Journal of Physics A: Mathematical and Theoretical

ACCEPTED MANUSCRIPT

Quasi-exact solvability and entropies of the one dimensional regularised
Calogero model

To cite this article before publication: Federico M. Pont et al 2018 J. Phys. A: Math. Theor. in press https://doi.org/10.1088/1751-8121/aab85e

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2018 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 200.16.16.13 on 21/03/2018 at 12:55



https://doi.org/10.1088/1751-8121/aab85e
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1751-8121/aab85e

Page 1 of 23 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-108861.R1

Quasi-exact solvability and entropies of the one dimensional

regularised Calogero model

oNOYTULT D WN =

Federico M. Pont,"* Omar Osenda, and Pablo Serra' i

- O
o

LFacultad de Matemdtica, Astronomia y Fisica,
Universidad Nacional de Cordoba and IFEG-CONICET
Ciudad Universitaria, X5016LAFE Cordoba, Argentina
(Dated: February 15, 2018)

—_
NOuUubhwNn=

Abstract

—_ -
O

~
The Calogero model can be regularised through the introduction offa cutoff parameter which
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removes the divergence in the interaction term. In this work we show ghat the one-dimensional
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two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the
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Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polyno-

N
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mials. These eigenfunctions are such that the reduced. density matrix of the two-particle density
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operator can be obtained exactly as well as its entanglement spectrum. We found that the number

w N
o 0

of non-zero eigenvalues of the reduced den§ity, matrix is finite in these cases. The limits for the

w w
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cutoff distance going to zero (Calogero) and infinityhare analysed and all the previously obtained

w W
W

results for the Calogero model are réproduced. Once the exact eigenfunctions are obtained, the

w
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exact von Neumann and Rényi entanglement. entropies are studied to characterise the physical

w w
N O

traits of the model. The quasi-exactly solvable character of the model is assessed studying the

w W
O

numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.
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I. INTRODUCTION

The Calogero model [1] occupies a remarkable place in theoretical and mathematical
physics. It has been linked, to give a few examples, to advances made in quantum Hall

effect [2], random matrices [3], integrability [4] and Yang-Mills theory [5].

Remarkably, the Calogero model variants, the deformed [6, 7], the different generalisa-
tions [8, 9] and the regularised ones [10], inherit many of its properties, a tremd, that was
acknowledged from very early by Sutherland [11]. More recently, it hassbeemshown that the
p—reduced density matrix (p-RDM) of a N-particle one-dimensional Calogero model can
also be obtained exactly [12, 13], as well as the entanglement spectrumy for a discrete set of
the strength interaction parameter (let us recall that the psRDM matrix is obtained when
(N — p) particles are traced out of the density matrix of an N—particle system). Besides,
at these values, the Rényi entanglement entropies show. nom-analytical behaviour [14] in

contradistinction with the von Neumann entropy.

The harmonic confinement potential, present in all the V%riants of the model, was included
more as a mean to keep the particles bounded, sin¢e the interaction between them is mainly
repulsive, rather than as a model for an implementable potential. Many other models,
also share the confinement property with the Calogero model, to name a few, the so-called
spherium [16-18], or other electron gystemstconfined in boxes with different geometries,
as square [19, 20], cylindricaly[21] and spherical [22]. These models present quasi-exact
solvability [15], which means that the spectrum and the eigenfunction are exactly known in
a discrete set of the Hamiltonian parameters. Besides, its behaviour is quite different from
the one observed in extended ;stems, so they posed new challenges to the application of
numerical methods,such asthe DFT method [23, 24] or accurate variational expansions [34].
Recently, there has been @ flurry of activity in the quasi-exact solvability subject [10, 18, 25—
27], while early éxamplesican be found in the works of Kais ef. al. [28] and Taut [29)].
The recent advances made in one- and two-particle models with quasi-exact solvability rely

heavily on the properties of the polynomial solutions of the Heun differential equation [30].

The /broad application of the Heun’s equation and its polynomial solutions to many
different problems, in classical and quantum physics, has been made possible by the work of
Fiziev [31]4 In particular it has been applied to the study of the dynamics of a rotor vibratory

gyroseope’ [32], the calculation of natural occupation numbers in two electron quantum-
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rings [25], the solution of the Schrédinger equation for a particle trapped in a hyperbolic
double-well potential [26], the problem of two electrons confined on a hypersphere [18], one
electron in crossed inhomogeneous magnetic and homogeneous electric fields [27], and in the

study of normal modes in non-rotating black holes [33].

