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Abstract 

The analysis of evolutionary information in a protein family, such as conservation and 

covariation, is often linked to its structural information. Multiple sequence alignments of distant 

homologous sequences are used to measure evolutive variables. Although high structural 

differences between proteins can be expected in such divergent alignments, most works linking 

evolutionary and structural information use a single structure ignoring the structural variability 

inside a protein family. 

The goal of this work is to elucidate the relevance of structural divergence when sequence-

based measures are integrated with structural information. 

We found that inter-residue contacts and solvent accessibility undergo large variations in a 

protein family. Our results show that high covariation scores tend to reveal residue contacts that 

are conserved in the family, instead of protein or conformer specific contacts.  

We also found that residue accessible surface area shows a high variability between structures 

of the same family. As a consequence, the mean relative solvent accessibility of multiple 

structures correlates better with the conservation pattern than the relative solvent accessibility of 

a single structure. 

We conclude that the use of comprehensive structural information allows a more accurate 

interpretation of the information computed from sequence alignments. Therefore, considering 

structural divergence would lead to a better understanding of protein function, dynamics, and 

evolution. 
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1. Introduction 

Since Anfinsen's experiments, it is known that protein structural information is codified in the 

protein sequence (Anfinsen, 1973). However, to derive evolutionary information such as 

structurally or functionally important positions, populated Multiple Sequence Alignments (MSAs) 

of homologous proteins are required (Ashkenazy et al., 2016; Marino Buslje et al., 2010; 

Panchenko et al., 2004). 

Conserved positions in an MSA evolve under several constraints according to the neutral theory 

of molecular evolution. Most evolutionary changes result from mutations with minimal or minor 

functional impact that are fixed via random genetic drift (Kimura, 1983). However, mutations in 

biologically important residues (e.g., active sites) could undergo purifying selection or be 

compensated with other mutations elsewhere in the protein. The concept of position 

conservation, to denote its importance, was extensively used to infer structural and/or functional 

roles (Cooper and Brown, 2008; Guharoy and Chakrabarti, 2005; Karlin and Brocchieri, 1996; 

Lichtarge et al., 1996; Worth et al., 2009). 

Another source of evolutionary information in a protein family is the coevolution (de Juan et al., 

2013). Since structural and/or functional constraints involving multiple non-independent protein 

sites can lead to coevolutionary signals, covariation measures are used as a proxy for 

coevolution (Baldassi et al., 2014; Buslje et al., 2009), and have been applied to predict contacts 

(Buslje et al., 2009; Jones et al., 2012; Morcos et al., 2011), functional sites (Marino Buslje et al., 

2010) and protein–protein interactions (Hopf et al., 2014; Ovchinnikov et al., 2014). 

Most works linking evolutionary and structural information use a single structure to represent the 

structural space of a given protein family. Such information was used to analyse a particular 

protein of interest, to predict the location of binding and catalytic sites (Capra and Singh, 2007; 

Liang et al., 2006; Marino Buslje et al., 2010) and to predict tertiary contacts and protein folds 

(Sutto et al., 2015). It was found that the evolutionary rate of a site or its conservation (used also 
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as a proxy to the evolutionary rate) correlates with the residue Relative Solvent Accessible 

Surface Area (RASA) (Echave et al., 2016; Franzosa and Xia, 2009; S.-W. Yeh et al., 2014). 

Other works highlight the importance of local packing density as the main determinant of the 

evolutionary rate (S. W. Yeh et al., 2014). Those works use the RASA and contact density of a 

single structure without taking into account the structural variability inside a protein family. This is 

even more extreme in the case of covariation scores, where inter-residue contacts are used to 

optimise their parameters and to assess the performance of the methods (Buslje et al., 2009; 

Jones et al., 2012; Zea et al., 2016), ignoring that residue contacts may vary between protein 

conformers and, even more, between different protein structures. 

