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Abstract

The Calogero model can be regularised through the introduction of a cutoff parameter which

removes the divergence in the interaction term. In this work we show that the one-dimensional

two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the

Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polyno-

mials. These eigenfunctions are such that the reduced density matrix of the two-particle density

operator can be obtained exactly as well as its entanglement spectrum. We found that the number

of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the

cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained

results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the

exact von Neumann and Rényi entanglement entropies are studied to characterise the physical

traits of the model. The quasi-exactly solvable character of the model is assessed studying the

numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.

∗ pont@famaf.unc.edu.ar
† osenda@famaf.unc.edu.ar
‡ serra@famaf.unc.edu.ar

1

Page 1 of 23 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-108861.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Page 1 of 23 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-108861.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



I. INTRODUCTION

The Calogero model [1] occupies a remarkable place in theoretical and mathematical

physics. It has been linked, to give a few examples, to advances made in quantum Hall

effect [2], random matrices [3], integrability [4] and Yang-Mills theory [5].

Remarkably, the Calogero model variants, the deformed [6, 7], the different generalisa-

tions [8, 9] and the regularised ones [10], inherit many of its properties, a trend that was

acknowledged from very early by Sutherland [11]. More recently, it has been shown that the

p−reduced density matrix (p-RDM) of a N -particle one-dimensional Calogero model can

also be obtained exactly [12, 13], as well as the entanglement spectrum, for a discrete set of

the strength interaction parameter (let us recall that the p-RDM matrix is obtained when

(N − p) particles are traced out of the density matrix of an N−particle system). Besides,

at these values, the Rényi entanglement entropies show non-analytical behaviour [14] in

contradistinction with the von Neumann entropy.

The harmonic confinement potential, present in all the variants of the model, was included

more as a mean to keep the particles bounded, since the interaction between them is mainly

repulsive, rather than as a model for an implementable potential. Many other models,

also share the confinement property with the Calogero model, to name a few, the so-called

spherium [16–18], or other electron systems confined in boxes with different geometries,

as square [19, 20], cylindrical [21] and spherical [22]. These models present quasi-exact

solvability [15], which means that the spectrum and the eigenfunction are exactly known in

a discrete set of the Hamiltonian parameters. Besides, its behaviour is quite different from

the one observed in extended systems, so they posed new challenges to the application of

numerical methods, such as the DFT method [23, 24] or accurate variational expansions [34].

Recently, there has been a flurry of activity in the quasi-exact solvability subject [10, 18, 25–

27], while early examples can be found in the works of Kais et. al. [28] and Taut [29].

The recent advances made in one- and two-particle models with quasi-exact solvability rely

heavily on the properties of the polynomial solutions of the Heun differential equation [30].

The broad application of the Heun’s equation and its polynomial solutions to many

different problems, in classical and quantum physics, has been made possible by the work of

Fiziev [31]. In particular it has been applied to the study of the dynamics of a rotor vibratory

gyroscope [32], the calculation of natural occupation numbers in two electron quantum-
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rings [25], the solution of the Schrödinger equation for a particle trapped in a hyperbolic

double-well potential [26], the problem of two electrons confined on a hypersphere [18], one

electron in crossed inhomogeneous magnetic and homogeneous electric fields [27], and in the

study of normal modes in non-rotating black holes [33].

Quite recently, Downing has reported some analytical solutions of the three-dimensional

two-particle regularised Calogero model[10]. The regularisation is done introducing a short-

distance cutoff parameter d, which prevents the divergence of the potential when the distance

between the particles goes to zero. Remarkably, the model is quasi-exactly solvable so, for a

given value of d, the exact two-particle wave function can be obtained only for a discrete set

of values of the interaction strength parameter g, as is usually denoted in the context of the

Calogero model. At these values, the two-particle wave function is a polynomial function

of the inter-particle distance. As has been shown in Ref. [12], when the eigenfunctions of

a multi-particle Calogero model can be written as the product of a polynomial function

depending on the inter-particle distances, times a function that depends separately on the

coordinates of each particle, then the p-RDM and the entanglement spectrum can be both

obtained exactly. Since the Rényi entropy also shows a very particular behaviour for these

discrete set of values, it does beg the question of how many of these features are inherited

by the regularised model. To this end, we study the exact solutions of the one-dimensional

two particle regularised model, both their symmetric and anti-symmetric solutions under

particle interchange and their reduced density matrices. Even though this is a quasi-exactly

solvable model we calculate numerical solutions to study the whole parameter space of the

Hamiltonian.

