than in WT plants (Figure 6f). This is probably due to increased stability of the protein, as transcript levels of the RGA gene were...
Figure 4. Gibberellin (GA) treatment abrogates the developmental delay of cytc mutant plants.

(a) Number of leaves of wild-type (WT) plants and cytc mutants grown under long-day (LD) photoperiod either treated or not treated with 50 μM GA₄-₇. The GA treatment was started at day 10 after sowing (DAS) and applied every 2 days at the end of the day. Control plants were treated with the solution used to dissolve GA. Different letters indicate significant differences at the same day (P < 0.01; LSD Fisher test; n = 12).

(b) Representative images of control and GA-treated plants after flowering.

(c-d) Number of days after sowing required for flowering (c) and number of leaves at flowering (d). Different letters indicate significant differences.

(e) Starch content at the end of the day in WT plants and cytc mutants either treated (dark gray bars) or not treated (light gray bars) with GA. Samples were harvested after 10 days of treatment. The bars represent the mean ± SD of three biological replicates.

(f) Glucose levels measured 2 h after a single GA (dark gray bars) or control (light gray bars) treatment performed 1 h before the end of the night. Asterisks indicate significant differences with control plants.

(g) Transcript levels of the sugar-responsive gene APL3 in plants treated as in (f). The bars represent the mean ± SD of three biological replicates. Asterisks indicate significant differences (P < 0.05; LSD Fisher test) with WT plants under the same condition. [Colour figure can be viewed at wileyonlinelibrary.com].

© 2018 The Authors
lower in the mutants than in WT plants (see below). The level of RGL3, another DELLA protein, was also higher in cytc mutants (Figure 6f).

Starvation directly impacts on GA biosynthesis through changes in expression of the gene that encodes the GA biosynthetic enzyme ent-kaurene synthase (KS), which is
Figure 5. Gibberellic (GA) content and transcript levels of GA-responsive genes in cytc mutant plants.
(a) The levels of GA1, GA2, GA3, and GA29 in wild-type (WT) and cytc mutant plants.
(b,c) Transcript levels of GA-repressed (b) and GA-induced (c) genes in WT plants and cytc mutants either 1 h before or 1 h after the start of the illumination period.
(d) GA2ox1, GA2ox1, and GA3ox1 transcript levels 1 h after the start of the illumination period in plants either treated or not treated with 10 μM GA3, 2 h earlier.
(e) Scheme of the GA biosynthesis and signaling pathway. Gray lines indicate regulation of gene expression by bioactive GAs (Hedden and Thomas, 2012). Pointed and blunt arrows indicate positive and negative regulation, respectively. Plants of the same developmental stage were used for these experiments. The bars represent the mean ± SD of five (a) or three (b-d) biological replicates. Different letters indicate significant differences (P < 0.05; LSD Fisher test).

Figure 6. cytc mutants contain higher levels of DELLA proteins.
(a-d) Confocal microscopy images of plants expressing pRGA::GFP-RGA in cytc-fb (a,c) of wild-type (WT) (b,d) background. The upper region of hypocotyls of plants grown under short-day (SD) conditions and transferred to darkness either for 1 h (a,b) or 16 h (c,d) was analyzed. The images show Z-stacks of seven optical longitudinal sections along a distance of 20 μm. Nuclear green fluorescence protein (GFP) is shown in green (arrows); chlorophyll autofluorescence is shown in red; yellow nuclei arise from the superimposition of regions with GFP and chlorophyll fluorescence in different sections. Representative images of 20 plants of each genotype and two independent experiments are shown. Scale bars: 50 μm.
(e) Quantification of the number of nuclei with GFP fluorescence and the nuclear fluorescence intensity in the plants shown in (a) and (b). The bars represent the mean ± SD of 20 plants for each genotype. Different letters indicate significant differences (P < 0.05; LSD Fisher test).
(f) Western blot analysis of RGA and RGL3 protein levels in WT plants and cytc mutants. A sample of WT plants treated with the inhibitor of GA biosynthesis paclobutrazol (PAC) was included in the analysis. The experiment was repeated three times with similar results.
with GA promoted growth, both in mutants and in WT plants, but the relative response to the hormone was higher in the mutants (Figure 7b). This suggests that defective GA homeostasis is one of the factors that limits growth in these plants. In agreement with this, treatment of WT plants with the GA biosynthesis inhibitor paclobutrazol mimicked the effect of CYTc deficiency, while hypocotyl elongation in the mutant was barely affected (Figure 7c). We then asked if the growth defect observed in cytc mutants may be related to its participation as an electron carrier in the respiratory chain. Treatment of WT plants with the Complex III inhibitor antimycin A (AA) caused a dose-dependent inhibition of hypocotyl growth (Figure 7d), indicating that CYTc-dependent respiration is required for growth. Notably, no significant inhibition was observed with 1 μM AA in cytc mutant plants, which