It is well-known that to gain confidence in the covariation scores, MSAs with a high number of 

divergent homologous sequences are required (Martin et al., 2005; Morcos et al., 2011). So, 

Pfam alignments are a common choice for measuring these variables (Simonetti et al., 2013). A 

lot of structural divergence can be expected in such MSAs because the relationship between 

sequence identity and structural divergence is exponential (Chothia and Lesk, 1986; Flores et 

al., 1993; Russell et al., 1997). Moreover, structural differences between proteins of the same 

family (same MSA) may arise not only because of evolutionary divergence due to the 

accumulation of mutations, but also because of the conformational diversity of a single protein 

sequence (Monzon et al., 2017). The diference between conformers of the native state of a 

protein, can be as high as 23.4 Å  of Root Mean Square Deviation (RMSD) of alpha carbons 

(Burra et al., 2009). 

In this context, it is interesting to think about how the structural differences in an MSA are 

reflected in sequence-based evolutionary information such as conservation and coevolution. 

In this work, we study how evolutionary information is related to structural information when all 

the available structures are considered. We have analysed the correlation between conservation 

and RASA and the performance of the inter-residue contact prediction by covariation methods 

when different structures from an MSA are considered. 
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2. Materials and methods 

2.1. Data set construction 

We performed all the analysis using ad-hoc scripts in Julia programming language (Bezanson et 

al., 2017), taking advantage of the MIToS toolkit (Zea et al., 2016). We selected Pfam protein 

families (Pfam version 30.0) (Finn et al., 2016) with at least 2 proteins with high resolution 

crystallographic structure (<3 Ångströms resolution) and a well formatted SIFTS file (Velankar et 

al., 2013). MSA columns belonging to insert or envelope regions were not used to avoid the 

effect of misalignments (Finn et al., 2010). Also, we filtered structures shorter than 30 residues, 

covering less than 80% of the MSA aligned columns and with differences between PDB ATOM 

and UniProt sequences. Additionally, columns with missing residues are not used in the 

analysis. After applying these criteria to the 16,306 families in Pfam, we ended up with 1,808 

protein families suitable for the analysis. 

MSAs often suffer from a high degree of sequence redundancy due to sequence database bias 

towards particular gene families or species. Thus, we employed the Hobohm I algorithm 

(Hobohm et al., 1992) to define sequence clusters, and to assign to each sequence within a 

given cluster a weight corresponding to one divided by the number of sequences in the cluster. 

Clusters were defined at a sequence identity threshold of 62% (Shackelford and Karplus, 2007) 

as in previous works (Buslje et al., 2009; Nielsen et al., 2004). To ensure a good sampling of the 

structural space of an MSA, we used the subset of families with at least 4 sequence clusters with 

at least one structure each. The minimum value of four clusters was a trade-off between 

retaining a sufficient number of families for the study and having enough structural information. 

That value allows the mean C-alpha RMSD values to be almost independent of the number of 

sequence clusters with structures (see supplementary information section 3 and Fig. S.1). 
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After applying all these filters, the final dataset has 817 Pfam families. This dataset was 

randomly divided into an exploration set (245 families) and a testing or confirmatory set (572 

families) in order to avoid post hoc theorizing (Leung, 2011). The confirmatory dataset has a 

good coverage of the protein fold space using CATH classes and architectures (Sillitoe et al., 

2015) (see supplementary information section 2.1). All the exploratory analysis had been 

performed on the exploration dataset. We later tested our hypothesis and validated our 

observations in the confirmatory subset. All the values and figures of this work comes from the 

confirmatory dataset. Data for each protein family and structure is available in the supplementary 

file Dataset.zip. 

2.2. Structural and evolutionary analysis 

We estimated the evolutionary variability of each column in an MSA using two measures from 

the information theory as implemented in Information module of MIToS (Zea et al., 2016):  

Kullback-Leibler divergence (KL) (Johansson and Toh, 2010) using BLOSUM62 matrix (Capra 

and Singh, 2007) and Shannon entropy (EN) (Durbin et al., 1998) (See section 1.2.1 in 

supplementary material). 

Covariation scores between MSA positions were calculated with the Information module of 

MIToS (Buslje et al., 2009; Zea et al., 2016). We calculated mutual information scores (ZMIp) 

between column pairs as described in Buslje et. al. 2009 (Buslje et al., 2009; Zea et al., 2016) 

and direct information scores using GaussDCA (Baldassi et al., 2014) (see section 1.2.2 in 

supplementary material). 

