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ABSTRACT  

Here we investigated the effect of electrostatic interactions and of protein tyrosine nitration of 

mammalian cytochrome c on the dynamics of the so-called alkaline transition, a pH- and redox-

triggered conformational change that implies replacement of the axial ligand Met80 by a Lys 

residue. Using a combination of electrochemical, time-resolved SERR spectroelectrochemical 

experiments and molecular dynamics simulations we showed that in all cases the reaction can be 

described in terms of a two steps minimal reaction mechanism consisting of deprotonation of a 

triggering group followed by ligand exchange. The pKa
alk values of the transition are strongly 

modulated by these perturbations, with a drastic downshift upon nitration and an important 

upshift upon establishing electrostatic interactions with a negatively charged model surface. The 

value of pKa
alk is determined by the interplay between the acidity of a triggering group and the 

kinetic constants for the forward and backward ligand exchange processes. Nitration of Tyr74 

results in a change of the triggering group from Lys73 in WT Cyt to Tyr74 in the nitrated 

protein, which dominates the pKa
alk downshift towards physiological values. Electrostatic 

interactions, on the other hand, result in strong acceleration of the backward ligand exchange 

reaction, which dominates the pKa
alk upshift. The different physicochemical conditions found 

here to influence pKa
alk are expected to vary depending on cellular conditions and subcellular 

localization of the protein, thus determining the existence of alternative conformations of Cyt in 

vivo. 

 

Keywords: cytochrome c, alkaline transition, time-resolved SERR, protein nitration, protein 

spectroelectrochemistry, protein electron transfer 
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1. INTRODUCTION 

Mitochondrial cytochrome c (Cyt) is a c.a. 13 kDa globular protein that contains a single heme 

covalently attached through the two cysteine residues of a conserved Cys-Xaa-Xaa-Cys-His 

binding motif, where the His residue (His18 in horse heart Cyt) is axially coordinated to the 

heme iron. The coordination sphere is completed by a Met residue (Met80 in horse heart Cyt) at 

the sixth axial position.[1,2] This Met/His axial coordination pattern corresponds to the so-called 

native conformation or state III, which prevails for wild type (WT) Cyt at physiological pH and 

in the absence of perturbations. The axial coordination pattern and other structural and dynamic 

features endow native Cyt with optimized thermodynamic and kinetic parameters for performing 

its canonical function at the intermembrane mitochondrial space, i.e. shuttling electrons between 

complexes III and IV in the respiratory electron transfer (ET) chain.[3] On the other hand, it is 

now accepted that Cyt behaves as a moonlighting protein, meaning that the actual structure and 

function vary depending on intracellular localization, specific and unspecific interactions and 

post-translational chemical modifications.[4] For example, in the intermembrane space Cyt 

behaves as an electron shuttle in healthy cells, but gains peroxidase activity upon interaction with 

negatively charged cardiolipin under pro-apoptotic conditions.[5] Liberation of Cyt to the cytosol 

seals the fate of the cell through formation of the apoptosome complex, a crucial component of 

the cell suicide machinery.[6] Cyt may also penetrate the nucleus and prevent nucleosome 

assembly.[7] Moreover, a number of naturally occurring mutations and post-translational 

modifications[8–11] have been described to affect the structure and function of Cyt to some 

extent, although in most cases the details remain largely unknown. The cornerstone of Cyt 

multifunctionality is believed to be its high flexibility, which enables the exploration of a broad 

conformational space. This feature allows populating a variety of conformations, depending of 
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the specific conditions, that may differ in axial coordination pattern, redox parameters, binding 

affinities, catalytic activity, etc.[4,12–14] 

The native structure of horse Cyt consists of five α-helical and two short β-sheet elements 

interconnected by Ω loops of different lengths.[15–17] Alternative conformations of Cyt may be 

attained by different means such as pH variation, electrostatic interactions with phospholipids 

and other negatively charged model systems or interactions with cytochrome c oxidase. A feature 

in common among these nonnative species is the loss of the axial ligand Met80 in ferric Cyt 

without significantly affecting the α-helical content.[3,18,19] Instead, distortions are mostly 

localized at the level of the Ω loop 70-85, which contains the labile Met80 ligand, as well as in 

the Ω loop 40-57.[18,20] Note that these two loops also constitute the first two foldons that are 

thermally disrupted in the uphill denaturation pathway model developed by Englander and 

coworkers.[14,21] Both loops are interconnected via a H-bonding network that contains Tyr67 as 

a prominent member that, thereby, shapes the dynamical features relevant to both the canonical 

ET reaction as well as to alternative functions of Cyt. Interestingly, the 70-85 loop not only 

contains the axial ligand that is removed upon interaction with model and real partners, but it 

also includes  most of the Lys residues that surround the partially exposed heme edge, which 

constitute the positively charged patch involved in electrostatic interactions with negatively 

charged counterparts.[22,23] Thus, the flexible 70-85 loop and its response to local electric 

fields,[24] specific electrostatic interactions,[25,26] chemical modifications[27,28] and other 

perturbations appear to be critical for the different functions of Cyt.  
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In this context, the so-called alkaline transition represents a window of opportunity for 

accessing the dynamics of conformational changes of Cyt that involve the Ω loop 70-85 through 

controlled physicochemical experiments. 

The alkaline transition of ferric Cyt is a pH-dependent conformational change that was first 

identified by Theorel and Åkenson almost 80 years ago.[29] Latter studies demonstrated that the 

process implies the loss of the axial ligand Met80, which is replaced by a Lys residue to yield a 

Lys/His axial coordination pattern.[30] Mutational analysis has demonstrated that the sixth axial 

position in the Lys/His isomer of horse Cyt is occupied by either Lys73 or Lys79,[31,32] i.e. two 

residues belonging to the critical Ω loop 70-85. Thus, the alkaline form Lys/His, also known as 

state IV, is actually a mixture of two species with chemically equivalent axial coordination 

pattern. The 3D structure of the alkaline conformation of WT Cyt remains elusive, although the 

structures of double and triple mutants of yeast Cyt that feature a Lys73 sixth axial ligand have 

been resolved by NMR and X-ray crystallography, constituting good structural models of state 

IV.[33,34] These models confirm a globular structure very similar to the WT protein at neutral 

pH, with the most important deviations localized in the 70-85 loop region.  