Figure 7. Inhibitors of mitochondrial energy metabolism mimic the effect of CYTc deficiency.
(a) Hypocotyl length of wild-type (WT) and cytc mutant plants in the presence of different gibberellin (GA)3 concentrations.
(b) Effect of GA on hypocotyl growth in WT and cytc mutant plants. Values are expressed relative to controls without GA.
(c) Hypocotyl growth in WT and cytc mutant plants in the presence of different concentrations of the GA synthesis inhibitor paclobutrazol.
(d) Hypocotyl growth in WT and cytc mutant plants in the presence of different antimycin A (AA) concentrations.
(e) The combined effect of AA and GA on hypocotyl growth in WT and cytc mutant plants. Plants were treated with either 1 μM AA and/or 10 μM GA3, as indicated.
(f) Effect of inhibitors of mitochondrial energy production on the levels of the DELLA protein RGA. Plants expressing green fluorescent protein (GFP)-RGA were treated with glucose and either 25 μM AA or 50 μM 2,4-dinitrophenol (DNP) during 3 h. GFP fluorescence intensity was quantified in nuclei of treated and non-treated plants.
(g) Hypocotyl growth in WT and cytc mutant plants in the presence of different DNP concentrations.
(h) The combined effect of DNP and GA on hypocotyl growth in WT and cytc mutant plants. Plants were treated with either 25 μM DNP and/or 10 μM GA3, as indicated.
(i) ATP levels in WT and cytc mutant plants after 3 h of incubation in the presence of 100 mM glucose either in the absence or presence of 25 μM AA or 50 μM DNP.
The bars represent the mean ± SE of 15–30 plants for each genotype and condition. Different letters indicate significant differences (P < 0.05; ANOVA, Tukey HSD test).

© 2018 The Authors
showed similar growth to WT plants in the presence of this and higher AA concentrations (Figure 7d). Thus, inhibition of CYTc-dependent respiration in WT plants mimics the effect of CYTc deficiency. In addition, growth inhibition by 1 μM AA was reversed by GA (Figure 7e), suggesting that defective GA homeostasis is at least partially responsible for the effect of AA on growth. In agreement with this, AA treatment caused an increase in the levels of the DELLA protein RGA (Figure 7f). Treatment with the uncoupler 2,4-dinitrophenol (DNP) produced similar results to those observed with AA (Figure 7f–h), suggesting that the observed changes in GA homeostasis may be related to deficient energy production by the respiratory chain. Figure 7(i) shows that ATP levels significantly increased in hypocotyls of WT plants after glucose addition and this was blocked by AA. In cytc mutants, the raise in ATP levels was significantly lower than in WT plants (Figure 7i). The results suggest that deficient energy production is probably the cause of altered GA homeostasis.

Increased CYTc levels stimulate plant growth

We expressed CYTc-1 under the control of the 35S CaMV promoter to produce plants with increased CYTc levels (Figure S11). These plants (35S:CYTC) showed increased rosette size, biomass and leaf number in comparison to WT plants of the same age (Figures 8a and S12a). 35S: CYTC plants flowered with the same number of leaves but several days earlier than WT plants (Figures 8b,c and S12a). Similar observations were made when CYTc-2, instead of CYTc-1, was expressed under the control of the 35S CaMV promoter (Figure S12b).