The RASA was calculated using NACCESS with default parameters. Briefly, as the solvent 

accessibility  percent of a residue in the structure compared to the solvent accessibility of that 

residue type in an extended ALA-x-ALA tripeptide (Hubbard and Thornton, 1993).  We 

considered a residue as exposed if its RASA is greater than 20% and buried otherwise 
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(Holbrook et al., 1990). Different RASA cutoffs were also explored (see section 4 in 

supplementary material).  Other structural measures per position as Contact Number (CN) and 

Weighted Contact Number (WCN) were evaluated. Contacting residues were defined as those 

having any heavy atom at a distance  <= 6.05 Ångströmg (Bickerton et al., 2011). The RMSD 

and the Root Mean Square Fluctuation (RMSF) values between any two structures within a 

protein family were calculated using the MSA as a guide for a rigid structural superimposition 

with the Kabsch algorithm (Kabsch, 1978, 1976) (see section 1.3 in supplementary material). 

Structures were hierarchically clustered at 0.4 Ångströms (Burra et al., 2009) with the complete-

linkage algorithm (Olson, 1995) to reduce redundancy, and every structure was weighted as one 

over the number of structures in the cluster (detailed in the section 1.1 of supplementary 

material). We have used this cutoff since it is the experimental error in X-ray crystallography. We 

calculated the probability of two residues of being in contact as the number of structures where 

this pair of residues are in contact, divided by the total number of structures in the MSA. 

Similarly, for each residue we also calculated the probability of being exposed in the MSA as the 

number of structures where the residue is exposed divided by the total number of structures in 

the MSA. For one-structure calculations, we selected as reference the PDB of the sequence with 

the best E value against the HMM profile of the family.  

2.3. Fraction of explained variance 

Using the exploratory dataset of 245 Pfam families, we looked for linear correlations between the 

KL divergence and the RASA of a single structure of the MSA compared to the weighted mean 

RASA of each MSA column and the weighted probability of a given position of the MSA to be 

exposed. The last two variables include information from all the structures in the MSA. Each 

structure is weighted as the inverse of the number of structures in its cluster to avoid the effect of 

structural redundancy (Williamson et al., 2003). 

https://paperpile.com/c/fBGBzz/fyRiZ
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To look for a linear correlation inside protein families between the three variables related to 

solvent exposure and KL, we measured how many protein families validates the linear model 

assumptions. The weighted mean RASA and exposure probability are not linearly correlated 

without transformations because only 6 families validate the linear assumptions. Applying the 

function log(x+0.05) to transform the KL values to logarithmic scale, 63 out of 245 families 

validate all the model assumptions (Peña and Slate, 2006) for the three variable pairs.  

3. Results 

3.1. Dataset description 

MSAs of the confirmatory dataset (572 families) have 9730 sequences and a mean sequence 

identity of 26.76%, on average. The median of the mean percent sequence identity in the MSAs 

is 25.5%, with the first and third quartiles of 21.6% and 30.8%, respectively. The number of 

sequences and mean percent identity distributions are shown in supplementary Fig. S.2. The 

number of sequence clusters at 62% identity per family have a median of 1421, with the 50% of 

the families having between 653 and 2913.5 sequence clusters in the confirmatory dataset (see 

section 2.2. of supplementary material). 

3.2. On structural divergence, residue exposure and contacts of 

different structures within a protein family. 

We compared all against all structures within each protein family and found large structural 

variations. In the confirmatory dataset, the average value of the maximum RMSD between 

structures per family is 5.65 Å. The mean RMSD per family is 2.48 Å, on average. 

Structural divergence increases as sequence identity decreases as shown in supplementary Fig. 

https://paperpile.com/c/fBGBzz/tcADJ


  

S.4. In the confirmatory dataset, the Spearman rank correlation coefficient (rho) between the 

sequence identity and the RMSD comparing all possible structure pairs within each protein 

family is -0.80. A reasonable expectation is that the more sequence divergence in the alignment, 

the more structural divergence. The structure divergence of an MSA can be described by the 

mean RMSD between its structures. Similarly, its sequence divergence can be described by the 

mean sequence identity between its sequences. Supplementary Fig. S.5. shows the distribution 

of these variables in the confirmatory dataset. The Spearman’s rho between these two variables 

is -0.48, which agreed with our expectation. 