For horse Cyt the Met/His ⇄ Lys/His equilibrium is characterized by pKa
alk = 9.4, and this 

value differs only slightly for cytochromes from other species.[35] Due to this unphysiologically 

high pKa
alk, the alkaline transition has long been considered a model for studying related 

conformational changes of Cyt that also involve the 70-85 loop, but not biologically relevant per 

se.[14] This perspective has changed in recent years with the discovery that oxidative post-

translational modifications[27] as well as naturally occurring and artificial single mutations, such 

as Gly41Ser and Tyr48Glu, respectively, induce “early alkaline transitions” at nearly neutral 
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pH.[8,36] So far three pathogenic naturally occurring single point mutations of human Cyt have 

been identified, and 16 others, which are awaiting further characterization, have been found by 

massive sequencing of exomes.[3,37] Moreover, it is now well established that Cyt may undergo 

different post-translational modifications, such as phosphorylation,[8] sulfoxidation,[9] 

methylation,[38] acetylation[39] and nitration.[10] Among them, nitration of Tyr74, which 

occurs under oxidative stress conditions, results in pKa
alk values very close to the physiological 

pH.[11,27,28] Based on a model system, a similar pKa
alk downshift has been predicted for the 

phosphorylation of Tyr48.[8] 

The mechanism of the alkaline transition for WT Cyt has been extensively studied employing a 

variety of kinetic experimental techniques and was found to be very complex and has not yet 

been completely elucidated.[13,14,20,21,30,32,40] Combination of stopped-flow and NMR-

based hydrogen exchange experiments reveal that the main kinetic features can be rationalized in 

terms of a minimal two steps mechanism.[21] The first step is the deprotonation of a triggering 

group, and is followed by a rate limiting structural change of the Ω loop 70-85, which leads to 

the replacement of Met80 by either Lys73 or Lys79 previously deprotonated (Scheme 1).[21] 

Scheme 1. Minimal reaction mechanism for the alkaline transition of ferric Cyt 

 

Although extensively discussed, the nature of the triggering group that is deprotonated in the 

first step of Scheme 1 remains unknown. Based on the acidity estimated for this group in WT 
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Cyt, pKH = 11, the surface exposed Lys residues are likely candidates, but other possibilities 

cannot be excluded. 

Interestingly, the slow phase represented in Scheme 1 coincides with the minimal mechanism 

originally proposed by Davis et. al.,[40] and the parameters of these two coupled equilibria 

quantitatively explain the apparent pKa
alk of the alkaline transition experimentally determined 

through stationary acid-base titration (equation 1), thus providing good basis for further 

dynamical studies of this pH-dependent ligand exchange reaction: 

���
��� = ��� + 
��

�

��
  (1) 

Note that all the above mentioned mechanistic studies refer to the WT protein and selected 

artificial point mutants, but not to naturally occurring mutations or post-translational 

modifications that are known to shift the apparent pKa
alk towards physiological values. Moreover, 

all the kinetic studies reported so far were performed with diluted protein solutions, thereby 

excluding some important features of the in vivo environment that may affect the process. One of 

these aspects is the fact that more than 15% of the mitochondrial Cyt is not free in the 

intermembrane space but associated to membrane components such as the negatively charged 

binding domains of complexes II and IV and to the negatively charged lipid cardiolipin.[3,41,42] 

Thus, a large fraction of Cyt is, at least temporarily, under the action of high local electric fields 

and specific electrostatic interactions that preferentially involve the Lys residues belonging to the 

crucial Ω loop 70-85. 

In the present work we address the effect of electrostatic interactions on the dynamics and 

thermodynamics of the alkaline transition for WT Cyt and a variant nitrated at Tyr74 (NO2-Cyt), 

which is a post-translational modification that has been demonstrated to occur in vivo under 
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oxidative stress conditions[10] and to produce a drastic downshift of pKa
alk.[27,28] The 

experimental strategy adopted for this investigation is the use of electrodes coated with self-

assembled monolayers (SAMs) of carboxyl-terminated alkanethiols as artificial electrostatic 

partners of the investigated proteins. These simplified model systems are clearly unable to mimic 

a number of dynamical and structural aspects of the lipidic and protein components of the 

mitochondrial membrane, but are still useful to capture some essential features of the 

electrostatic interactions of Cyt.[43–45] 

 Most notably, adsorption of Cyt to SAM-coated electrodes implicates the same set of 

positively charged residues that constitute the binding domain towards natural electrostatic 

partners such as Cyt oxidase, Cyt reductase, Cyt peroxidase and cardiolipin.[22,23,46] A specific 

advantage of the electrode-SAM/Cyt model systems that we exploit in the present work is that 

the adsorbed protein undergoes efficient direct electrochemistry, thus enabling the possibility of 

triggering the alkaline transition through an oxidative potential jump, and the subsequent 

monitoring of the conformational transition through time-resolved surface-enhanced resonance 

Raman (TR-SERR) spectroelectrochemistry.[43,47]  A somewhat related concept of 

conformationally gated homogeneous electron transfer has been introduced by Bowler and 

coworkers to study the pH-dependent Met/His ligand exchange reaction of non-native yeast iso-

Cyt variants using stopped-flow methodology.[48,49] 

The results presented here demonstrate that electrostatic interactions and post-translational 

modifications of Cyt may tune pKa
alk through modulation of the thermodynamic and kinetic 

parameters of the proposed two steps minimal reaction mechanism. 
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2. MATERIALS AND METHODS 

2.1. Materials. Horse heart cytochrome c (Cyt; BioUltra, ≥99%), buffer CHES, 11-mercapto-

1-undecanol and 11-mercapto-1-undecanoic acid were purchased from Merck and used without 

further purification. Cyt nitrated at Tyr74 (NO2-Cyt) and the triple mutants H33N/H26N/Y67F 

and H33N/H26N/Y74F (hereafter Tyr67Phe and Tyr74Phe, respectively) were produced as 

previously described.[27,28] All experiments were conducted with type II water (R > 18 MΩ) 

purified in a Milli-Q system. 