Active GA synthesis is required for the effect of increased CYTc levels on growth

As the starch content was increased in the cytc mutants, we analyzed starch accumulation in 35S:CYTC plants. Starch levels were similar in 35S:CYTC and WT plants (Figure S13a). Glucose levels were also similar to WT in plants grown under SD conditions, while an increase was evident after the onset of illumination under LD conditions (Figure S13a). This difference disappeared at the end of the light cycle. Photosynthetic CO₂ fixation was also similar in 35S:CYTC and WT plants (Figure S13b). These results suggest that an increase in CYTc levels does not modify carbon assimilation processes. Hence, it is possible that 35S: CYTC plants make more efficient use of fixed carbon for growth. Total respiration (O₂ uptake) in 35S:CYTC plants was also similar to WT (Figure S13c). However, respiration was more strongly inhibited in 35S:CYTC plants after the addition of KCN (Figure S13c), suggesting a decreased capacity of the alternative pathway. Western blot analysis showed that AOX levels in 35S:CYTC plants were similar to WT (Figure S13d), indicating that a decrease in AOX levels is not responsible for the observed changes in respiration.

Complex IV activity levels were also similar in 35S:CYTC and WT plants (Figure S13e).

Contrary to the observations made with the cytc mutants, RGA levels were lower in 35S:CYTC plants than in WT plants, suggesting that GA signaling is activated in these plants (Figure 8d). To analyze the requirement of GA for the effect of increased CYTc levels on plant growth, we crossed a ga1-3 mutant line, defective in the initial step of GA biosynthesis (Tyler et al., 2004), with a 35S:CYTC line. Plants with increased CYTc levels in the ga1-3 background (Figure 8e) were similar to ga1-3 mutant plants, as they showed small rosettes and delayed flowering (Figure 8f, upper panel). This suggests that an active GA biosynthetic pathway is required for CYTc to affect growth. In agreement with this, treatment of 35S:CYTC plants in the ga1-3 background with GA resulted in plants similar to those with increased CYTc levels in a WT background (Figure 8f, lower panel).

DISCUSSION

CYTc is required for optimal vegetative growth in Arabidopsis

Plant mitochondria possess alternative pathways of respiration that can feed electrons from NADH to ubiquinone or deliver them from ubiquinone directly to O₂ (Millar et al., 2011). Because they are not involved in proton translocation and ATP synthesis, these alternative pathways uncouple substrate oxidation from the energy status of the cell. They also allow substrate oxidation under conditions in which the canonical respiratory pathways, catalyzed by the rotenone-sensitive NADH dehydrogenase (Complex I) and the CYTc-dependent pathway, are blocked. The CYTc-dependent pathway is essential during embryogenesis, as knockout mutants in genes encoding CYTc, CYTc biogenesis or Complex IV biogenesis factors show embryo developmental arrest (Meyer et al., 2005; Attallah et al., 2011; Steinebrunner et al., 2011; Welchen et al., 2012; Mansilla et al., 2015). Plants that lack detectable Complex IV activity, obtained by cultivation of immature seeds, have severe phenotypic alterations (Dahan et al., 2014), showing the importance of CYTc-dependent respiration for post-germinative development. In a similar way, homoyzogous mutants in the Complex IV assembly factor gene HCC1 rescued by expressing the HCC1 cDNA from the embryo-specific ABI3 promoter do not grow beyond the seedling stage (Steinebrunner et al., 2014). The importance of Complex I for post-germinative growth was also shown using knockout mutants in the gene that encodes the NDUFV1 subunit, which lack detectable Complex I activity (Kühn et al., 2015). Although retarded in development, these mutants are able to survive if grown in the presence of sucrose before transferring them to soil. The results indicate that energy...
production by mitochondrial respiration is required during embryogenesis and early stages of plant development.