As a consequence of the structural divergence inside a protein family, the average mean change 

in the RASA per position between structures is 37.39% and 50.57% of MSA columns changed 

their exposed/buried status on average (see supplementary information section 4). Furthermore, 

on average, 53.32% of the column pairs that are in physical contact in at least one structure, are 

not in contact in another structure from the same MSA. These results show that the RASA and 

residue contacts change considerably between different structures of the same protein family. It 

is important to note that while the conformation of the backbone is reasonably well represented 

with four or more sequence clusters with known structures, this may not be enough to represent 

lateral chain changes between divergent structures (see supplementary information section 3). 

3.3. Correlation between residue solvent accessibility and 

conservation 

For each MSA we calculated the correlations between the conservation (KL) and the RASA 

values of each protein structure. We observed that the Spearman’s rho between these two 

variables varies over a wide range, from -0.82 to 0.23, with a mean of -0.37 (see distribution in 

Fig. 1A) and being -0.37 also the mean of the mean rho value per family. This means that for 

some structures, the RASA is strongly and negatively correlated with their family conservation 



  

while for others, it is not correlated or is even positively correlated. Indeed, the difference 

between the highest and the lowest correlation coefficient values (Δrho) within a family varies 

from 0.02 to 0.76, with a mean of 0.21 (Fig. 1B). This means that in some families, different 

structures show very similar correlations between the RASA and conservation (i.e. the difference 

is close to 0.02), whilst in other families, different structures may show very different correlation 

values (i.e the difference is close 0.74). The mean change of 0.21 can seem small, but is 

proportionally important (57%) relative to the mean correlation value of -0.37. The same was 

done with the Shannon entropy and results are consistent (see supplementary information 

section 6.1). In conclusion, the correlation value between conservation and solvent accessibility 

depends on the selected structure. 

 

Fig. 1. Spearman rank correlation coefficient between solvent accessibility (RASA) and 

conservation (KL). A) For each PDB structure in our dataset we estimated the Spearman’s rho 

between the residue RASA and the conservation of its MSA column. The histogram shows the 

number of structures per bin of rho. B) A protein family has many values of rho as available 

PDBs. This histogram shows the number of Pfam MSAs with a particular rho change (measuring 

the change as the difference between the highest and the lowest rho within the family). 



  

 

3.4. Can more structures explain more of the conservation 

variance? 

We then investigated whether the conservation pattern is better explained taking into account 

the solvent accessibility from several structures rather than from a single one. We used two 

scores to measure the solvent exposure of an MSA column taking into account all the available 

structures. These scores are the weighted mean RASA value and the weighted probability of a 

position to be exposed (see Materials and methods). 

We measured the association strength between variables using the Spearman's rho because a 

linear correlation can not be assumed a priori. The rho between the KL of each MSA column and 

the RASA of a single structure per family is -0.36 on average (see Fig. 1A). This correlation 

value is a significantly lower (P << 0.001 after a Wilcoxon signed rank test) than the rho of -0.40 

between KL and the weighted probability of being exposed or the rho of -0.42 between KL and 

the weighted mean RASA of the MSA column (Fig. 2). A similar tendency was found using EN 

instead of KL (see supplementary information section 6.2). 

 



  

 

Fig. 2: KL is better explained using the solvent accessibility of more than one structure. 

The boxplots show the distribution of the correlation scores between KL and P(exposed) (light 

green) or weighted mean RASA (dark green) compared with the distribution of the correlations 

between KL and the RASA of one structure from the MSA (white). Each green line connects the 

values of a given protein family. The crosses inside the boxplots indicate the mean values. A) 

The distribution of the Spearman rank correlation rho show stronger correlation values when 

more than one structure is used. B) The percentage of KL variance explained is higher when 

more than one structure are used. 

 

The relationship between conservation and the RASA of a single structure, the weighted mean 

RASA or the probability of being exposed, is almost linear when the function log(x+0.05) is 

applied to transform KL values. We found that the RASA coming from a single structure for each 

MSA explains 12.84% of the conservation variance (using the squared value of the Pearson 

correlation coefficient), on average (median of 10.36%). What’s more, the mean percentage of 

explained variance using the weighted probability of a residue to be exposed is 15.82% (median 

of 14.07%). However, the variable that explains better the conservation variance is the weighted 



  

mean RASA of each MSA column that explains 16.86% of the variance, on average (median of 

14.49%; Fig. 2B). The last two, integrate data from many structures. Therefore, using more than 

one structure is possible to explain between 2.98% to 4.02% more of the variance, on average. 