This paper is organised as follows: The regularised Calogero model is presented in Sec-

tion II. In Section III the exact symmetric wave functions are thoroughly analysed while the

antisymmetric ones are the subject of Section IV. The von Neumann and Rényi entropies

for the exact two-particle states, together with numerical approximations, are presented in

Section V. Finally, a discussion of the results and some open questions are presented in

Section VI.

3

Page 3 of 23 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-108861.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Page 3 of 23 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-108861.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



II. THE MODEL AND ITS EIGENFUNCTIONS

Recently, Downing [10] showed that the three-dimensional two-particle regularised

Calogero model is solvable for a discrete set of values of the interacting parameter. In

this work, we address the one dimensional two-particle regularised Calogero Hamiltonian

H = h(1) + h(2) +
g

x212 + 2 d2
, (1)

where

h(i) =
1

2
p2i +

1

2
x2i and x12 = |x1 − x2| . (2)

In particular, we look for a discrete set of exact two-particle symmetric or antisymmetric

wave functions. We do not assume particular values for the spin variable, so the symmetric

and antisymmetric functions can be used to construct two-fermions or two-bosons solutions

depending on the symmetry of the spinorial part of the quantum state.

With the coordinate transformation

X =
1√
2
(x1 + x2) ; x =

1√
2
(x1 − x2) , (3)

the Hamiltonian Eq. (1) takes the form H = HX +Hx, where

HX = −1

2

d2

dX2
+

1

2
X2 ; (4a)

Hx = −1

2

d2

dx2
+

1

2
x2 +

g/2

x2 + d2
. (4b)

The eigenfunctions will be the product of eigenfunctions of each Hamiltonian,

ψ(x1, x2) = Ψ(X)ψ(x), (5)

and the eigenenergies the sum of the eigenvalues, E = EX + Ex. For the center of mass

Hamiltonian Eq.(4a) we will consider the ground state

EX =
1

2
; Ψ(X) =

1

π1/4
e−X2/2 . (6)

This eigenfunction is symmetric, and the Hamiltonian Eq. (4b) is even in x, that means

that the even (odd) eigenfunctions of the Hamiltonian Eq. (4b) correspond to totally sym-

metric (antisymmetric) eigenfunctions under particle interchange. The odd eigenfunctions

4
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of Hamiltonian Eq. (4b) are the three-dimensional solutions written by Downing in Ref. [10]

for zero angular momentum times x (see Eq. (8) below).

Following [10], in order to find the eigenfunctions of the relative Hamiltonian Eq. (4b),

we perform two consecutive changes of variables,

z =
(x
d

)2
; ψ(z) = e−d2z/2y(z) and ξ = −z ; y(ξ) = (1− ξ)f(ξ) (7)

for the symmetric eigenfunctions, and

z =
(x
d

)2
; ψ(z) = e−d2z/2

√
z y(z) and ξ = −z ; y(ξ) = (1− ξ)f(ξ) (8)

for the antisymmetric ones. The function f(ξ) fulfills the standard form of the confluent

Heun differential equation [31],

f ′′ +

(
α +

β + 1

ξ
+
γ + 1

ξ − 1

)
f ′ +

(
µ

ξ
+

ν

ξ − 1

)
f = 0 , (9)

where the parameters are defined as

α = d2 ; β = ∓1

2
; γ = 1 ; µ =

1

4

(
d2(1− k2) + g − 2

)
; ν = d2 − g − 2

4
. (10)

and k2 = 2Ex. The difference between one-dimensional symmetric or antisymmetric func-

tions is given by the coefficient β = −1/2 and β = 1/2, respectively.

As usual (see [31]), we define the parameters

η =
1

2
(α−β−γ+αβ−βγ)−µ =

1

4
(d2k2−g+2) ; δ = ν−η−1

2
(α+β+γ+αγ+βγ) = −d

2k2

4
,

(11)

and the confluent Heun function is written as

f(ξ) =
∞∑

m=0

vm(α, β, γ, δ, η) ξ
m , (12)

where the coefficients are given by the recurrence relation

Amvm = Bmvm−1 + Cmvm−2 ; v0 = 1 ; v−1 = 0 (13)

where

5
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Am = 1 +
β

m
, (14a)

Bm = 1 +
−α + β + γ − 1

m
+
η − (−α + β + γ)/2− αβ/2 + βγ/2

m2
, (14b)

Cm =
α

m2

(
δ

α
+
β + γ

2
+m− 1

)
. (14c)

We note that the parameters α, γ, δ and η and the recurrence relations are those of the

three dimensional bosonic case for zero angular momentum [10].