Quite recently, Downing has reported some analytical solutions of the three-dimensional
two-particle regularised Calogero model[10]. The regularisation is dene’introducing a short-
distance cutoff parameter d, which prevents the divergence of the potential when the distance
between the particles goes to zero. Remarkably, the model is quasi-exactly solvable so, for a
given value of d, the exact two-particle wave function can be‘obtained only for a discrete set
of values of the interaction strength parameter g, as is usually denoted in the context of the
Calogero model. At these values, the two-particle wavefunetion is a polynomial function
of the inter-particle distance. As has been shown dm Ref. [12]; when the eigenfunctions of
a multi-particle Calogero model can be written as the pgoduct of a polynomial function
depending on the inter-particle distances, times a/function that depends separately on the
coordinates of each particle, then the p-RDMyand the entanglement spectrum can be both
obtained exactly. Since the Rényi entropy also shews a very particular behaviour for these
discrete set of values, it does beg the question of how many of these features are inherited
by the regularised model. Todthis end, we study the exact solutions of the one-dimensional
two particle regularised modelg'both, their symmetric and anti-symmetric solutions under
particle interchange and their'reduced density matrices. Even though this is a quasi-exactly
solvable model we calculate niumerical solutions to study the whole parameter space of the

Hamiltonian.

This paper'is organised as follows: The regularised Calogero model is presented in Sec-
tion II. In Section IIT the exact symmetric wave functions are thoroughly analysed while the
antisymmetric ones are the subject of Section IV. The von Neumann and Rényi entropies
for the exact two-particle states, together with numerical approximations, are presented in
Section V{ Finally, a discussion of the results and some open questions are presented in

Sectiom V1.
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II. THE MODEL AND ITS EIGENFUNCTIONS

Recently, Downing [10] showed that the three-dimensional two-particle rvegularised
Calogero model is solvable for a discrete set of values of the interacting parameters, In
this work, we address the one dimensional two-particle regularised Calogero Hamiltonian

H=h(1) + h(2) + 42—, (1)
22y + 2 d?
where
1

1
h(i) = §p12 + B r and w9 = |z — 29]. (2)

In particular, we look for a discrete set of exact two-particle Symmetric or antisymmetric
wave functions. We do not assume particular values for the&pin variable, so the symmetric
and antisymmetric functions can be used to construct two-fermions,or two-bosons solutions
depending on the symmetry of the spinorial part of the quantum state.

With the coordinate transformation

1 L

1
X = E(x1+x2) A E(ﬂh — ), (3)

the Hamiltonian Eq. (1) takes the form H = Hx + H,, where

1 d? 1
[ _X2 . 4
1d 1 g/2
H, =%&___ 1 42 : 4b
5d2 2" TR iE (4b)
The eigenfunctions will' be the product of eigenfunctions of each Hamiltonian,
U(ar, 22) = V(X) (), (5)

and the eigenenetgies the sum of the eigenvalues, ¥ = Ex + E,. For the center of mass

Hamiltonian Eqs(4a). we will consider the ground state

1 . ]_ _X2/2

This eigenfunction is symmetric, and the Hamiltonian Eq. (4b) is even in z, that means
that the even (odd) eigenfunctions of the Hamiltonian Eq. (4b) correspond to totally sym-

metrie (antisymmetric) eigenfunctions under particle interchange. The odd eigenfunctions

4
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of Hamiltonian Eq. (4b) are the three-dimensional solutions written by Downing in Ref. [10]
for zero angular momentum times z (see Eq. (8) below).

Following [10], in order to find the eigenfunctions of the relative Hamiltonian Eq. (4b),

oNOYTULT D WN =

we perform two consecutive changes of variables,

_ =0
- O

X

s = <E>2 C () = e PPy(z) and E=—z ; y(€) = (188)f(E) (7)

_ —a
A WN

for the symmetric eigenfunctions, and

_ —a
N O

(5 e = e Ee) wd e—— s - @hone ©

—_
(oo}

~

N —
[« Ve

for the antisymmetric ones. The function f(§) fulfills the standard form of the confluent

NN
N —

Heun differential equation [31],

" B+1  ~y+1Y)\ , [ v B
R R L -y LA )

where the parameters are defined as .