The role of mitochondrial energy-producing pathways during vegetative development, when the photosynthetic apparatus is established, is less clear. Plants with
significantly reduced amounts of Complex I show smaller rosettes and developmental delay (Meyer et al., 2009; Pétriacq et al., 2017). In these plants, not only seedling establishment, but also the duration of the vegetative phase from seedling establishment to flowering, is affected. The same is true for plants with reduced amounts of CYTc, as described here, suggesting that the integrity of the energy-producing respiratory pathway from NADH to O2 is required for optimal vegetative development.

A deficiency in CYTc shifts carbon assimilation towards starch accumulation

A salient feature of CYTc deficiency is increased starch accumulation due to increased synthesis during the light period. There is a negative correlation of rosette biomass with the amount of starch in leaves, reflecting a competition between growth and reserve accumulation (Cross et al., 2006). In addition, optimal growth is achieved when the daily pattern of starch accumulation and use allows a continuous supply of carbohydrates to avoid starvation episodes (Gibon et al., 2004; Smith and Stitt, 2007). If starvation occurs, a growth arrest signal is generated and a higher proportion of fixed carbon is used to increase reserves and avoid starvation during the following days. Delayed growth and increased starch content is also observed in cytc mutant plants. However, we did not detect symptoms of sugar starvation, as glucose levels were higher than in WT and ‘starvation’ genes were repressed in these plants. We hypothesize that delayed growth and starch accumulation in the cytc mutants are related to energy limitation due to changes in respiratory metabolism and not to carbon starvation.

A decrease in the level of CYTc affects GA homeostasis

Several lines of evidence indicate that GA homeostasis is affected in cytc mutants. We observed reduced levels of two active GAs, reduced expression of GA-induced genes and increased expression of GA-repressed genes. We also observed that GA treatment abolished the delay in development and the differences in expression of GA-responsive genes. Moreover, CYTc-deficient plants showed increased levels of the DELLA proteins RGA and RGL3, whose degradation is triggered by GA. Finally, the fact that GA treatment caused a decrease in glucose levels in the mutants but not in the WT, with the concomitant change in expression of the sugar-responsive gene APL3, suggests that defects in GA homeostasis are the cause of the increased glucose accumulation observed in cytc mutants.

Inhibition of mitochondrial energy metabolism mimics the effects of CYTc deficiency

In agreement with the notion that mitochondrial ATP synthesis is required for growth, treatment of plants with the Complex III inhibitor AA or the uncoupler DNP caused growth inhibition. At relatively low inhibitor levels, however, growth inhibition was reversed by GAs, suggesting that energy per se is not the main limiting factor under these conditions. It is tempting to speculate that decreased energy production by mitochondrial oxidative phosphorylation affects GA homeostasis so as to limit plant growth before energy reserves are exhausted. In agreement with this, AA and DNP treatments caused an increase in DELLA protein levels, as observed in CYTc-deficient plants. The fact that low inhibitor concentrations affected WT growth but had a minor effect on cytc mutants suggests that growth inhibition in the mutants is related to the function of CYTc in energy metabolism: Altogether, our results indicate that CYTc deficiency affects growth through a decrease in energy production, which in turn affects GA homeostasis and DELLA protein levels.