2.2. Cyclic voltammetry. Electrochemical experiments were performed with a Gamry 

REF600 potentiostat using a thermostatized cell at 25°C placed into a Faraday cage (Vista 

Shield) equipped with a polycrystalline gold bead working electrode, a Pt wire auxiliary 

electrode and a Ag/AgCl (3.5 M KCl) reference electrode. Au electrodes were treated with a 3:1 

v/v H2O2:H2SO4 mixture at 120 °C. The electrodes were then subjected to repetitive 

voltammetric cycles between −0.2 and 1.6 V in 10% HClO4 and thoroughly washed with water 

and ethanol. Afterwards, Au electrodes were coated with self-assembled monolayers (SAMs) by 

overnight incubation into a 1 mM:1 mM ethanolic solution of a HS-(CH2)6-CH2OH : HS-(CH2)6-

COOH mixture. The SAM-coated electrodes were incubated for ca. 4 hrs into a 400 µM protein 

solution, then rinsed and inserted into the electrochemical cell. All electrochemical 

determinations were performed in CHES/sulfate buffer 12.5:12.5 mM. 

2.3. Raman spectroelectrochemistry. Stationary and time-resolved surface-enhanced 

resonance Raman experiments were performed using a three-electrode spectroelectrochemical 

cell mounted in front of a confocal microscope coupled to a single-stage spectrograph (Dilor XY; 

f = 800 mm) equipped with a 1800 lines/mm grating and a liquid nitrogen-cooled back-

illuminated CCD detector (2048 × 512 pixels) at room temeperature, ca. 25°C. Different laser 
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lines were employed for spectral acquisition depending on the specific experiments: 406 nm 

(∼3.5mW; solid state laser TopMode-HP-406), 458 nm (∼8 mW; argon ion laser Coherent 

Innova 70c) or 514 nm (13 mW, argon ion laser Coherent Innova 70c). The silver ring working 

electrodes were mechanically polished and subjected to oxidation-reduction cycles in 0.1 M KCl 

to create SERR-active nanostructured surfaces. Subsequently, the Ag rings were incubated in 2 

mM ethanolic solutions of the alkanethiols (1:1 mixture of HS-(CH2)10-CH2OH and HS-(CH2)10-

COOH) for ca. 24 h and transferred to the spectroelectrochemical cell. The SAM-coated silver 

ring was mounted on a shaft that is rotated at about 5 Hz to avoid laser-induced sample 

degradation. The electrode potential was controlled with a TeQ03 potentiostat. The 

spectroelectrochemical cell typically contained 8 mL of 0.2 µM protein solution at the desired 

pH.  Spectral accumulation times were between 10 and 30 s. Before each experiment, the 

spectrometer was calibrated employing Hg and Na calibration lamps and controlled using silicon 

and 4-acetamidophenol. The spectrometer parameters were set to obtain a 0.4 cm−1 increment per 

data point. 

For TR-SERR experiments, potential jumps from -300 mV to 210 mV and variable duration 

were applied to trigger the reaction. The SERR spectra were measured at different delay times 

following the potential jump. Synchronization of potential jumps and probe laser pulses was 

achieved by a pulse-delay generator (BNC). The probe pulses were generated by passing the cw 

laser beam through two consecutive laser intensity modulators (QIOPTICS Photonics), which 

give a total extinction better than 1:50000 and a time response of ca.20 ns. 

After background subtraction, the SERR spectra were subjected to component analysis as 

originally described by Döpner et. al.[50] In this method, the experimental spectra are fitted 

using complete spectra of the different species involved, which are determined independently. 
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The only adjustable parameters are the relative contributions of the different component spectra, 

while the spectral parameters of each component (positions, widths, and relative intensities of the 

different bands) are kept constant. After subtracting the spectral contributions of residual redox 

inactive fractions, concentrations profiles were fitted to the set of differential equations that 

describe the reaction mechanism shown in Scheme 3 using a self-written routine. 

2.4. Computational methods. The starting structure for molecular dynamics (MD) 

simulations of Cyt in the ferric state corresponds to the oxidized form of WT horse heart Cyt 

(PDB ID 1HRC). All simulations were performed both in presence and absence of 

crystallographic water molecules and no significant differences were observed. The PMEMD 

module of the AMBER16 package[51]  with the ff99 force field implementation was used for 

every MD calculation. All structures were minimized in a TIP3P water box and an initial MD at 

constant volume was performed to heat the system to 300 K.  Then, a constant pressure 

simulation was performed to equilibrate the system density. 

Production simulations were performed for 50 ns at 300 K and 1 bar and were maintained with 

the Berendsen thermostat and barostat respectively.[52]  Periodic boundary conditions and 

Ewald sums were used for treating long-range electrostatic interactions. The SHAKE algorithm 

was used to keep bonds involving H atoms at their equilibrium length.[53] 

NO2-Cyt was built in silico by replacing the corresponding side chains and relaxing the 

resulting structure using classical MD. Partial charges for the protonated and deprotonated nitro-

tyrosine were obtained from RESP calculations computed using Hartree–Fock with a 6-31G 

basis set.[54] Finally, production runs of 50 ns were obtained for WT Cyt, NO2-Cyt, 

deprotonated NO2-Cyt and WT Cyt with deprotonated Lys73. 
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Hydrogen bonds (H-bonds) were considered when the donor(D)-acceptor(A) distance was less 

than 3.0 Å and the D-H-A angle was less than 20°. 