N NN
v bhw

wwwiNNNN
N = O V0N

(RIS 1g-2) v=a-9"2 (0

1
a=d;B=F5;7=1;p= 1

2

w w
W
A~ =

w
(9]

and k* = 2F,. The difference between one-dimensional symmetric or antisymmetric func-

w w
N O

tions is given by the coefficient .= —1/2 and 5 = 1/2, respectively.

w W
O

As usual (see [31]), we define the parameters

>~ b
- O

1 N, 1 d?k?
n = gla—f—ytab-Fy)rp & qTh"~g+2) ; & = v=n—g(atftytay+hy) = ———,

(11)

A D DB
u b wN

and the confluent Heun function is written as

A b~ D
0 N O

F&) = vmla, 8,7, 6,m) €™, (12)

m=0

(S BN, Y
- O Vv

where thercoefficients are given by the recurrence relation

(S BNV IV, B
u b wnN

Amvm - Bmvm—l + C’mrUrrL—2 ; Vo = 1 ; V1 = 0 (13)

U n
N O

where

[ M N
o OV ©
(@)
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Am:1+%, (142)

Bm:1+—oz+6+7—1+n—(—a+5+v)/3—&ﬁ/2+6’y/27 (14b)
m m

Omz%(g+ﬂ—"2”+m—1>. {4c)

We note that the parameters «, v, 6 and 1 and the recurrence relatigons are those of the
three dimensional bosonic case for zero angular momentum [10].

The confluent Heun functions are not square-integrable [30] and the series must be trun-
cated in order to obtain a polynomial of degree N in Eq.(12), which implies, from Eq. (13),

vn+1 = Unie = 0. Therefore the condition
Cm:N—l—Q - 0 (15)

in Eq. (14c) gives the eigenenergies

7F1
k]?vzzEx:4N+6:F1;»EN:Ex+Eg<:2N+%, (16)

where the upper (lower) sign describes symmetric (antisymmetric) states.

Note that the energies Ex of the polynomial selutions are independent of g and d. Since
there is no indication that the eigenfunctions,of the Hamiltonian Eq. (4b) should have the
same energy for any couple of yalues of the parameters g and d, the polynomial solutions with
energy Ey must be restricted to igoenergetic curves g™V)(d) in the (d, g)-plane. Moreover,
the energy Ey must then mateh the energy of one of the polynomial solutions of the Calogero
model for d = 0. The complete\spectrum of the Calogero model for any g is given by

1 3
En:n+§ 1+4g+§, (17)

where n is the principal quantum number [1]. The polynomial solutions of the Calogero

model are defined by anindex p [12] that corresponds to the parametrization

g =pp—1),p=2,3,4..., (18)

and the'spectrum is given by

Epp=n+p+1;n=024...;p=234... . (19)

6
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The regularised Calogero model has a denumerable infinite number of exact polynomial
solutions for a fixed value of d. Each one of them corresponds (in the limit d — 0) to one
of the polynomial solutions of the Calogero model. This correspondence allows to label the

isoenergetic curves g™ (d) with the index p (Eq. 18) by the relation
g (d = 0) = g,. (20)

In other words, the spectrum of the polynomial solutions of the Tegularised” Calogero
model has been labelled with two different sets of indices , Ey (Eq. (16)) and Bj,., (Egs. (19)
and (20)). So, Ex and E,,, must satisfy the relation

5F1
EN:l%m:n+p:2N+—%—. (21)
Note that N and p are not quantum numbers, so we will obtain/ground- and excited-state
eigenfunctions for different values of N and p. It is straightforward to show, using the
Hellman-Feynman theorem, that the curves gl(,N) (d) are m’onotonically increasing functions
of d. So, the number of exact polynomial solutions of the regularised model for a fixed
value of g is given by the number of polynemial solutions of the Calogero model which fulfil

gp < g, see Fig. 4a.

III. SYMMETRIC EIGENFUNCTIONS WITH N =0 AND N =1

The expressions of the polynomial eigenfunctions for a fixed value of N and a given set
N

of parameters can be computed using Eqgs. (12)-(16). The corresponding reduced density

matrices are finite andscan'be obtained following the procedure described in Ref. [12]. For

a better understanding ithis useful to write down the simplest cases N =0 and N = 1.