Information is gained by including more structures, even taking into account the information lost 

due to mean and probability calculations. In fact, the fraction of KL variance explained using the 

weighted probabilities of being exposed and the weighted mean RASA values is greater than 

using the RASA of a single structure for 65.07% and 75.34% of the analysed families 

respectively. 

The gain of conservation variance explained using all the structures show a weak correlation 

with the number of available structures (see section 5 in supplementary material).  

3.5. Covariation and protein contacts 

It is a common practice to evaluate the performance of coevolution methods in terms of their 

ability to predict protein contacts in a single structure as a reference for a whole alignment 

(Buslje et al., 2009; Jones et al., 2012). But, how will it perform on different structures having in 

mind that ~53.32% of the residue contacts are different in proteins within a given protein family? 

In order to address this question, we measured the Area Under the ROC Curve (AUC) to predict 

residue contacts for each structure in our dataset. The mean AUC for contact prediction was 

0.74 for ZMIp and 0.76 for DCA. Those AUC distributions are shown in Fig. 3A. Surprisingly, the 

mean change in the AUC per family, defining change as the difference between the AUC with 

the PDB that performed best and the one that performed worst, is only 0.029 for ZMIp and 0.031 

for Gaussian DCA (shown in Fig. 3B.). Why is there almost no change in the predictive 

performance if almost half of the contacts change from one structure to the other? 

https://paperpile.com/c/fBGBzz/WVU8+Tba5D


  

 

Fig. 3: AUC for contact prediction by covariation methods. A) AUC distribution of the totality 

of protein contacts prediction for all PDB in our dataset. B) Distribution of the difference between 

the higher and the lowest AUC per family. 

 

Subsequently, instead of using a contact matrix for each PDB, we defined contact matrices for 

each MSA. We considered that a pair of columns are in contact if those positions are in physical 

contact in at least one structure; otherwise that column pair is considered not in contact. MSA 

columns in contact are then classified as conserved if they are present in all the structures, and 

non-conserved or changing contact if the contact is absent in at least one structure.  

The AUC to predict conserved contacts was 0.79 for ZMIp and 0.82 for DCA. This indicates a 

good prediction performance for these methods in predicting conserved contacts through 

evolution. However, the AUC used to predict contacts specific for some structures (non-

conserved) in the MSA is 0.66 for ZMIp and 0.67 for DCA. This indicates a poor performance in 

the prediction of the conformer, protein or subfamily specific residue contacts. Fig. 4 shows that 

the AUC to predict conserved contacts is always greater than the AUC to predict the changing 

ones by ZMIp (Fig. 4A.) and DCA (Fig. 4B.). In fact, conserved contacts reach larger mean 



  

covariation values than changing contacts or residue pairs not in contact as shown in Fig. S.6. 

Also, Fig. S.3. shows the distribution of ZMIp AUC values for conserved, total and changing 

contacts as a function of the number of sequence clusters. 

 

Fig. 4. Covariation methods predict better the conserved contacts through the MSA. We 

calculated the AUC for conserved and changing contacts prediction for each Pfam family in our 

dataset. Each plot show a bidimensional histogram of the AUC to predict conserved contacts vs 

the AUC to predict changing contacts. Note that the performance to predict conserved contacts 

is higher since the cloud of points lies under the line y=x. A) Using ZMIp.  B) Using DCA. 

3.6. Which is the main structural determinant of residue 

conservation when multiple structures are used? 

Next, we studied the relationships between conservation and structural variables when tested in 

large Pfam alignments containing multiple and diverse protein structures. We calculated the 

correlation score between position conservation and structural derived information. To avoid 

problems derived from non-linear relationships, we used Spearman rank and partial correlation 

scores. Conservation correlates with a rho of 0.3 with CN and with a rho of 0.33 with WCN, 



  

respectively. Supplementary Fig. S.7 shows the joint distributions between the correlation of KL 

and RASA and the correlation of KL and CN (panel A) or KL and WCN (panel B). To avoid being 

misled due to data redundancy, since different families contribute different numbers of 

structures, we sampled one structure per family 100 times and measured the average of the 

mean correlation values. The tendency did not change, neither for the correlation between KL 

and RASA, nor for the correlation between KL and CN or WCN. The average mean correlation 

values were -0.37, 0.31 and 0.34, respectively. Results are consistent using EN instead of KL 

(see supplementary material section 6.3). 