Constant pH simulations were performed with the CpHMD method[55] in order to compute 

pKa values. This method performs a periodic Monte Carlo (MC) sampling of protonation states 

along a standard generalized Born implicit solvent simulation. At each MC step, a titratable site 

and a new protonation state for that site are randomly chosen and the transition free energy is 

computed. This energy is then used as the basis for applying the Metropolis criterion[56] to 

determine whether the transition will be accepted or not. This value depends on both the 

environment of the titrated residue and the solvent pH. If the transition is accepted, the MD 

simulation continues with the titrable residue in the new protonation state. Otherwise, the MD 

continues with no changes in the protonation state. In this work, several calculations were 

performed for every system in order to evaluate the consistency of the results as titrable residues 

may influence each other. One calculation was performed including all possible titrable residues, 

other calculation was done with a subset of relevant titrable residues (Lys 72, Lys 73, Lys 79, 

Glu 66, Tyr 67, Tyr 74). Finally, calculations including only one titrable residue were performed 

for each residue of the subset. NO2-Tyr74 was not included as titrable residue as it was not 

implemented in the method. 

The pKa value for each residue was then computed based on the population of the protonated 

and deprotonated states using Henderson-Hasselbach's equation. 

3. RESULTS AND DISCUSSION 

3.1 The alkaline transition of Cyt in electrostatic complexes. As a simple model system for 

assessing the effect of electrostatic interactions on the alkaline transition of Cyt, we employed 

metal electrodes coated with SAMs obtained from 1:1 mixtures of 11-mercapto-1-undecanol and 
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11-mercapto-1-undecanoic acid. Cyt electrostatically adsorbed on these SAM-coated electrodes 

display quasi-reversible CV response at pH 7.0, with the characteristic features of a surface-

confined one electron redox couple and a midpoint potential of 190 mV (Figure 1). This number 

represents a relatively small downshift with respect to the value determined for the protein in 

solution under identical pH and ionic strength conditions, which is ascribed to the interfacial 

potential drop across the SAM, as well as to differences in the adsorption constants of ferric and 

ferrous Cyt, as previously established by different groups.[57,58] 

The SERR spectrum of the adsorbed protein recorded at open circuit, pH 7.0 and under Soret-

band excitation is identical to the RR spectrum of ferric Cyt in solution measured under 

otherwise identical conditions, thus confirming the structural integrity of the adsorbed protein at 

the level of the heme pocket. Increasing the pH to 11.5, i.e. well above the value of pKa
alk in 

solution, induces a number of small but significant and reproducible changes in the high and low 

frequency regions of the SERR spectrum (Figure 2). The skeletal modes that appear in the high 

frequency region are particularly sensitive to the porphyrin core size and electron density and, 

therefore, constitute characteristic markers of the oxidation and spin states.[18,19,43] The small 

upshifts observed for these bands are consistent with the pH-induced formation of an alternative 

six-coordinated high spin species, most likely as the result of the replacement of Met80 with 

another strong-field distal ligand such as His or Lys to yield either Lys/His or His/His axial 

coordination patterns.[18,19,26,43] The low frequency spectral region allows for a clear 

distinction between these two possible axial coordination motifs of the heme iron. As shown in 

Figure 2, the SERR spectrum recorded at pH 11.5 differs from reference spectra previously 

reported for the Met/His and His/His species and, instead, are almost identical to the RR spectra 

obtained for Cyt in solutions of pH 10.5 and 11.5. These results constitute strong evidence that 
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ferric Cyt presents the same axial coordination at pH 11.5 in solution and in the adsorbed state, 

and that this species can be safely assigned to the Lys/His alkaline conformer. 

 

Figure 1. (A) Background corrected normalized cyclic voltammetries of WT Cyt adsorbed on a 

SAM-coated electrode recorded a 10 V s-1. Green and blue traces were acquired at pH 7.0 and 

11.5, respectively. Unprocessed data are shown in Figure S1. (B) Relative surface concentrations 

of the native and alkaline conformations of WT Cyt estimated from the relative areas of the CV 

peaks for both redox couples acquired at 10 Vs-1 as a function of pH. 

 

In contrast to the results obtained at neutral pH, the CV responses recorded at alkaline pH 

display two well defined redox couples at high scan rates, which become increasingly 

irreversible at lower scan rates, thus indicating a relatively slow redox-coupled conformational 

equilibrium between the two electroactive species (Figures 1 and S2). The first redox couple is 

assigned to the native Met/His Cyt conformation as the midpoint potential is very similar to the 
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value obtained in neutral solution and is only slightly pH-dependent, in agreement with previous 

observations.[58] For the second redox couple the midpoint potential is -228 mV, i.e. very 

similar to the value previously reported for alkaline Cyt in solution[59] and, therefore, is 

assigned to the Lys/His isomer.  

 

Figure 2. High frequency (upper panel) and low frequency (lower panel) resonance Raman and 

surface-enhanced resonance Raman spectra of ferric WT Cyt obtained with Soret-band excitation 

under different experimental conditions: (a) in solution at pH 7.0, (b) adsorbed at pH 7.0 and 

open circuit, (c) in solution at pH 10.5, (d) adsorbed at pH 11.0 and open circuit, (e) in solution 

at pH 7.0 with added cardiolipin liposomes, taken from reference [26]. 
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 Taken together, the CV and SERR data indicate a redox-coupled conformational equilibrium 

between the native and alkaline conformations of adsorbed Cyt, with the Met/His and Lys/His 

conformers having essentially the same heme pocket structure as the corresponding species in 

solution. 