A. N=0

In thi$ case, Bqi(14c) gives k3 = 5, or Ey = 3. The condition v; = 0 gives the isoenergetic

curve

g=2+4d*, (22)
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0.7 T T T 7
0.6-—
0.5-—
lIJo(O) (x) 0'4'—

0.3F
0.2 —

0.1F

FIG. 1. Symmetric ground state wave function for N = 0, 11)((]?2) (d), for threesdifferent values of the

cutoff length d = 0,1, 2 (full black, dash-dotted red and dashed green lines respectively).

so that g(d = 0) = 2 and, according to Eq. (20), p = 2.3Hence we recast g in Eq. (22)
as géo)(d). From Eq. (21), the only compatible solution isim = 0, which corresponds to a

ground state. The wave function for the reduced_ eoordinate is given by
L

/35 4d? +4d? ’

where the subscripts and superscripts are chosen aecording to the prescription wﬁﬁ) (x). Itis

(23)

interesting to note that wé?;((]) is a minimum (maximum) for d < v/2 (d > v/2 respectively).
This phenomenon is shown iniFig. 1, wherérthe wave function Eq. (23) is plotted for d =
0,d=1and d=2.

For a given two-particle stat{@/)(xl, ), the 1-RDM is defined as

o) = / dz " (2, (Y, 2), (24)

then, replacing Egs. (23) and (6) in Eq.(5), we obtain

0) e_(m2+y2)/2

) (z,y) = THIF a (3+8d? +16d* +2(1 +4d?) (a® +y?) + 8xy + 42%y%) . (25)

Using the orthonormal Hermite functions

) = (29

where Hg(r) are the Hermite polynomials, the 1-RDM can be written as

8
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pa@iy) = 3 pis(d)vila) vi(y). (27)

i.j=0

oNOYTULT D WN =

The 1-RDM above can be cast in matrix form

_ =0
- O

3/8+d%+d* 0 1+2d?
3/4+d2+d* 4v/2(3/4+d2+d%)
1
0 1B/ Y 0 ; (28)

14242 0
44/2(3/4+d2+d4)

—_
N

_\_\_\
v bW
| —
>
w2
—_
—~
QU
N—
Il

1
8(3/4+d?+d%)

—_
N O

and its eigenvalues can be exactly calculated and are given by

N NN = =
N — O VOV

24 4d* 4 4d* £ (1 + 2d%)V/3 + 4d? +4d"

b
* 2(3 + 4d? + 4d*) ’

(29a)

NNNN
o bW

1

Ao = .
A(3/4+ & + db)

(20b)

NN
o0 N

L

N
O

:O These eigenvalues are showed in Fig. 2. Im.the important limit d — 0 we obtain
1

32
33
34

1
>
> EHICSN
1

o
w
ol O §|,_.

36
37
38 3v/2
39
40
41 N

42
43 = 2+ \/57
44 6

45 . ) . . .
46 as reported in Refd[12].. Ford — oo, replacing g, ' (d) in Eq. (1), the interaction potential
47 . . . .

48 becomes a constant, and the 1-RDM correspond to two non-interacting harmonic particles
49
50
51

52
53 100

S wi

whose eigenvalues are

A = =, (31)

W[

in the ground state,

55 d—o0

26 000
57

58

59

60 9
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0.8 -

0.6 -

04 B

0.2f . ~

L
FIG. 2. Eigenvalues of the (N = 0)-reduced, density matrix for the symmetric solution, Ay (black
line), A_ (red line) and \g (green line) (Eq. (29)).as a function of the squared cutoff length d2.

B. N=1

In this case k% = 9, which implies Ey = 5. The value for v, is

T, g) = 1+4d* - 2. (33)

and the condition vy = 0'gives two isoenergetic curves

gr = T+ 6d° £ 25— 12d2 + 4d*. (34)

Performing thefsame analysis for the functions g.(d) as was done previously for géo)(d)7
we obtain g (d.=0) = 12 = p = 4 = ¢,.(d) = ¢\"(d), and similarly g_(d) = ¢\ (d).
Then, Bqu (21)/gives two solutions for the energy, Ey4, corresponding to the ground state

for g = 12¢:and Es,, corresponding to the second excited state for g = 2. gfll) corresponds

to the greund state, with the nodeless wave function

10
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2v/2 (2d* + d2(7 — 2d2 + D)a? + (5 — 2d2 + D)z*) e **/2
m/43/525(5 + D) + 2d2 (60 + 75D + 2d2 (2d2(8 + 6d2 — D) — 3(8 + D))

Yil(x) = , (35)

where D = /25 +4(d? — 3)d®. Note that wéﬁ(x) is a Gaussian times a fourth degree
polynomial, then the 1-RDM is a 5 x 5 matrix. The limiting cases of this wave function for

d— 0 and d — oo are

1 4$46—x2/2 1 6—:22/2
@/J((),Z(a?) 0~ 7UA/I0R and w((),i(x) iee iAo (36)

respectively. The former wave function correspond to the Calogero groundstate for g = 12,
~

and the latter one to the ground state of two non-interacting.particles in an harmonic

potential.