In addition to its canonical role in respiratory metabolism, CYTc also participates in other processes, like MIA40-dependent protein import (Bihlmayer et al., 2007), ascorbic acid synthesis (Bartoli et al., 2000) and PCD (Ow et al., 2008). Recently, MIA40 was connected to GA metabolism during seed germination (Uhrig et al., 2017). Thus, one possibility would be that impairment of MIA40 function in cytc mutants is the cause of changes in GA homeostasis. MIA40, however, has been proposed as a negative regulator of GA-related processes (Uhrig et al., 2017), which is opposite to our findings for CYTc. In addition, Complex I and Cu/Zn-SOD levels, which are affected by MIA40 deficiency (Carrie et al., 2010), are normal in the cytc mutants under study (Welchen et al., 2012). This, and the fact that inhibition of Complex III and uncoupling of respiration and energy production, which would not affect the delivery of electrons from MIA40 to CYTc, mimic the effects of CYTc deficiency, indicate that defective GA homeostasis in cytc mutants is not related to MIA40 function. The cytc mutants under study also have normal ascorbic acid levels (Welchen et al., 2012), suggesting that deficiencies in ascorbic acid metabolism are not responsible for the observed effects of CYTc deficiency. If any, the role of CYTc in PCD in plants, unlike the situation in animals, is far from being understood (Daneva et al., 2016). Although an effect of defective PCD on growth and GA homeostasis in cytc mutants cannot be completely ruled out, current evidence indicates that developmental PCD is required for the differentiation of specific cell types, rather than for generalized plant growth (Daneva et al., 2016). Thus, in view of our results and the existing literature we favor the hypothesis that altered GA homeostasis and defective growth in cytc mutants are due to the role of CYTc in energy metabolism. The fact that GA treatment ameliorates the growth of mutants in subunits of Complex I (Pellny et al., 2008; Meyer et al., 2009) also supports the existence of a link between mitochondrial energy metabolism and GA homeostasis. Energy sensors, like Target of Rapamycin (TOR) or SNF1-related protein kinase1 (SnRK1; Baena-
González and Hanson, 2017), are likely candidates as mediators between mitochondrial energy production and GA homeostasis. The fact that the transcriptional changes observed in cytc mutants for genes involved in GA metabolism and signaling seem to be the consequence, rather than the cause, of altered GA homeostasis suggests that post-translational modifications of GA synthesis or signaling components may be involved. Further studies are required to evaluate this.

CYTc is a limiting factor for Arabidopsis growth

It is interesting that not only defects in CYTc affect plant growth, but also increased CYTc levels promote expedited growth. An increase in CYTc reduces DELLA protein levels and active GA biosynthesis is required for the effect of increased CYTc on growth. This suggests the existence of a close link between CYTc, GAs and growth. The fact that increasing CYTc levels promotes expedited growth suggests that CYTc is a limiting factor for plant growth, at least in Arabidopsis. Because the effect of CYTc on growth is most likely related to its role in energy metabolism, this may imply that CYTc levels limit the activity of the cyanide-sensitive pathway in Arabidopsis. 35S:CYTC plants showed a decrease in the capacity of the alternative pathway and no significant changes in total respiration. Whether this result in a higher respiratory flux through the cyanide-sensitive pathway in vivo cannot be answered at this point and will require additional studies, like the measurement of oxygen isotope fractionation in these plants.

Conclusions

The results presented here indicate that CYTc levels influence GA homeostasis to modulate plant growth. Our study suggests that energy production linked to the activity of the CYTc-dependent pathway affects GA metabolism and the levels of DELLA proteins. Under CYTc deficiency, plant growth and development are delayed and carbohydrate levels increase. Treatments with GA indicate that this is not related to energy limitation per se, but to altered GA homeostasis. This reveals the existence of a regulatory mechanism that links plant mitochondrial energy metabolism to hormonal regulation of growth. This mechanism probably emerged to adjust plant growth to the functioning of energy-producing pathways to avoid damage of cellular functions due to a shortage of energy supply. A scheme is emerging in which different aspects of carbon metabolism impact on hormone signaling pathways to couple plant development to the metabolic status of the plant. CYTc, possibly through its role as a component of the mitochondrial respiratory chain, can be considered as a regulator of plant growth, linking carbon utilization and hormonal pathways. As such, from a technological perspective, manipulation of CYTc levels may be useful to modulate plant growth and development.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Plants used in this study were in the Arabidopsis thaliana ecotype Columbia (Col-0) background. Lines with T-DNA insertions in genes encoding CYTc (GK586B10 and SALK_143142 in CYTc-1; SALK_037790 and SALK_029663 in CYTc-2; Figure S1) were described previously, as well as double mutants between SALK_143142 (knockout) and either of the CYTc-2 knockout mutants (Welchen et al., 2012). Double mutants with GK586B10 are not viable (Welchen et al., 2012). ga1-3 mutant plants were kindly provided by Dr Stephen Thomas (Rothamsted Research, UK). pRGA::GFP-RGA plants were obtained from the Arabidopsis Biological Resource Center (Ohio State University, Columbus, OH, USA). Plants were grown in pots on white potting substrate under either LD (16 h light/8 h dark) or SD (8 h light/16 h dark) photoperiods at an intensity of 100 μmol m⁻² sec⁻¹ and a temperature of 22-24°C. To analyze DELLA protein levels, plants were grown for 7 days in darkness in Petri dishes containing 0.5 × MS medium. For GA treatments, 5 μl of a 50 μM solution of GA₄ dissolved with drops of methanol in distilled water-0.1% Tween 20 were applied every 2 days onto the shoot apex. Control plants were treated with the same solution without hormone. The treatment was started when WT and mutant plants contained at least two visible leaves (see figure legends for specific details). For the analysis of gene expression and glucose levels, a single GA treatment was performed 1 h before the beginning of the light period on WT and mutant plants of the same developmental stage (12 leaves) grown under SD conditions. Rosette dry weight was obtained after incubation at 60°C until constant weight. To analyze the effect of inhibitors, plants were grown for 4 days in plates containing liquid 0.5 × MS medium under LD conditions and then treated with 100 mM glucose, mainly as described by Xiong et al. (2013). Treatments with AA, DNP, paclobutrazol and GA₄ were started at the time of glucose addition.