The confluent Heun functions are not square-integrable [30] and the series must be trun-

cated in order to obtain a polynomial of degree N in Eq.(12), which implies, from Eq. (13),

vN+1 = vN+2 = 0. Therefore the condition

Cm=N+2 = 0 (15)

in Eq. (14c) gives the eigenenergies

k2N = 2Ex = 4N + 6∓ 1 ⇒ EN = Ex + EX = 2N +
7∓ 1

2
, (16)

where the upper (lower) sign describes symmetric (antisymmetric) states.

Note that the energies EN of the polynomial solutions are independent of g and d. Since

there is no indication that the eigenfunctions of the Hamiltonian Eq. (4b) should have the

same energy for any couple of values of the parameters g and d, the polynomial solutions with

energy EN must be restricted to isoenergetic curves g(N)(d) in the (d, g)-plane. Moreover,

the energy EN must then match the energy of one of the polynomial solutions of the Calogero

model for d = 0. The complete spectrum of the Calogero model for any g is given by

En = n+
1

2

√
1 + 4g +

3

2
, (17)

where n is the principal quantum number [1]. The polynomial solutions of the Calogero

model are defined by an index p [12] that corresponds to the parametrization

gp = p(p− 1) , p = 2, 3, 4 . . . , (18)

and the spectrum is given by

En;p = n+ p+ 1 ; n = 0, 2, 4 . . . ; p = 2, 3, 4 . . . . (19)

6
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The regularised Calogero model has a denumerable infinite number of exact polynomial

solutions for a fixed value of d. Each one of them corresponds (in the limit d → 0) to one

of the polynomial solutions of the Calogero model. This correspondence allows to label the

isoenergetic curves g(N)(d) with the index p (Eq. 18) by the relation

g(N)
p (d = 0) = gp. (20)

In other words, the spectrum of the polynomial solutions of the regularised Calogero

model has been labelled with two different sets of indices , EN (Eq. (16)) and En;p (Eqs. (19)

and (20)). So, EN and En;p must satisfy the relation

EN = En;p ⇒ n+ p = 2N +
5∓ 1

2
. (21)

Note that N and p are not quantum numbers, so we will obtain ground- and excited-state

eigenfunctions for different values of N and p. It is straightforward to show, using the

Hellman-Feynman theorem, that the curves g
(N)
p (d) are monotonically increasing functions

of d. So, the number of exact polynomial solutions of the regularised model for a fixed

value of g is given by the number of polynomial solutions of the Calogero model which fulfil

gp < g, see Fig. 4a.

III. SYMMETRIC EIGENFUNCTIONS WITH N = 0 AND N = 1

The expressions of the polynomial eigenfunctions for a fixed value of N and a given set

of parameters can be computed using Eqs. (12)-(16). The corresponding reduced density

matrices are finite and can be obtained following the procedure described in Ref. [12]. For

a better understanding it is useful to write down the simplest cases N = 0 and N = 1.

A. N=0

In this case, Eq.(14c) gives k2N = 5, or EN = 3. The condition v1 = 0 gives the isoenergetic

curve

g = 2 + 4d2 , (22)

7
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ψ0
(0) (x)

FIG. 1. Symmetric ground state wave function for N = 0, ψ
(0)
0,2(d), for three different values of the

cutoff length d = 0, 1, 2 (full black, dash-dotted red and dashed green lines respectively).

so that g(d = 0) = 2 and, according to Eq. (20), p = 2. Hence we recast g in Eq. (22)

as g
(0)
2 (d). From Eq. (21), the only compatible solution is n = 0, which corresponds to a

ground state. The wave function for the reduced coordinate is given by

ψ
(0)
0,2(x) =

2(d2 + x2)

π1/4
√
3 + 4d2 + 4d4

e−x2/2 , (23)

where the subscripts and superscripts are chosen according to the prescription ψ
(N)
n,p (x). It is

interesting to note that ψ
(0)
0,2(0) is a minimum (maximum) for d <

√
2 (d >

√
2 respectively).

This phenomenon is shown in Fig. 1, where the wave function Eq. (23) is plotted for d =

0, d = 1 and d = 2.