Taking gél) we obtain the second excited state, whose wave function is

2V/2 (2d* + d?(=7 + 2d? + D)a® #(5 — 2d* — D)z*) e **/2

Uy(x) = ,
m/4,/—=525(—5 + D) + 2d? (60 — 75D +2d2 (28%(8 + 6d2 + D) + 3(—8 + D)))
(37)
which has two nodes. In the limit d — 0, the wave function takes the form
(1) > \/5 2006.2 —22/2
2b2,2 (I) d=0 TN \/ﬁﬂ-l/zlx (2[E 5)6 ) (38>

which corresponds to the second,excited state for the Calogero model with g = 2, and for
the limit d — oo is
N
_ Hy(w)e ™/

(1 ‘ _
¢2,2(‘r) d—soo 2\/§7T1/4 N

In this limit, the complete wave function is given by

vler )y, SEMOGANW) = 5 () () + o) ta(a) =t 1) ().

(40)
For two' non-interacting harmonic oscillators the only three products of one-particle eigen-
functions with total energy £ = 5, are exactly those appearing in Eq. (40). Interestingly, the
probability to find the two-particle system in a product of even one-particle eigenfunctions

is equalito the probability to find it in a product of odd ones.

11
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IV. ANTISYMMETRIC EIGENFUNCTIONS WITH N=0

The energy in this case is k3 = 7 or Ey = 4, and the condition v; = 0 gives

g=6+4d* = g"(d), (41)

then, it corresponds to the antisymmetric ground state Ey 3. The reducedswave funétion is

given by

0)
x =
Yoa(@) /415 + 12d2 + 4d*

and the 1-RDM takes the form

, (42)

o~ (@ +y?)/2

/28 (15 + 12d? + 4d*)

Pha(z,y) = (15 + 2442 + 16d* + (B4 °F 4842 + 32d*)zy
+ 6(3 + 4d*) (@ ot v2)bA(3 + 4d®)zy(2® + 3?)

+ 362°y” 482°y°) . (43)

The corresponding matrix in the Hermite basis set4 Eq, (76), is

21 + 24d* % 8d* 0 3v2(3 + 2d4?) 0
[ o (@ 1 0 27 + 24d? + 8d* 0 V6(3 4 2d?)
o] (d) = ,
03 (15 + 1242 + 4dY) | " 32(3 e 0 9 0
0 V6(3 + 2d?) 0 3
(44)
and its eigenvalues, that are shown in Fig. 3, are
N
1 2(99 + 4d%(3 4 d2)(15 + 2d2(3 + d?
Ai:_HE\/(Jr (34 d*)(15 + (+))’ (45)
4 (15 + 2d2(3 + d?))

both with multiplicity, 2. Inthe limit d — 0 we obtain the expressions reported for the

two-fermion Calegero model [12]

7 3
w 0 w5 0
0 9 0 L\/E
0 20 10 2
EICEN . 3 , (46)
oz 0 5% 0
0 Ly/i oo &

whose eigéenvalues are

12
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0.3f -

0.2f -

0.1

~

FIG. 3. Eigenvalues of the (N = 0)-reduced density matrix forithe antisymmetric solution, A4
(black line), A_ (red line) (Eq. (43)), as a function of the squared cutoffllength d2. Note that both

eigenvalues are doubly degenerate.

544/22 .
Ay = 28 47
+ % (47)
For the limit d — oo we get
1000
_ 0100
lim ()] (P | 2 , (48)
T 0000
0000
and A S

1
d%w_ﬁ

which is the antisgymmetric state with the lowest energy for a two non-interacting particles

V(@1,2) | 4o = V) (()??3(1?) (Yo(z1) 1 (w2) — Y1(w1) Po(T2)) (49)

system in an‘harmonic potential.