We found that the RASA correlates better with the conservation than with variables related to 

local packing density (CN and WCN). In order to know if the correlation between the RASA and 

conservation could be explained in terms of the local packing density scores, we measured 

partial correlations between the RASA and KL by controlling for the CN and WCN. Results in 

Table 1 show that the correlation between the RASA and KL did not disappear after controlling 

for the CN and WCN; they only show a small decrease (mean decrease was 0.15) in absolute 

value. Results are consistent when using EN instead of KL (see supplementary Table 1). 

Previously, we showed that the weighted mean RASA value across MSA columns showed the 

best correlation with the conservation of an MSA column (-0.42). In that sense, we tested if the 

mean CN and WCN also perform better than a randomly selected structure from the MSA. We 

found a Spearman rho of 0.32 between KL and the weighted mean CN and, 0.35 using the 

weighted mean WCN. These two correlation values were only 0.01 unit, on average, above the 

average correlation values from sampling only one random structure for each MSA 100 times. 

However, the correlation value of -0.37 between the RASA and KL (Table 1) is lower than the -

0.43 obtained between the weighted mean RASA and KL. The same tendency is observed with 

EN instead of KL (see supplementary material section 6.3.). We can conclude from these results 

that the RASA scores are a better determinant of residue conservation than local packing 

density scores. 



  

Other research groups highlight the importance of local flexibility as a determinant of evolution 

rates (Huang et al., 2014). RMSF is an estimation of structural flexibility that takes into account 

all the available structural information in the MSA. The correlation between KL and the weighted 

mean RASA per MSA column is -0.42, while the correlation between KL and the RMSF of an 

MSA column is -0.33. In order to see the authenticity of the last correlation, we calculated the 

partial correlation between KL and RMSF controlling for the weighted mean RASA. The 

correlation was 0.16 showing that a considerable part of the correlation between conservation 

and local flexibility can be explained using the weighted mean RASA. 

We hypothesize that solvent exposure is a better determinant of conservation than flexibility 

because the correlation between conservation and flexibility is lower than the correlation 

between conservation and the weighted mean RASA. Also, almost a half of the correlation 

between conservation and flexibility can be explained by the weighted mean RASA. 

 

 rho rho controlling for CN rho controlling for WCN 

RASA vs. KL -0.37 (-0.37) -0.25 (-0.24) -0.21 (-0.2) 

 

Table 1. Spearman correlation scores between RASA and KL, controlling for CN and 

WCN. The partial correlation score is calculated as rho(RASA, KL, column). So, the first column 

is simply the correlation coefficient without controlling for any variable. Numbers between 

parentheses are the mean correlation scores after sampling 100 time only one structure per 

family in order to avoid bias by redundancy. 

3.7. Case example: Structural change of a protein kinase domain 

The serine/threonine-protein kinase PIM-1 (UniProt: PIM1_HUMAN) is a proto-oncogene 

https://paperpile.com/c/fBGBzz/dr1xx


  

involved in cell survival and proliferation (Tursynbay et al., 2016). Its biological activity is 

determined by its protein kinase domain (Pfam: PF00069). We analysed 615 structures (only the 

columns with solved residues in all structures). To avoid redundancy, the structures were 

clustered at 0.4 Å of RMSD giving 335 clusters. 

The maximum structural divergence for this family was 12.05 Å, achieved between two protein 

domains with 34.55% sequence identity (see Fig. S.8.). The conformational diversity of its 

proteins is high, but lower than its structural divergence. For example, we had 80 conformers 

available for PIM-1, showing a maximum RMSD between conformers of 1.31 Å. The human 

Aurora kinase A, has the maximum conformational diversity within the family, 8.37 Å RMSD 

between conformers (see Fig. S.8). 