For a given two-particle state ψ(x1, x2), the 1-RDM is defined as

ρ(x, y) =

∫
dz ψ∗(x, z)ψ(y, z), (24)

then, replacing Eqs. (23) and (6) in Eq.(5), we obtain

ρ
(0)
0,2(x, y) =

e−(x2+y2)/2

4
√
π (3 + 4d2 + 4d4)

(3+8d2+16d4+2(1+4d2)(x2+ y2)+8xy+4x2y2) . (25)

Using the orthonormal Hermite functions

ψk(x) =
e−

1
2
x2
Hk(x)√

2kk!π1/2
, (26)

where Hk(x) are the Hermite polynomials, the 1-RDM can be written as

8

Page 8 of 23AUTHOR SUBMITTED MANUSCRIPT - JPhysA-108861.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Page 8 of 23AUTHOR SUBMITTED MANUSCRIPT - JPhysA-108861.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



ρ
(0)
0,2(x; y) =

2∑
i,j=0

ρi,j(d)ψi(x)ψj(y) . (27)

The 1-RDM above can be cast in matrix form

[
ρ
(0)
0,2

]
(d) =


3/8+d2+d4

3/4+d2+d4
0 1+2d2

4
√
2(3/4+d2+d4)

0 1
4(3/4+d2+d4)

0

1+2d2

4
√
2(3/4+d2+d4)

0 1
8(3/4+d2+d4)

 , (28)

and its eigenvalues can be exactly calculated and are given by

λ± =
2 + 4d2 + 4d4 ± (1 + 2d2)

√
3 + 4d2 + 4d4

2(3 + 4d2 + 4d4)
, (29a)

λo =
1

4(3/4 + d2 + d4)
. (29b)

These eigenvalues are showed in Fig. 2. In the important limit d→ 0 we obtain

[
ρ
(0)
0,2

]
(0) =


1
2

0 1
3
√
2

0 1
3

0

1
3
√
2
0 1

6

 , (30)

whose eigenvalues are

λ± =
2±

√
3

6
, λo =

1

3
, (31)

as reported in Ref. [12]. For d → ∞, replacing g
(0)
2 (d) in Eq. (1), the interaction potential

becomes a constant, and the 1-RDM correspond to two non-interacting harmonic particles

in the ground state,

lim
d→∞

[
ρ
(0)
0,2

]
(d) =


1 0 0

0 0 0

0 0 0

 . (32)

9
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FIG. 2. Eigenvalues of the (N = 0)-reduced density matrix for the symmetric solution, λ+ (black

line), λ− (red line) and λ0 (green line) (Eq. (29)), as a function of the squared cutoff length d2.

B. N=1

In this case k2N = 9, which implies EN = 5. The value for v1 is

v1(d, g) = 1 + 4d2 − g

2
, (33)

and the condition v2 = 0 gives two isoenergetic curves

g± = 7 + 6d2 ±
√
25− 12d2 + 4d4 . (34)

Performing the same analysis for the functions g±(d) as was done previously for g
(0)
2 (d),

we obtain g+(d = 0) = 12 ⇒ p = 4 ⇒ g+(d) = g
(1)
4 (d), and similarly g−(d) = g

(1)
2 (d).

Then, Eq. (21) gives two solutions for the energy, E0,4, corresponding to the ground state

for g = 12, and E2,2 corresponding to the second excited state for g = 2. g
(1)
4 corresponds

to the ground state, with the nodeless wave function

10
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ψ
(1)
0,4(x) =

2
√
2 (2d4 + d2(7− 2d2 +D)x2 + (5− 2d2 +D)x4) e−x2/2

π1/4
√
525(5 +D) + 2d2 (60 + 75D + 2d2 (2d2(8 + 6d2 −D)− 3(8 +D)))

, (35)

where D =
√

25 + 4(d2 − 3)d2. Note that ψ
(1)
0,4(x) is a Gaussian times a fourth degree

polynomial, then the 1-RDM is a 5× 5 matrix. The limiting cases of this wave function for

d→ 0 and d→ ∞ are

ψ
(1)
0,4(x)

∣∣∣
d=0

=
4x4e−x2/2

π1/4
√
105

and ψ
(1)
0,4(x)

∣∣∣
d→∞

=
e−x2/2

π1/4
, (36)

respectively. The former wave function correspond to the Calogero ground state for g = 12,

and the latter one to the ground state of two non-interacting particles in an harmonic

potential.

Taking g
(1)
2 we obtain the second excited state, whose wave function is

ψ
(1)
2,2(x) =

2
√
2 (2d4 + d2(−7 + 2d2 +D)x2 + (5− 2d2 −D)x4) e−x2/2

π1/4
√

−525(−5 +D) + 2d2 (60− 75D + 2d2 (2d2(8 + 6d2 +D) + 3(−8 +D)))
,

(37)

which has two nodes. In the limit d→ 0, the wave function takes the form

ψ
(1)
2,2(x)

∣∣∣
d=0

=

√
2√

15π1/4
x2(2x2 − 5)e−x2/2 , (38)

which corresponds to the second excited state for the Calogero model with g = 2, and for

the limit d→ ∞ is

ψ
(1)
2,2(x)

∣∣∣
d→∞

=
H2(x)e

−x2/2

2
√
2π1/4

. (39)

In this limit, the complete wave function is given by

ψ(x1, x2)|d→∞ = Ψ(X) ψ
(1)
2,2(x)

∣∣∣
d→∞

=
1

2
(ψ2(x1)ψ0(x2) + ψ0(x1)ψ2(x2))−

1√
2
ψ1(x1)ψ1(x2) .