V. THE VON NEUMANN AND RENYI ENTROPIES

So far,<we have only analysed the quasi-exact solvability property of the regularised

Calogerosimodel. This Section is devoted to analyse the behaviour of the entanglement

13
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16 (b)' ! ) ! ) ! —_— .N:O - ;ym
14f TT e
L — — N=1-asym
12 N=2 sym/ -
N=2 -‘asym

S, 0.8

(N

FIG. 4. (a) Isoenergetic curves g, )(d) where an exact polynomial selutionfof the one-dimensional

regularised Calogero model is known. From bottom to top the solid (dashed) lines correspond to
symmetric (antisymmetric) ground-state wave functions for No= 0,1,2, respectively. The vertical
brown dash-dotted line corresponds to d?> = 2. The dots over this line are those shown at the bottom
of Fig. 5(a) and pinpoint the values of g for which a numbe of eigenvalues of the approximate
1-RDM become null, see the text. The dots@ver the curves géo) (d) and gil)(d) correspond to those
shown at the bottom of Fig. 6. (b) Exact von Neumann entropy of the ground-state wave functions
over the isoenergetic curves géN) (d) showmsin (a). The same colour code is used in both panels.
entropies for both the exact pelynomial solutions and arbitrary pairs of the pair (g, d).

For a given density matrix  with an entanglement spectrum {\;}, its spectral decompo-

sition is N

pP= Z Ai |di) (il (50)

where the |¢;)’stare the eigenvectors or natural orbitals of p. The eigenvalues {);} are also
known as natural eccupation numbers.

The Rényi entropy of pis defined as

S(p) =

g los T, a#l, (51)

wherel@>> 0 (here we use a instead of the more common « parameter to avoid possible

14
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conflicts with the parameter « in Eq. (10)). Besides, it is well known that

lim 5%(p) = Sun(p) = =Tr(plog, p), (52)

where S,n(p) is the von Neumann entropy. In some cases, the mono-parametric family,
of Rényi entropies can be used to shed light over the peculiarities of the entanglement
spectrum, 7.e. the spectrum of the density matrix under study, because of its abilify to
weight differently the eigenvalues of p by changing the value of a. This is 'made clear, by
looking at the expressions of both entropies, Egs. (51) and (52), in terms of the eigenvalues

of p

S(p) =

1 . Ry
—log, (Z /\i> . Syv = — Z Xilog, A, (53)

Let us start by inspecting the isoenergetic curves g\ (d) in the (d, g)-plane. Figure 4(a)

show these curves for all the ground states n = 0. Note that thecurves hit the ordinate axis
at the g values where an exact polynomial solution of the Calogero model can be found [12].
The von Neumann entropies (VNE) along each isoenergetigcurve are presented in Fig. 4(b).
The vINE for the symmetric case goes to zero for large values of the cutoff length parameter
indicating a single natural orbital populations, Conversely, in the antisymmetric case the
vINE converges to a limiting value.of one because the antisymmetrization prevents such
single natural orbital population. Notexthat the vNE at d = 0 is not the same for all curves
and whether symmetric or antisymmetric configurations have larger vINE depends upon the
particular g5 (0) value as shown mil2] for the Calogero model,

We turn now to the study {f the 1-RDM eigenvalues and vNE for arbitrary values of
the parameters in the (d}g)-plane:s The eigenvalues were calculated using a high precision
variational method‘with a symunetrical Hermite-DVR basis set function [35, 36], so the
eigenvalues correspend tora symmetric problem. The method to obtain the eigenvalues of
the 1-RDM from. the approximate two-particle variational wave function has been discussed
elsewhere [37439]. Figure 5(a) shows the typical behaviour of the largest eigenvalues of the
1-RDM for a given value of d as a function of g. There is a discrete set of values of g where
an infinite number of eigenvalues become null. In the following we will show that this set of
values.lies.over the isoenergetic curves g (d).

The valtes of g where a number of eigenvalues become null for a given fixed value of d can

be plotted in the (d, g)-plane. Figure 4(a) shows these values for d? = 2 as filled dots and

15
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T

20 40 60 . 80

~

FIG. 5. (a) Largest approximate eigenvalues of the 1-RDM as a funetion of g. The 1-RDM was
obtained from the variational wave function approximation to the symmetric ground state wave
function for d?> = 2. The coloured dots at the bottom indicate the g values for which a number
of eigenvalues become null, and are also indicated in Eig. 4(a)."(b) Approximate von Neumann

entropy corresponding to the eigenvalues shown in panel\(a).

they match those shown at the bottom of Fig. 5(a). Tt is clear that the values of g where a
number of eigenvalues become null coincide with those found in the previous Sections, since
the curves shown in Fig. 4(a) correspond %onthe analytical equations found for the lowest
eigenvalues corresponding to symmetric and antisymmetric functions, see Eqs. (22),(34) y
(41). Besides, the number of non-zéro natural occupation numbers over each curve is always
the same, and coincides with the number found in Sections III and IV. From bottom to top
in Fig. 4(a) the number is equaho three, five, and so on, for the symmetric eigenvalues. The
same can be said for the eigenvalues corresponding to the antisymmetric eigenfunctions.