The pKa
alk of adsorbed Cyt was estimated from the relative intensities of voltammetric waves 

obtained for both redox couples at high scan rates as a function of pH. As shown in Figure 1, the 

speciation diagram obtained in this way yields pKa
alk = 10.4, which is one pH unit higher than the 

corresponding value in solution.[28] Independent SERR titrations confirm this result. In these 

latter experiments SERR spectra of adsorbed Cyt are measured as a function of the solution pH 

at an applied potential of 310 mV. The measured high frequency spectra are subjected to 

component analysis using SERR reference spectra recorded at pH 7.0 and 11.5 for extracting the 

pure native and alkaline components, respectively (Figure S3). SERR titrations were performed 

up to pH values around 11.5, which implies ca. 70 % conversion to the alkaline conformation, as 

more alkaline conditions induce protein desorption. These experiments yield pKa
alk = 10.0 

(Figure S4) that, within experimental error, is very similar to the value determined by CV. The 

upshift of pKa
alk for adsorbed Cyt compared to the protein in solution may be related to an upshift 

of the pKH of the triggering group (Scheme 1) or to changes in the kinetics of ligand exchange, 

as will be discussed in the next section. 

Stationary potential-dependent SERR measurements of immobilized Cyt at pH 10.2, i.e. very 

close to the determined pKa
alk, reveal that both the native and alkaline ferric Cyt forms respond to 

the applied electrode potential. In this case, however, the apparent reduction potentials obtained 
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from the speciation diagrams (Figure 3) are not true potentials as this analysis is based on steady 

state concentrations of coupled reactions. Most importantly, the spectral analysis reveals the 

presence of a single ferrous component that corresponds to the Met/His native conformation, 

thus indicating that the reduction of the alkaline form is coupled to a Lys/His→Met/His 

transition that is completed within the time window of the steady-state experiments. In contrast 

to the results obtained at neutral pH, the SERR experiments performed at pH 10.2 reveal that a 

minor fraction of the adsorbed protein, ca. 10%, remains in the Met/His oxidized form even at 

very negative potentials, which probably indicates the existence at this pH of a subpopulation of 

the adsorbed protein that is not properly oriented for establishing efficient direct 

electrochemistry. 

Stationary SERR measurements performed under Q-band excitation at a constant applied 

electrode potential of 350 mV show that for the Met/His spectral component of adsorbed ferric 

Cyt the intensity ratio of the bands ν10 and ν4 at 1633 and 1371 cm-1, respectively, decreases 

upon increasing the pH (Figure S5). As previously shown,[60] the ν10 band corresponds to an 

A1g mode that is expected to undergo preferential SERR enhancement when the heme plane is 

parallel to the surface, while B1g modes such as the ν4 band are preferentially enhanced for a 

perpendicularly oriented heme. Therefore, the I(ν10)/I(ν4) intensity ratio is a measure of the 

average orientation of the adsorbed Cyt.[60] The observed decrease of I(ν10)/I(ν4) with pH 

indicates a less perpendicular average orientation of the adsorbed Cyt in increasingly alkaline 

media, as also predicted by molecular dynamics simulations,[22,61] which is consistent with a 

small fraction of electrochemically inactive Cyt. Neglecting the fraction of redox inactive Cyt, 

which can be accurately determined and subtracted for further quantitative analysis, the 
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electrochemical and spectroelectrochemical results can be summarized in terms of the square 

reaction model presented in Scheme 2. 

 

Figure 3. (A) SERR spectra of WT Cyt adsorbed on a SAM-coated electrode, as a function of 

the electrode potential. Black traces are the experimentally measured spectra, while color lines 

are the spectral components that correspond to native ferrous Cyt (red), native ferric Cyt (blue) 

and alkaline ferric Cyt (green). All the spectra were recorded with Soret-band excitation at pH 

10.2. (B) Relative surface concentrations of the different Cyt forms obtained by SERR as a 

function of the applied potential. The color code is the same used in the upper panel. 
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The midpoint potentials of both redox couples in this scheme, as well as pKa
alk for the ferric 

protein, are experimentally accessible, while pKa
alk for ferrous Cyt can be derived from the other 

three quantities, yielding a value of 17. This result is consistent with the fact that stationary 

SERR spectra measured at sufficiently negative potentials reveal a single ferrous spectral 

component that corresponds to the native Met/His conformation, and with the fact that a 

quasireversible CV response of the alkaline conformer is only observed at very high scan rates. 

 

Scheme 2. Coupled redox and conformational equilibria of WT Cyt and NO2-Cyt adsorbed on 

SAM-coated electrodes. The parameters indicated in blue and green correspond to WT Cyt and 

NO2-Cyt, respectively. 

 

Similar experiments were performed for Cyt nitrated at Tyr74 (NO2-Cyt) adsorbed on SAM-

coated electrodes. The adsorbed NO2-Cyt exhibits a quasireversible CV response at pH 7.0 with 

a midpoint potential of 182 mV, i.e. very similar to native Met/His conformation of WT Cyt 
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(Figure S6). Voltammograms recorded at pH 10 and high scan rates also show a single 

quasireversible redox couple, but with a midpoint potential of -224 mV that is assigned to the 

Lys/His alkaline conformation. SERR spectra recorded under identical conditions confirm the 

assignment of the two redox couples to the Met/His and Lys/His conformations at neutral and 

alkaline pH, respectively (Figure S7). These results suggest that for the adsorbed NO2-Cyt pKa
alk 

is upshifted with respect to the value of 7.1 previously determined for the same protein variant in 

solution.[27,28] Indeed, acid-base titrations of the adsorbed protein monitored by SERR (Figure 

S8) yield pKa
alk = 8.7 for the ferric protein. These results suggest that Scheme 2 also applies to 

NO2-Cyt, yielding pKa
alk = 15 for the ferrous form. 