Genetic constructs and plant transformation

For expression of CYTc-1 and CYTc-2 from the 35SCaMV promoter, the entire coding sequences of the respective cDNAs, including the stop codons, were amplified with specific primers (Table S2) and cloned into entry vector pENTR™/3C (Thermo Fisher Scientific). The inserts were then introduced into the pAUL1 binary vector (Lyska et al., 2013) through Gateway cloning. Constructs were introduced into Arabidopsis by floral dip (Clough and Bent, 1998). Transformants were selected on the basis of glufosinate (Basta™) resistance and analyzed. A line expressing CYTc-1 in a ga1-3 background was obtained by crossing 35S::CYTc line 1 with the ga1-3 mutant followed by self-pollination to obtain the double homozygous line.

Gene expression analysis

Transcript levels were measured by reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) of total RNA prepared from rosettes of plants at the same developmental stage (12 leaves) harvested at the times indicated in the respective figures. Samples were collected, frozen in liquid nitrogen and stored at -80°C until use. Total RNA was prepared using TRIzol reagent followed by a LiCl precipitation step. Reverse transcription was performed on an aliquot of RNA (1.5-2.0 μg) using an oligo(dT)₁₈ primer and MMLV reverse transcriptase (Promega). qPCR was performed on an aliquot of the cDNA using specific primers for the gene of interest (Table S2) and SYBR Green detection in an MJ
Research Chromo4 or a Stratagene MX3000 apparatus. C4 values were normalized using values for ACT2 and ACT8 actin genes (Charrrier et al., 2002). Results are expressed as the mean ± SD of three biological replicates.

Confocal microscopy

Green fluorescence protein-RGA fluorescence was detected using a Leica TCS SP8 confocal microscope with excitation at 488 nm and detection at 498–531 nm for GFP and 612–759 nm for chlorophyll. Images, overlays and Z-stacks were acquired and processed using the ImageJ analysis software.