(40)

For two non-interacting harmonic oscillators the only three products of one-particle eigen-

functions with total energy E = 5, are exactly those appearing in Eq. (40). Interestingly, the

probability to find the two-particle system in a product of even one-particle eigenfunctions

is equal to the probability to find it in a product of odd ones.
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IV. ANTISYMMETRIC EIGENFUNCTIONS WITH N=0

The energy in this case is k2N = 7 or EN = 4, and the condition v1 = 0 gives

g = 6 + 4d2 = g
(0)
3 (d) , (41)

then, it corresponds to the antisymmetric ground state E0,3. The reduced wave function is

given by

ψ
(0)
0,3(x) =

2
√
2x(d2 + x2)

π1/4
√
15 + 12d2 + 4d4

e−x2/2 , (42)

and the 1-RDM takes the form

ρ
(0)
0,3(x, y) =

e−(x2+y2)/2

π1/28 (15 + 12d2 + 4d4)

(
15 + 24d2 + 16d4 + (54 + 48d2 + 32d4)xy

+ 6(3 + 4d2)(x2 + y2) + 4(3 + 4d2)xy(x2 + y2)

+ 36x2y2 + 8x3y3
)
. (43)

The corresponding matrix in the Hermite basis set, Eq. (26), is

[
ρ
(0)
0,3

]
(d) =

1

4(15 + 12d2 + 4d4)


21 + 24d2 + 8d4 0 3

√
2(3 + 2d2) 0

0 27 + 24d2 + 8d4 0
√
6(3 + 2d2)

3
√
2(3 + 2d2) 0 9 0

0
√
6(3 + 2d2) 0 3

 ,

(44)

and its eigenvalues, that are shown in Fig. 3, are

λ± =
1

4

[
1±

√
2(99 + 4d2(3 + d2)(15 + 2d2(3 + d2))

(15 + 2d2(3 + d2))

]
, (45)

both with multiplicity 2. In the limit d → 0 we obtain the expressions reported for the

two-fermion Calogero model [12]

[
ρ
(0)
0,3

]
(0) =


7
20

0 3
10

√
2

0

0 9
20

0 1
10

√
3
2

3
10

√
2

0 3
20

0

0 1
10

√
3
2

0 1
20

 , (46)

whose eigenvalues are
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FIG. 3. Eigenvalues of the (N = 0)-reduced density matrix for the antisymmetric solution, λ+

(black line), λ− (red line) (Eq. (43)), as a function of the squared cutoff length d2. Note that both

eigenvalues are doubly degenerate.

λ± =
5±

√
22

20
. (47)

For the limit d→ ∞ we get

lim
d→∞

[
ρ
(0)
0,3

]
(d) =


1
2
0 0 0

0 1
2
0 0

0 0 0 0

0 0 0 0

 , (48)

and

ψ(x1, x2)|d→∞ = Ψ(X) ψ
(0)
0,3(x)

∣∣∣
d→∞

=
1√
2
(ψ0(x1)ψ1(x2)− ψ1(x1)ψ0(x2)) , (49)

which is the antisymmetric state with the lowest energy for a two non-interacting particles

system in an harmonic potential.

V. THE VON NEUMANN AND RÉNYI ENTROPIES

So far, we have only analysed the quasi-exact solvability property of the regularised

Calogero model. This Section is devoted to analyse the behaviour of the entanglement
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FIG. 4. (a) Isoenergetic curves g
(N)
p (d) where an exact polynomial solution of the one-dimensional

regularised Calogero model is known. From bottom to top the solid (dashed) lines correspond to

symmetric (antisymmetric) ground-state wave functions for N = 0, 1, 2, respectively. The vertical

brown dash-dotted line corresponds to d2 = 2. The dots over this line are those shown at the bottom

of Fig. 5(a) and pinpoint the values of g for which a number of eigenvalues of the approximate

1-RDM become null, see the text. The dots over the curves g
(0)
2 (d) and g

(1)
4 (d) correspond to those

shown at the bottom of Fig. 6. (b) Exact von Neumann entropy of the ground-state wave functions

over the isoenergetic curves g
(N)
p (d) shown in (a). The same colour code is used in both panels.

entropies for both the exact polynomial solutions and arbitrary pairs of the pair (g, d).