The structural alignment implicit in the Pfam sequence alignment is shown in Fig. 5. The mean 

RMSD between the structures in our dataset was 3.39 Å. This structural divergence in the C 

alpha backbone is accompanied by large changes in the residue lateral chain positions. We 

found that 85.45% of the MSA columns have residues that change their buried or exposed 

status in at least one structure. Fig. S.9. shows how the PIM-1 4N70 structure residue RASA are 

related to the weighted mean RASA of each column of the MSA. We also found that 81.26% of 

protein contacts (where 100% is the number of contacts present in at least one structure), 

disappeared in at least one structure of the MSA. Fig. S.10. shows the top 5% DCA scores and 

the probability of each pair of positions being in contact through the alignment. The AUC to 

predict conserved contacts (pairs with a 1.0 probability of being in contact) by DCA score in this 

particular family was 0.924, while the score to predict contacts that change through the 

alignment was 0.742. Fig. S.11. shows the probability of a position pair being in contact as a 

function of the DCA score. Notably, the top 1% DCA scores pointed out position pairs with a high 

probability of being in contact. 

https://paperpile.com/c/fBGBzz/dASt1


  

 

Fig. 5. Structural superimposition of protein kinase domains. One PDB for each of the 77 

protein domains with known structures in the protein kinase family was selected for this 

visualization. The structure in dark grey corresponds to the human PIM1 (PDB 4N70). The other 

structures are shown in light grey. 

4. Discussion 

It is a common practice to map sequence information derived from homologous proteins into one 

structure taken as a reference for the protein family. However, a number of potential problems 

occur that lead to the following questions: 

1. Can a single conformer of a single protein represent the structural space of the protein 

family? 

2. Is the native state of each protein in the alignment contributing the same structural 



  

constraints during protein evolution? 

In this study, we have shed some light on those questions. In particular, we studied how the 

structural divergence is related to the evolutionary information. 

We analysed two types of evolutionary information that could be extracted from a multiple 

alignment of homologous sequences: conservation and coevolution. Many distant homologous 

are needed for some of these methods, particularly covariation methods used to estimate 

coevolution. Consequently, Pfam alignments are a common choice given their high quality and 

their large number of distantly related homologous sequences. 

Pfam alignments show a large structural divergence, rendering high RMSD values when 

comparing their protein backbones and also, residue contacts and solvent accessibility change 

considerably between structures. These changes are evident in the case example, where 

structures have the same fold, nevertheless many structural changes are observed, even at the 

conformational diversity level. 

There are structural constraints to the evolutionary process in order to maintain the native state 

of proteins (Zea et al., 2013) In particular, residue solvent accessibility has been related to their 

evolutionary rate; results show that residues on the protein surface tend to vary more than 

residues in the core (Franzosa and Xia, 2009). Also, residue contact number has been 

correlated with residue conservation (S. W. Yeh et al., 2014). In addition, inter-residue contacts 

constrains position pairs variation, leaving a covariation signal (Dunn et al., 2008). 

To understand how the structure constrains protein evolution, we measured the correlations 

between solvent accessibility and conservation. Also, we measured the performance of  

covariation scores to predict residue contacts, when different structures from the same family 

are used. We found that the correlation between solvent accessibility and conservation/variation 

scores greatly changed depending on the selected structure. However, the predictive 

performance of covariation scores to predict contacts almost did not change between structures 

because they mainly predict contacts present in all the structures. For each multiple sequence 

https://paperpile.com/c/fBGBzz/u5wpm
https://paperpile.com/c/fBGBzz/8Os1Q
https://paperpile.com/c/fBGBzz/rLbxr
https://paperpile.com/c/fBGBzz/hfAki


  

alignment, we have an unique vector of conservation or variation values for a given protein 

family. However, for each structure in the family, we have an RASA vector with an RASA value 

per residue. A correlation value can be measured between the conservation vector and each 

RASA vector per structure. Previous studies used a single structure to explore this structural 

feature, so they had a single correlation coefficient per family. The approach of these previous 

studies can be thought of as stratified sampling, where a single random structure is selected 

from each stratum (a protein family in this case). In fact, the reported mean correlation values of 

those studies are very similar to mean correlation values in our dataset using all the available 

structures. 

However, an interesting fact emerge from this study, that is that the correlation values between 

solvent accessibility and conservation can vary greatly inside a protein family. Actually, positions 

that are buried in one structure of the family can be totally exposed in another structure. If 

solvent accessibility determines conservation, we may expect that a measure taking into account 

all known structures will give a better picture of the structural constraints. Indeed, we found that 

measures which resumed the solvent accessibility of all known structures are better at 

explaining the conservation calculated from the multiple sequence alignment. 