Western blot analysis

Western blot analysis was performed on total protein extracts. Plant material was ground in a precooled mortar in the presence of liquid nitrogen. Then, 300 mg of homogenate was collected in an Eppendorf tube with 300 μl of 125 mM Tris-HCl (pH 8.8), 1% (w/v) sodium dodecyl sulfate (SDS), 10% glycerol, 50 mM Na2S2O5 and 0.2 mM phenylmethylsulfonyl fluoride. The tubes were warmed to room temperature to solubilize the SDS and centrifuged at maximum speed in a microfuge for 10 min. The supernatant was saved in a new tube with 1/10 of 125 mM Tris-HCl (pH 8.8), 12% (w/v) SDS, 1% (v/v) glycerol, 22% (v/v) β-mercaptoethanol and 0.001% (w/v) Bromophenol Blue. For analysis, 40 μg of protein was separated by SDS-polyacrylamide gel electrophoresis (PAGE) and transferred to Hybond-ECL (GE Healthcare). Blots were hybridized with monoclonal antibodies prepared against pigeon CYTc (7H8.2C12, Pharmingen, San Diego, CA, USA) or polyclonal rabbit antibodies against RGA (Agrisera, Vännäs, Sweden; dilution 1:1000), RGL3 (Agrisera, dilution 1:1000), AOX (Agrisera, dilution 1:1000) or COX2 (prepared in-house; dilution 1:1000), RGL3 (Agrisera, dilution 1:1000), AOX (Agrisera, dilution 1:1000), and the SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific) were used for detection of the signal. BN-PAGE and Complex IV activity measurements were performed as described previously (Mansilla et al., 2015).

Metabolite analysis

For metabolite analysis, rosettes of individual 4-week-old plants grown under SD were harvested at ZT1 and ZT23, shock frozen in liquid nitrogen as described by Lisec et al. (2006) and stored at −80°C until analysis. Ground material of 50–80 mg was extracted in methanol:chloroform:water (5:2:1) with ribitol for internal standardization as described by Lee and Fiehn (2008), and analyzed by gas chromatography-mass spectrometry according to Fiehn and Kind (2007) using a 7890B GC coupled to a 7200 QTOF (Agilent Technologies, Santa Clara, CA, USA). Data analysis was conducted with the Mass Hunter Software (Agilent Technologies). For relative quantification, all metabolite peak areas were normalized to the peak area of the internal standard ribitol (Sigma-Aldrich, St Louis, MO, USA) added prior to extraction. Starch and glucose levels were quantified in plants of the same developmental stage using the methods described in Smith and Zeeman (2006). Qualitative starch assays were performed with lugol staining. Rosettes of individual plants grown under SD conditions were harvested and boiled in 50 ml of 80% (w/v) ethanol and stained with a fresh iodine solution (5 g I2 and 0.5 g KI in 500 ml of distilled water) for 1–2 h and photographed immediately. ATP levels were determined according to standard protocols using a Bioluminescent Assay Kit (Sigma-Aldrich).

Determination of GA and ABA content

Gibberellin and ABA content were determined in rosettes of 4-week-old plants grown under SD harvested at the end of the day (ZT7). The sample preparation and analysis of GAs was performed according to the method described in Urbanova et al. (2013) with some modifications. Briefly, freeze-dried plant tissue samples of 10 mg were ground to a fine consistency using 3-mm zirconium oxide beads (Retsch GmbH, KG, Haan, Germany) and a MM 301 vibration mill at a frequency of 30 Hz for 3 min (Retsch GmbH, KG, Haan, Germany) with 1 ml of ice-cold 80% acetone containing 5% formic acid as extraction solution. The samples were then extracted overnight at 4°C using a Stuart SB3 benchtop laboratory rotator (Bibby Scientific, Staffordshire, UK), after adding 17 internal GA standards (2H2GA1, 2H2GA2, 2H2GA3, 2H2GA4, 2H2GA5, 2H2GA6, 2H2GA7, 2H2GA8, 2H2GA9, 2H2GA15, 2H2GA19, 2H2GA40, 2H2GA41, 2H2GA45, 2H2GA46, 2H2GA49, 2H2GA50, 2H2GA53; purchased from Professor Lewis Mander, Australian National University). The homogenates were centrifuged at 36 670 g for 4°C for 10 min. Corresponding supernatants were further purified using reverse-phase and mixed-mode SPE cartridges (Waters, Milford, MA, USA), and analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS; Micromass, Manchester, UK). GAs were detected using multiple-reaction monitoring mode of the transition of the ion [M-H]− to the appropriate product ion. Masslynx 4.1 software (Waters, Milford, MA, USA) was used to analyze the data, and the standard isotope dilution method (Rittenberg and Foster, 1940) was used to quantify GA levels. For the determination of ABA, the plant tissues (approximately 20 mg DW of each sample) were homogenized and extracted for 1 h in 1 ml ice-cold methanol/water/acetic acid (10/89/1 v/v). Deuterium-labeled standard [20 pmol of (+)-3,5,7,7,7-H2ABA] was added to each sample. The homogenates were centrifuged (20 000 g, 10 min, 4°C) and the supernatant was re-extracted in 0.5 ml extraction solvent for 30 min. The combined extracts were purified by solid-phase extraction on Oasis® HLB cartridges (60 mg, 3 ml; Waters, Milford, MA, USA), evaporated to dryness in a Speed-Vac (Unisep) and finally analysed by UPLC-electrospray ionization (+)-MS/MS (Turecková et al., 2009).