For a given density matrix ρ with an entanglement spectrum {λi}, its spectral decompo-

sition is

ρ =
∑
i

λi |ϕi⟩ ⟨ϕi| , (50)

where the |ϕi⟩’s are the eigenvectors or natural orbitals of ρ. The eigenvalues {λi} are also

known as natural occupation numbers.

The Rényi entropy of ρ is defined as

Sa(ρ) =
1

1− a
log2 Trρ

a , a ̸= 1 , (51)

where a > 0 (here we use a instead of the more common α parameter to avoid possible
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conflicts with the parameter α in Eq. (10)). Besides, it is well known that

lim
a→1

Sa(ρ) = SvN(ρ) = −Tr(ρ log2 ρ), (52)

where SvN(ρ) is the von Neumann entropy. In some cases, the mono-parametric family

of Rényi entropies can be used to shed light over the peculiarities of the entanglement

spectrum, i.e. the spectrum of the density matrix under study, because of its ability to

weight differently the eigenvalues of ρ by changing the value of a. This is made clear by

looking at the expressions of both entropies, Eqs. (51) and (52), in terms of the eigenvalues

of ρ

Sa(ρ) =
1

1− a
log2

(∑
i

λai

)
, SvN = −

∑
i

λi log2 λi. (53)

Let us start by inspecting the isoenergetic curves g
(N)
p (d) in the (d, g)-plane. Figure 4(a)

show these curves for all the ground states n = 0. Note that the curves hit the ordinate axis

at the g values where an exact polynomial solution of the Calogero model can be found [12].

The von Neumann entropies (vNE) along each isoenergetic curve are presented in Fig. 4(b).

The vNE for the symmetric case goes to zero for large values of the cutoff length parameter

indicating a single natural orbital population. Conversely, in the antisymmetric case the

vNE converges to a limiting value of one because the antisymmetrization prevents such

single natural orbital population. Note that the vNE at d = 0 is not the same for all curves

and whether symmetric or antisymmetric configurations have larger vNE depends upon the

particular g
(N)
p (0) value as shown in [12] for the Calogero model.

We turn now to the study of the 1-RDM eigenvalues and vNE for arbitrary values of

the parameters in the (d, g)-plane. The eigenvalues were calculated using a high precision

variational method with a symmetrical Hermite-DVR basis set function [35, 36], so the

eigenvalues correspond to a symmetric problem. The method to obtain the eigenvalues of

the 1-RDM from the approximate two-particle variational wave function has been discussed

elsewhere [37–39]. Figure 5(a) shows the typical behaviour of the largest eigenvalues of the

1-RDM for a given value of d as a function of g. There is a discrete set of values of g where

an infinite number of eigenvalues become null. In the following we will show that this set of

values lies over the isoenergetic curves g
(N)
p (d).

The values of g where a number of eigenvalues become null for a given fixed value of d can

be plotted in the (d, g)-plane. Figure 4(a) shows these values for d2 = 2 as filled dots and
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FIG. 5. (a) Largest approximate eigenvalues of the 1-RDM as a function of g. The 1-RDM was

obtained from the variational wave function approximation to the symmetric ground state wave

function for d2 = 2. The coloured dots at the bottom indicate the g values for which a number

of eigenvalues become null, and are also indicated in Fig. 4(a). (b) Approximate von Neumann

entropy corresponding to the eigenvalues shown in panel (a).

they match those shown at the bottom of Fig. 5(a). It is clear that the values of g where a

number of eigenvalues become null coincide with those found in the previous Sections, since

the curves shown in Fig. 4(a) correspond to the analytical equations found for the lowest

eigenvalues corresponding to symmetric and antisymmetric functions, see Eqs. (22),(34) y

(41). Besides, the number of non-zero natural occupation numbers over each curve is always

the same, and coincides with the number found in Sections III and IV. From bottom to top

in Fig. 4(a) the number is equal to three, five, and so on, for the symmetric eigenvalues. The

same can be said for the eigenvalues corresponding to the antisymmetric eigenfunctions.

Since the isoenergetic curves g
(N)
p = g

(N)
p (d) are increasing functions of d2, it is clear that

the values of g where a number of eigenvalues become null are also increasing functions of

d. This can be appreciated in Figure 6 where the seventh eigenvalue of the 1-RDM of the

symmetric two-particle wave function is shown for several values of d. The sixth and seventh

eigenvalues are the largest eigenvalues that have only two zeros. If λi is the i-th eigenvalue

of the 1-RDM, and gin is the n-th value of g such that λi(g
i
n) = 0, then gin < gin+1 and

gin(d1) < gin(d2), ∀ d1 < d2.