To capture the solvent accessibility diversity in a protein family in a single vector, we calculated 

two measures: the probability of a residue of being exposed to the solvent and the mean RASA 

value of the position. Using these parameters, we found that the conservation variance 

explained was 16.34% on average, 3.5% above the value found when only one structure is 

considered per family (12.84%). The small increment in the explained conservation variance 

may be due to the fact that structural factors are not the main constraints to sequence 

divergence during evolution (Bloom et al., 2006) or that the structural space of these protein 

families are still incomplete (Marino-Buslje et al., 2017). 

Additionally, we also analysed how other structural variables correlate with conservation. In 

particular, contact number, weighted contact number and RMSF. These variables, show lower 

https://paperpile.com/c/fBGBzz/IgDLx
https://paperpile.com/c/fBGBzz/xGcq


  

correlation values than the relative solvent accessibility area, even when multiple structures are 

used. Therefore, contact density and flexibility variables may be poorer determinants of residue 

conservation than solvent accessibility in our dataset. 

It is known that residue contacts can lead to a covariation signal, i.e. coevolution (Dunn et al., 

2008). We observed that many inter-residue contacts changed between structures through 

evolution and, consequently, we expected predictive performance changes when different 

structures were used. However, our results show that the predictive performance of the 

covariation scores remains the same. That can be explained by the fact that these scores predict 

conserved contacts, i.e. inter-residue contacts common to all the known structures in the 

alignment. This result is in concordance with recent findings (Rodriguez-Rivas et al., 2016) 

where evolutionary conserved contacts between proteins were predicted using covariation 

methods. 

As a result of a covariation measure ranking first conserved contacts, it is difficult to predict 

conformer or subfamily specific contacts (i.e. functional important contacts that change between 

structures). Considering the large structural space implicit in diverse multiple sequence 

alignments, could be useful to develop new contact prediction methods oriented to predict them. 

We show that residue contacts and solvent accessibility can greatly change, even between 

conformers of the same protein. Because of this, we believe that evolutionary information 

derived from protein alignments, even for smaller and curated alignments, deserve to be 

matched with all known structural information in order to achieve a better understanding of the 

studied system, particularly when a single protein or protein family is analysed. 

When no or little structural information is available, we must bear in mind that conservation and 

covariation measures take into account the implicit structural space of the protein family. In 

particular, residue conservation mapped on the surface of a single structure could potentially 

lead to misinterpretations. In the case of covariation scores, high values tend to indicate 

conserved residue contacts in the family. Therefore, interpreting these values as predictors of 

https://paperpile.com/c/fBGBzz/hfAki
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protein or conformer specific contacts has to be taken with caution. 

5. Conclusions 

It is a common practice to correlate evolutionary information derived from protein family 

alignments with a single structure taken as reference. We have shown that matching 

evolutionary information with all the available structural information provides a better 

understanding of the studied system. This is particularly important when a single protein or 

protein family is analysed. 

We found large structural changes between proteins within a Pfam family at the residue level. In 

particular, residue solvent exposed area and inter residue contacts change greatly between 

structures within a protein family. As a result, linking evolutionary information as conservation 

and coevolution to variables calculated from a single structure, can be misleading. The use of 

solvent accessibility data from multiple structures permits a better understanding of the 

conservation pattern than a single structure. Also, solvent accessibility is a better determinant of 

residue conservation when multiple structures are taken into account, compared to flexibility or 

residue contacts. 

Covariation methods, a proxy to coevolution, are less sensitive to protein or conformer specific 

residue contacts, they predict with higher performance contacts that are conserved through the 

alignment (common to all the structures). 

In general, our results show that the use of multiple structures from a protein family provide a 

more comprehensive view of the structural constraints affecting protein evolution. 
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Highlights 

● 51% of residues change their exposed/buried status between structures of the family. 

● Inter residue contacts change commonly between structures of the family. 

● Conservation is better explained by the solvent accessibility of multiple structures. 

● Covariation methods predict evolutionary conserved inter residue contacts. 

 

 



  