Respiration measurements

Respiration measurements were performed according to Mansilla et al. (2015). Briefly, plants were kept in darkness for 40 min, and then the 4th, 5th and 6th leaves were transferred to 2.5 ml of reaction buffer (300 mM mannitol, 1% (w/v) bovine serum albumin, 10 mM potassium phosphate pH 7.2, 10 mM KC1, 5 mM MgOCl2). Measurements were made at 25°C using a Clark-type oxygen electrode (Hansatech, Norfolk, England). The capacity of the alternative pathway was determined as the O2 uptake sensitive to 10 mM SHAM in the presence of 1 mM KCN.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge Dr Stephen Thomas for the ga1-3 mutant, Dagmar Lyska and Peter Westhoff for the pAUL1 vector, the Arabidopsis Biological Resource Center for seed stocks, and Agrisera for sending them a sample of the RGL3 antibody. This work was supported by grants from ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica, Argentina) to DHG, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) and Universidad Nacional del Litoral to EW, the Deutsche Forschungsgemeinschaft (FOR 1186 and EXC 1028) to VGM, and the Deutsche Akademische Austauschdienst (DAAD)
and Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT, Argentina) through a Cooperative research grant (DAAD-PROALAR) to DHG and VGM. DHG, DEG and EW are members of CONICET. SR is a CONICET fellow. Financial support from the Ministry of Education, Youth and Sport of the Czech Republic through the National Program of Sustainability (Grant no. LO 1204) is also gratefully acknowledged.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHORS' CONTRIBUTIONS

EW and DHG designed the experiments. SR performed the experiments with contributions from EW and DEG. VGM designed and performed the metabolite analysis. DT and VT performed the determination of GA and ABA. All authors analyzed data. EW made the figures with contributions from SR and DEG. DHG wrote the manuscript. All authors contributed to writing and accepted the final version of the manuscript.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

Figure S1. Scheme of the insertional mutants used in this study.
Figure S2. Phenotypic analysis of cytc mutants plants grown under SD photoperiod.
Figure S3. Phenotypic analysis of single cytc mutants.
Figure S4. Photosynthetic parameters of cytc mutant plants.
Figure S5. Effect of GA treatment on rosette biomass in WT plants and cytc mutants.
Figure S6. Effect of GA on the number of leaves of WT and 1b2a cytc mutant plants grown under 12 h light/12 h dark photoperiod.
Figure S7. GA and ABA levels in WT and cytc mutant plants.
Figure S8. Transcript levels of genes encoding enzymes involved in GA biosynthesis.
Figure S9. Transcript levels of genes encoding enzymes involved in GA metabolism at ZT8.
Figure S10. Transcript levels of genes involved in GA signaling.
Figure S11. Western blot analysis of CYTC levels in different 35S:CYTC lines.
Figure S12. Growth characteristics of plants that express CYTC genes from the 35SCaMV promoter.
Figure S13. Metabolic characteristics of 35S:CYTC plants.

Table S1. Metabolite content of WT and cytc mutant plants.
Table S2. Oligonucleotides used in this study.

REFERENCES

© 2018 The Authors
Interplay between cytochrome c and gibberellins