The Rényi entropies also provide a tool to identify where the number of non-vanishing
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FIG. 6. The seventh largest eigenvalue of the 1-RDM constructed from the variational approxima-

tion to the symmetric ground state wave function. The curves shown correspond to three values

of the squared cutoff length d2 = 0.5, 1.125, 2 (black, red and green, respectively). The dots on

the abscissa axis indicate the values of g for which the eigenvalue shows a behaviour compatible

with an almost vanishing quantity. These points are the same as those shown in Fig. 4(a) over the

isoenergetic curves g
(0)
2 (d) and g

(1)
4 (d) for symmetric solutions.

eigenvalues of the RDM alternates between a finite value and infinity. For the Calogero

model it has been shown that the entanglement spectrum has a numerable infinite number

of non-zero elements in open sets of the interaction parameter. These open sets are separated

from each other by a discrete set of values of the interaction parameter, ḡn, where the number

of non-zero eigenvalues of the entanglement spectrum is finite [14]. As has been shown above

for the regularised Calogero model, the set of values of the parameter where the entanglement

spectrum is finite depends on the actual value of d, which implies that ḡn is a function of d.

The eigenvalues of the 1-RDM for fixed values of d are analytical functions of g. This fact

allows us to assume a concrete analytical expression for the eigenvalues. As a consequence,

explicit expressions for the Rényi entropies and its derivatives can be written. We develop

here the case for symmetric two-particle wave function (the anti-symmetric case is similar),

where the 1-RDM has only 2n + 1 non-zero eigenvalues at g = ḡn, in the following the

dependency with d is dropped to keep the notation as simple as possible.

The following results will only rely on the analyticity of the eigenvalues around isolated

points in the parameter space where the spectrum is finite. Assuming that
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λi(g) ∼


λi(ḡn) + λ

(1)
i (g − ḡn) if i ≤ 2n+ 1

for g → ḡn ,

λ
(2)
i (g − ḡn)

2ki,n if i > 2n+ 1

(54)

where λ
(1)
i , λ

(2)
i are constants, and ki,n ≥ 1 is an integer. Eq. (53) can be written as

Sa(g) =
1

1− a
log2

(
2n+1∑
i=1

λai (g) +
∞∑

i=2n+2

λai (g)

)

=
1

1− a

log2

(
2n+1∑
i=1

λai (g)

)
+ log2

1 +

∞∑
i=2n+2

λai (g)

2n+1∑
i=1

λai (g)


 (55)

∼
g→ḡn

1

1− a

log2

(
2n+1∑
i=1

λai (g)

)
+

∞∑
i=2n+2

λai (g)

ln 2
2n+1∑
i=1

λai (g)

 = Sa
n(g) + san(g) .

The last equality defines the quantities Sa
n(g) and s

a
n(g). So, it is clear that S

a
n(ḡn) = Sa(ḡn),

and san(ḡn) = 0. Then, the derivative of the Rényi entropy at g = ḡn can be obtained as

∂Sa(g)

∂g

∣∣∣∣
g=ḡn

=
∂Sa

n(g)

∂g

∣∣∣∣
g=ḡn

+

a

ln 2 (1− a)


∞∑

i=2n+2

λa−1
i (g)∂gλi(g)

2n+1∑
i=1

λai (g)

−

∞∑
i=2n+2

λai (g)
2n+1∑
i=1

λa−1
i (g)∂gλi(g)(

2n+1∑
i=1

λai (g)

)2


g=ḡn

.(56)

The first term in Eq. (56) is a well-defined constant and the third one is zero. As a result,

the analytical properties of the derivative are determined by the second term. Using the

analytic expansion of the eigenvalues, Eq. (54), and assuming that km is the minimum value

of ki,n, the leading asymptotic behavior of san is

san(g) ∼
g→ḡn

Cn ((g − ḡn)
2km)a = Cn |g − ḡn|χkm , (57)

where χ = 2a, which implies that

∂san(g)

∂g
∼

g→ḡn
χkmCn |g − ḡn|χkm−1 sign(g − ḡn) . (58)
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FIG. 7. Rényi entropies as a function of the interaction parameter g and a cutoff length parameter

d2 = 0.5. The shown curves correspond to the parameter values a = 0.1, 0.15, 0.2, 0.3 (black, red,

green and blue line respectively). The kinks in all the curves are located at values of g for which

there is an exact finite expansion of the 1-RDM, which renders a finite Hilbert. As discussed in the

text, the kinks are a consequence of the analytic properties of the vanishing eigenvalues at those

values of g.