Since the isoenergetic eurves g,()N) = ISN)(d) are increasing functions of d?, it is clear that
the values of g where a number of eigenvalues become null are also increasing functions of
d. This can be'appreciated in Figure 6 where the seventh eigenvalue of the 1-RDM of the
symmetric two-particle waye function is shown for several values of d. The sixth and seventh
eigenvalues are the largest eigenvalues that have only two zeros. If )\; is the i-th eigenvalue
of the I-RDM, 'and ¢, is the n-th value of g such that \;(¢),) = 0, then ¢/ < g, and
gi(dy) < gi(dy), ¥ dy < ds.

The:Rényi entropies also provide a tool to identify where the number of non-vanishing

16
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FIG. 6. The seventh largest eigenvalue of the 1-RDM constructed from the variational approxima-
tion to the symmetric ground state wave function. The curves showmncorrespond to three values
of the squared cutoff length d? = 0.5,1.125,2 (black, red.and green,/respectively). The dots on
the abscissa axis indicate the values of g for which the eigenvalue,shows a behaviour compatible
with an almost vanishing quantity. These points are/the same.as those shown in Fig. 4(a) over the

L
isoenergetic curves géo)(d) and gf)(d) for symmetrie solutions.

eigenvalues of the RDM alternates betweenia finite value and infinity. For the Calogero
model it has been shown that the entanglement, spectrum has a numerable infinite number
of non-zero elements in open sets of the interaction parameter. These open sets are separated
from each other by a discrete set.of walues of the interaction parameter, g,, where the number
of non-zero eigenvalues of the entanglement spectrum is finite [14]. As has been shown above
for the regularised Calogero mo?el7 the set of values of the parameter where the entanglement

spectrum is finite depends en the/actual value of d, which implies that g, is a function of d.

The eigenvalues of the l-RIDM for fixed values of d are analytical functions of g. This fact
allows us to assume a conerete analytical expression for the eigenvalues. As a consequence,
explicit expressions for the Rényi entropies and its derivatives can be written. We develop
here the case for symmetrie two-particle wave function (the anti-symmetric case is similar),
where the 1-RDM"has only 2n + 1 non-zero eigenvalues at g = g,, in the following the
dependency with d is dropped to keep the notation as simple as possible.

The following results will only rely on the analyticity of the eigenvalues around isolated

pointsiimthe parameter space where the spectrum is finite. Assuming that

17
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A(@n) + Mg —ga) i i<2m+1
)‘52) (g — Gn)?Fim ifi>2n+1

where )\51), )\Z@) are constants, and k;, > 1 is an integer. Eq. (53) can be written as

5°(9) = 11@%(2 N+ Y A$<g>>

i=2n+2
1 2n+1 '—22:+2 Ai(g)
= 1 log, (Z /\f(g)) +log, | 1+ % (55)
Sl
1 2n+1 '—2Z+2 A¢(g)
o Ta | e (Zl A?(9)) +— = Shlg) +sh(9) -

In2 2:1 A(qg)

The last equality defines the quantities S%(g) and s®(g)aSey it is clear that S*(g,) = S*(g,),
and s%(g,) = 0. Then, the derivative of the Rényilentropy at g = g, can be obtained as

05°(g)|  _ 95| |
ag 9=gn ag 9=gn
00 ol e’} " 2n+1 a1
Yo AT (9)0hi(g) X2 M) 2o AT (9)05M(9)
a i=2n+2 _ i=2n42 i=1 (5 6)
In2(1—a) 2§1)\“( ) 2n+1)\ 2
i \g i
-« (Svo) ),

The first term in Eq. (56).isfa well-defined constant and the third one is zero. As a result,
the analytical properties of the derivative are determined by the second term. Using the
analytic expansion of the cigenvalues, Eq. (54), and assuming that k,, is the minimum value

of k; , the leading asymptotic behavior of s is

52(9) ~ C, ((g - gn)%m)a = C, ’g - gnlka ) (57)

9g—3n

where y = 2a, which implies that

~ XknCylg — gu|* " sign(g — gn) - (58)

89 9—gn
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FIG. 7. Rényi entropies as a function of the interaction parameter g-and a cutoff length parameter
d? = 0.5. The shown curves correspond to the parameter values a = 0.1,0.15,0.2,0.3 (black, red,
green and blue line respectively). The kinks in all the curves arélocated at values of g for which
there is an exact finite expansion of the 1-RDM, which renders a finite Hilbert. As discussed in the
text, the kinks are a consequence of the analytic properties of the vanishing eigenvalues at those

values of g.