 3.2. Kinetic studies of the alkaline transition. The results presented in the preceding section 

and summarized in Scheme 2 set the basis for investigating the dynamics of the alkaline 

transition in electrostatic Cyt/SAM complexes taking advantage of the seven orders of magnitude 

difference in the Ka
alk values of ferric and ferrous Cyt. These findings imply that, both for WT 

Cyt and NO2-Cyt, the equilibrium concentration of the ferrous Lys/His isomer is negligible small 

at any pH and applied potential and, therefore, Scheme 2 can be cast in a simplified form: 

 

 

Scheme 3. Simplified redox-coupled conformational equilibrium of WT Cyt and NO2-Cyt 

adsorbed on SAM-coated electrodes. 
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The simplified reaction Scheme 3 highlights the fact that the alkaline transition can be 

triggered by rapid oxidation of ferrous Cyt at fixed pH, as an alternative to the traditional pH-

jump experiments based on stopped-flow technology. With this idea in mind, we investigated the 

redox-coupled conformational transitions of WT Cyt and NO2-Cyt adsorbed on SAM-coated 

electrodes by synchronizing triggering potential jumps applied to the working electrode with 

time-resolved SERR (TR-SERR) spectral monitoring of the adsorbed species.[43] Specifically, 

working electrodes were equilibrated at an initial potential of -300 mV to ensure full reduction of 

the adsorbed protein. The redox-coupled conformational transitions were triggered by applying 

square potential jumps of sufficient duration to a final potential of 210 mV, i.e above the 

midpoint potential of the native Cyt conformation. TR-SERR spectra were measured at variable 

delay times with respect to the start point of the square potential pulse (Figure S9). After each 

potential jump the system was allowed to equilibrate at the initial potential for a sufficiently long 

time to ensure recovery of the fresh sample condition, and the entire sequence was repeated until 

obtaining TR-SERR spectra with acceptable signal-to-noise ratio. As shown in Figures 4 and 

S10, the TR-SERR spectra could be consistently simulated employing only the same three 

spectral components found in the stationary experiments, which correspond to the species 

included in Scheme 3, both for the WT and the nitrated protein. Representative concentration 

profiles obtained with this methodology for WT Cyt and NO2-Cyt are shown in Figure 5.  
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Figure 4. Time-resolved SERR spectra obtained for WT Cyt adsorbed on a SAM coated 

electrode as a function of the delay time (δ) after applying a potential jump from Ei = -300 mV to 

Ef = 210 mV. Black: experimental data. Red: ferrous native Cyt spectral component. Blue: ferric 

native Cyt spectral component. Green: ferric alkaline Cyt spectral component. Experiments were 

performed at pH 10 with Soret-band excitation. 
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Figure 5. Relative surface concentrations as a function of time of native ferrous (red) native 

ferric (blue) and alkaline ferric (green) components obtained by TR-SERR for WT Cyt (A) and 

NO2-Cyt (B) adsorbed on SAM-coated electrodes. Experiments were performed at pH 10.0 with 

Soret-band excitation. The lines are best fittings to the reaction scheme 3. 

 

A prerequisite for obtaining reliable kinetic information from this experimental approach is 

that the triggering redox reaction should not be rate limiting. Compliance of this requirement was 

controlled for each data set by evaluating the time evolution of the concentration ratios of native 

oxidized versus alkaline oxidized species, which should not be constant at short delay times. 

Concentration profiles obtained from 3 to 6 independent experiments that fulfill this condition 

were then fitted to the kinetic model represented in scheme 3 assuming first order in every 
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species, to determine the rate constants k1, k2, k3 and k4. Representative fittings obtained for WT 

Cyt and NO2-Cyt are shown in Figure 5. Note that the species assigned in these 

spectroelectrochemical experiments as native ferric Cyt actually correspond to the sum of the 

species denoted as ����� − ������	��� and ��������	���
��  in Scheme 1 because the protonated and 

deprotonated forms are spectroscopically indistinguishable and, therefore, rate constants in 

Schemes 1 and 3 are related as follows: 

 �� = ���� (�� + ��� )⁄   (2) 

�# = �$  (3) 

According to equation 2, k3 values were determined by TR-SERR as a function of pH to 

extract KH and kf (Figure 6). For WT Cyt the experiments were limited to the pH range 9.6-10.5, 

as the alkaline conformation is not detectable at pH < pKa
alk-1 and, on the other hand, pH > 10.5 

leads to significant protein desorption. Within this pH range k3 does not show the expected 

sigmoidal variation with pH, thus indicating that pKH > 10.5 for WT Cyt. In contrast, the lower 

pKa
alk of NO2-Cyt allows expanding the pH window down to 7.5 and, thereby, the observation of 

a clear sigmoidal dependence for this protein variant. Linearization of these data allows 

extracting KH and kf from plots (k3-k0)
-1 vs [H+] (Figure S11), where k0 is an empirical parameter 

that accounts for some offset in the k3 values, which may arise either from systematic errors or 

from a subpopulation of the adsorbed protein with pH-independent kinetics. The kinetic 

parameters obtained in this way are summarized in Table 1. Note that, as a strong indication of 

self-consistency, pKa
alk values experimentally determined by acid-base titration employing 

stationary SERR detection are nearly identical to those obtained from the kinetic analysis using 

equation 1 for both protein variants. 
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Figure 6. Variation of k3 with pH as obtained by TR-SERR for WT Cyt (A) and NO2-Cyt (B) 

adsorbed on SAM-coated electrodes. 
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Table 1. Parameters of the alkaline transition for WT Cyt and NO2-Cyt at 25°C. 