Collecting the results of Eqs. (54) to (58), the derivative of the Rényi entropy can be ex-

pressed as

∂Sa(g)

∂g

∣∣∣∣
g=ḡn

=



−sign(Cn)×∞ for g → ḡ−n

sign(Cn)×∞ for g → ḡ+n

 if χkm < 1

∂gS
a
n(ḡn) − C for g → ḡ−n

∂gS
a
n(ḡn) + C for g → ḡ+n

 if χkm = 1

∂gS
a
n(ḡn) if χkm ≥ 1 .

(59)

Even tough the derivative of Sa is continuous for χ ≥ 1, it is straightforward to see from

the eigenvalues asymptotic behaviour, Eq. (54), that the second derivative diverges for

1 < χkm < 2, but it is analytical for χkm = 2, i.e the kink at χkm = 1 is smoothed until it

disappears at χkm = 2.

Figure 7 shows the behaviour of Sa as a function of g for different values of the parameter

a at d2 = 0.5. The kinks at fixed values of g can be easily appreciated, as well as their

softening for increasing values of a as predicted by Eq. (59). Observe that the bottom curve
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corresponds to the largest value of a depicted, while the upper curve corresponds to the

smallest one. Keeping d fixed ensures that the interaction values ḡn (where only a finite

number of eigenvalues are non-zero) are also kept fixed and, as a consequence, the kinks in

the curves calculated for different values of a are located at the same abscissas.

VI. DISCUSSION

Models with quasi-exact solvability have wave functions that are polynomial functions on

the inter-particle distance so, at least for those that do not depend on any angular variable

but the ones on the inter-particle radius, they should also possess exact and finite reduced

density matrices. This last problem is open for three dimensional problems with non-trivial

angular momentum.

For the model analysed in this work, the quasi-exact solvability character is intertwined

with the fact that the Calogero model has exact solutions that can be expressed as polyno-

mials in the interparticle distance. So, when we take the limit d → 0 over the isoenergetic

curves we are able to recover all the quantities corresponding to the Calogero model. Then,

it is natural to wonder if a given model that has quasi-exact solvability, also has an exactly

solvable limiting model.

Recently, there has been a number of works dealing with the properties of the entan-

glement spectrum, or natural occupation numbers, in particular the phenomenon of pin-

ning [40–42]. The pinning is related to the the generalised Pauli constraints (GPC) which

are a set of (in)equalities that generalise the Pauli exclusion principle. These constraints

are defined trough affine inequalities that confine the values of the 1-RDM eigenvalues to

D-dimensional polytopes, where D is the dimension of the 1-particle Hilbert space. Pin-

ning, or quasi-pinning, of the 1-RDM eigenvalues of a solution refers to the near-saturation

of such GPC’s. Much of the understanding has been obtained analysing systems of coupled

harmonic oscillators (Moshinsky model), because they are amenable to a complete analytical

treatment. The nearly exclusive use of harmonic oscillator models is not surprising since

models with exact solutions are scarce. Even more scarce are models which also have exact

and finite reduced density matrices, as the one presented in this work together with the

Calogero model. In this sense, Calogero and regularised Calogero models provide exact so-

lutions and 1-RDM eigenvalues which may help the efforts made to understand the pinning
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or quasi-pinning phenomenon (in principle, for any dimension D).

Our results shown that the Rényi entropy is a capable tool to identify systems with exact

and finite RDM. Nevertheless, to improve its usability it is necessary to determine if a set

of very small eigenvalues are effectively zero or not. To accomplish this it is necessary to

identify if, for example, performing a finite size analysis of the numerical eigenvalues at the

parameter where the system has an exact and finite RDM the behaviour is (quite) different

from the behaviour where there is not such a RDM. It is clear that for models with wave

functions with only a polynomial dependency on the inter-particle distance it is possible

to choose a finite basis for the Hilbert space where the wave function to be analysed is

contained exactly, resulting in an exact RDM. In this case, the RDM derived from the finite

basis contains all the information required to produce a finite number of non-zero eigenvalues

and a number of exactly zero ones. Conversely, when the finite basis set used to analyse a

given wave function does not contain the exact wave function under consideration there will

be a number of eigenvalues that should be zero in the limit of an infinite basis set, but for

a finite basis they are not, and a numerical criterion is in order. Work around these lines is

in progress.
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