Collecting the results of Eqgs. (54) to (58), the derivative of the Rényi entropy can be ex-

pressed as

—sign(C,) x oo for g— g, ik, <1
sign(Cy) x oo for g — g
05”
D Al o goa | 59)
99 lgegn if xk,=1
0gS%(gn) +C for g— gt
\ 0352 (gn) if xk, >1.

Even tough the derivative of S is continuous for y > 1, it is straightforward to see from
the eigenvalues asymptotic behaviour, Eq. (54), that the second derivative diverges for
1 < xk,, < 2, but it is analytical for xk,, = 2, i.e the kink at yk,, = 1 is smoothed until it
disappears at yk,, = 2.

Figure 7 shows the behaviour of S as a function of g for different values of the parameter
a at d?> =40.5. The kinks at fixed values of g can be easily appreciated, as well as their

softeningdfor increasing values of a as predicted by Eq. (59). Observe that the bottom curve
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corresponds to the largest value of a depicted, while the upper curve corresponds to the
smallest one. Keeping d fixed ensures that the interaction values g, (where only a finite
number of eigenvalues are non-zero) are also kept fixed and, as a consequence, thekinks in

the curves calculated for different values of a are located at the same abscissas.

VI. DISCUSSION

Models with quasi-exact solvability have wave functions that are pélynomial functions on
the inter-particle distance so, at least for those that do not depend on any angular variable
but the ones on the inter-particle radius, they should also possess exac¢t and finite reduced
density matrices. This last problem is open for three dimensional problems with non-trivial
angular momentum.

For the model analysed in this work, the quasi-exact selvability character is intertwined
with the fact that the Calogero model has exact solutions that can be expressed as polyno-
mials in the interparticle distance. So, when we take the limit d — 0 over the isoenergetic
curves we are able to recover all the quantities corresponding to the Calogero model. Then,
it is natural to wonder if a given model that has quasi-exact solvability, also has an exactly
solvable limiting model.

Recently, there has been a numberiof works dealing with the properties of the entan-
glement spectrum, or natural eccupation numbers, in particular the phenomenon of pin-
ning [40-42]. The pinning is relatedito the the generalised Pauli constraints (GPC) which
are a set of (in)equalities that \generalise the Pauli exclusion principle. These constraints
are defined trough affine/inequalities that confine the values of the 1-RDM eigenvalues to
D-dimensional polytepes, where/D is the dimension of the 1-particle Hilbert space. Pin-
ning, or quasi-pinning, of the 4-RDM eigenvalues of a solution refers to the near-saturation
of such GPC’s. Much of the understanding has been obtained analysing systems of coupled
harmonic oscillators (Meshinsky model), because they are amenable to a complete analytical
treatment. The nearly exclusive use of harmonic oscillator models is not surprising since
models awith exact solutions are scarce. Even more scarce are models which also have exact
and finiteszreduced density matrices, as the one presented in this work together with the
Calogero moedel. In this sense, Calogero and regularised Calogero models provide exact so-

lutionsrand 1-RDM eigenvalues which may help the efforts made to understand the pinning
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or quasi-pinning phenomenon (in principle, for any dimension D).

Our results shown that the Rényi entropy is a capable tool to identify systems with exact
and finite RDM. Nevertheless, to improve its usability it is necessary to determine if a set
of very small eigenvalues are effectively zero or not. To accomplish this it is néceéssary to
identify if, for example, performing a finite size analysis of the numerical eigefwvalues at the
parameter where the system has an exact and finite RDM the behaviour igi(quite) different
from the behaviour where there is not such a RDM. It is clear that for modelswith wave
functions with only a polynomial dependency on the inter-particlesdistance it is possible
to choose a finite basis for the Hilbert space where the wave funetion to be analysed is
contained exactly, resulting in an exact RDM. In this case, the RDM.derived from the finite
basis contains all the information required to produce a finitelumber ofmon-zero eigenvalues
and a number of exactly zero ones. Conversely, when the finite basis set used to analyse a
given wave function does not contain the exact wave funetion under consideration there will
be a number of eigenvalues that should be zero in ghe limit of an infinite basis set, but for
a finite basis they are not, and a numerical critefion is in grder. Work around these lines is

in progress.
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