 

aWT Cyt 

(solution) 

bWT Cyt 

(adsorbed) 

bNO2-Cyt 

(adsorbed) 

kf / s
-1 6.1±1.8 11±4 5 ± 1 

kb / s
-1 0.049 15±4 4±3 

k0 / s
-1 - ≈ 8 2.5±0.3 

pKH 11±0.15 10.7±0.3 8.8±0,1 

c pKa
alk	calc 8.9±2.3 10.8±0.6 8.7±0,5 

d pKa
alk exp 9±0.05 10.4±0.1 8.9±0,3 

aFrom reference [40]. bThis work. cCalculated using equation 1. dFrom steady state titrations. 

 

Interestingly, while the pKa
alk of WT Cyt is significantly higher in the electrostatic complex 

compared to the free protein in solution, the acid-base equilibrium of the triggering group is 

insensitive to adsorption, as KH values obtained in both conditions are almost identical within 

experimental error. Thus, the difference in pKa
alk can be quantitatively ascribed to the effect of 

the electrostatic interactions on the dynamics of the ligand exchange step. This result is not 

unexpected since the interaction of Cyt with negatively charged counterparts, including natural 

partner proteins, model membranes and SAMs, involve electrostatic interactions through the ring 

of positively charged lysine residues in the surface of Cyt that surround the partially exposed 
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heme edge, and that includes the putative sixth ligands in the alkaline conformation 

Lys73/79.[22,61] Notably, the electrostatic adsorption does not slow down the ligand exchange 

reactions as one might anticipate but, in contrast, results in a 2-fold increase of kf and a much 

more significant 300-fold increase of kb, that lead to a 10-fold increase of Ka
alk. In an attempt to 

rationalize the experimental rise of both kf and kb, one can describe the ligand exchange step in 

terms of a reaction coordinate that connects the Met/His and Lys/His conformations via a 

pentacoordinated activated complex, as previously proposed.[28] Within this model, and 

assuming that the energy of the activated complex is largely insensitive to adsorption, the 

experimentally obtained results might reflect the alkaline conformation being destabilized by the 

specific electrostatic interactions and local electric fields to a greater extent than the native Cyt 

conformation. Consistent with this hypothesis, previous experimental and computational studies 

show that the energy and structure of the native conformation is only slightly affected under the 

current experimental conditions[25,43] and, furthermore, the pentacoordinated species is less 

destabilized than the Met/His hexacoordinated form.[28] 

Adsorption of NO2-Cyt also results in an upshift of the pKa
alk with respect to the same protein 

in solution, but the underlying basis for this effect appear to be somewhat different than for WT 

Cyt. Upon adsorption both protein variants show an increase of kb with respect to WT Cyt in 

solution, but the incremental factor for NO2-Cyt is only 80. In contrast, kf values measured for 

both proteins are essentially identical WT within experimental error These results suggest that 

the alkaline conformation of NO2-Cyt is significantly less destabilized by electrostatic 

interactions than the same coordination state of the WT protein. This effect, which tends to 

increase the pKa
alk value, is overcompensated by a significantly more acidic triggering group with 

pKH = 8.8. 
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3.3 On the nature and functioning of the triggering group. The stationary and kinetic 

results presented above show that the minimal reaction mechanism originally proposed for the 

alkaline transition of WT Cyt free in solution also applies when the protein is forming an 

electrostatic complex with a negatively charged SAM. The electrostatic interactions, however, 

can shift the pKa
alk of the transition either through modulation of the relative stabilities of the 

Met/His and Lys/His conformers, or by affecting the acidity of the triggering group. Moreover, 

these variables may be affected by post-translational modifications of Cyt, such as nitration of 

Tyr residues. The identity of the triggering group, however, remains a matter of debate as 

comprehensively discussed by Bowler and coworkers.[13,20,48,49] The experimentally 

determined pKH of about 11 for WT Cyt both in solution and adsorbed on SAMs argues in favor 

of a solvent exposed Lys residue in agreement with previous proposals,[13,21,31,40,62] most 

likely one of the three located in the 70-85 loop, i.e. residues 72, 73 or 79. Based on similar 

arguments, the solvent exposed Tyr74 residue is another likely candidate. Other proposals 

include a buried heme propionate,[63] a crystallographic water molecule,[64] the proximal 

ligand of the heme iron His18,[30] the buried Tyr67,[65] and deprotonation within a hydrogen 

bonded unit that links Ω-loops 40-57and 71-85.[66]  Unequivocal identification of the triggering 

group has proven rather elusive, but some of these possibilities can be pondered at the light of 

new experimental and computational evidence. Thus, aiming to assess the possible involvement 

of Tyr residues as triggers, we generated and titrated the Tyr74Phe and Tyr67Phe mutants. For 

the Tyr74Phe variant the pKa
alk values obtained for the protein free in solution and adsorbed are 

8.9 and 9.9, respectively, i.e. only slightly lower than for WT Cyt under, otherwise, identical 

conditions (Figure S12). Thus, in agreement with a previous proposal,[27] Tyr74 is unlikely to 

be the triggering amino acid in the alkaline transition of WT Cyt, even though nitration of this 
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residue produces a drastic change in the experimentally determined pKa
alk and pKH values. In 

contrast, pKa
alk values determined for the Tyr67Phe mutant in solution[27] and adsorbed are 11.0 

and 10.2 (Figure S13), respectively. This upshift, however, does not necessarily imply the 

involvement of Tyr67 as triggering group and, instead, may simply reflect the key role that this 

residue plays in modulating the protein structure and dynamics.[67] Thus, to get a deeper insight, 

we estimated the the pKa of all titrable amino acids of WT Cyt by means of molecular dynamics 

simulations, as described in the experimental section. These calculations yield pKa = 12.5 and 

pKa > 14, for the solvent exposed Tyr74 and the buried Tyr67, respectively (Figures S14). Both 

values are significantly higher than the experimentally determined pKH, thus making very 

unlikely the involvement of these Tyr residues as triggering groups. On the other hand, MD 

simulations yield pKa = 10.6 for Lys73 and 10.0 both for Lys72 and Lys79 (Figure S15). Thus, 

all the solvent exposed Lys residues belonging to the 70-85 loop have pKa values very close to 

the pKa of free Lys in solution and to the pKH of WT Cyt, thereby, constituting likely candidates 

to act as triggering group, with Lys73 showing the best match. A close inspection of the effect of 

Lys deprotonation on the extended H-bonding network of Cyt provides some additional 

arguments to select the most likely triggering group. Thus, we performed 50 ns long MD 

simulations of WT Cyt with all Lys residues protonated and repeated the simulations with one of 

the three residues of loop 70-85 deprotonated (dp-Lys72, dp-Lys73 and dp-Lys79, respectively). 

To quantify the effect of deprotonation, we determined the fraction of time along the simulations 

that individual H-bonds in the Ω loops 40-57 and 70-85 remain formed, according to the criteria 

defined in the experimental section. The results are summarized in Table S1. The calculations 

indicate that protonated Lys72 is only H-bonded to Asn70 during a small fraction of time. Aside 

from interrupting the Lys72-Asn70 H-bond, deprotonation of Lys72 has a significant weakening 
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effect on the Lys73-Asn70, Lys73-Glu66 and Lys39-Gln42 interactions. Deprotonation of Lys79 

disrupts the Lys79-Thr47 and weakens the Lys39-Gln42 interactions, but affects only slightly 

other H-bonds from the network. Protonated Lys73, in contrast, is engaged in four lasting H-

bonding interactions, two of them with Asn70 and the other two with Glu66 and Glu69. 

Deprotonation of Lys73 results in complete disruption of these four interactions and of the H-

bond Tyr48-Ala43, as well as significant weakening of H-bonds Lys39-Gln42, Gln42-Lys53 and 

Lys72-Asn70, in addition to other more subtle alterations of the H-bonding network. Thus, while 

the acid-base equilibria of all three Lys residues from loop 70-85 exert some impact on the 

structural details of loops 40-57 and 70-85, deprotonation of Lys73 appears to trigger the largest 

rearrangement of both loops (Figure S16), including complete disruption or substantial 

weakening of the H-bonding interactions of the two possible distal ligands of the alkaline 

conformation, i.e. Lys73 and Lys79, as a possible prerequisite for the subsequent ligand 

exchange step. 

Nitration of Tyr74 results in a significant downshift of both pKa
alk and pKH for the alkaline 

transition of NO2-Cyt with respect to WT Cyt (Table 1), therefore we titrated the nitrated Tyr74 

residue (NO2-Tyr74) in NO2-Cyt/SAM complexes by stationary SERR employing 458 nm laser 

excitation to selectively enhance the vibrational spectrum of the deprotonated NO2-Tyr74 

residue. The results shown in Figure S17 yield pKa
NO2-Tyr74 = 8.3, which is 1.2 units above the 

value previously determined for the same protein in solution.[28] The proximity of the pKH and 

pKa
NO2-Tyr74 values determined for the NO2-Cyt/SAM complexes suggest a change of triggering 

group from Lys73 in WT Cyt to Tyr74 in NO2-Cyt. The pKa values for the remaining titrable 

residues of NO2-Cyt were estimated by MD simulations, both for the protonated and 

deprotonated forms of the NO2-Tyr74 residue (p-NO2-Cyt and dp-NO2-Cyt, respectively). The 
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calculations predict that for Glu66, an acidic residue that is in close proximity to Tyr74, the pKa 

in the dp-NO2-Cyt form is upshifted by 1 unit with respect to WT-Cyt (Figure S19), thus 

indicating that the computational method is capable of assessing the effect of electrostatic 

charges on neighboring amino acids. However, none of the residues that, due to their intrinsic 

pKa values in solution are likely candidates to perform as triggering group, exhibits significant 

changes upon nitration of Tyr74. For example, the pKa values of lysines 72, 73 and 79 shift less 

than 0.3 units when comparing their values in WT Cyt, p-NO2-Cyt and dp-NO2-Cyt. These 

results are consistent with NO2-Tyr74 acting as the triggering group. Interestingly, MD 

simulations predict that nitration of Tyr74 exerts qualitatively the same effect on the H-bonding 

network of loops 40-57 and 70-85 as deprotonation of Lys73 in WT Cyt, and this disruption 

effect is further enhanced upon deprotonation of the NO2-Tyr74 residue (Table S1 and Figure 

S18). The most significant changes refer to H-bonds that involve Lys73 as the donor. As 

schematically shown in Figure 7, in the fully protonated WT protein the pairs of residues Lys73-

Glu66 and Lys73-Glu69 remain at H-bonding distance 16% and 26 % of the simulation time, 

respectively, while 7 % of the time Lys73 is H-bonded to both residues simultaneously, thus the 

number of H-bonds of Lys73 varies between 0 and 2 along the MD simulation. Either 

deprotonation of Lys73 or nitration plus deprotonation of Tyr74 affect the time evolution of the 

H-bonds of residue 73 in very similar fashion. Specifically, the p-NO2-Cyt and dp-NO2-Cyt 

forms, both containing protonated Lys73, show almost complete disruption of the Lys73-Glu66 

H-bond and a significantly reduced persistence of the Lys73-Glu69 H-bond (Figure 7 and Table 

S1). Deprotonation of the NO2-Tyr residue, in turn, is associated to a further weakening of the 

Lys73-Glu69 H-bond. Note that nitration of Tyr74 has no significant effect on the H-bonding of 

Lys79 (Table S1). 
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Based on these data we propose that the triggering deprotonation event in the alkaline 

transition mechanism disrupts the hydrogen bond network that involves the two Ω-loops, in 

agreement with a recent finding by Deacon and coworkers.[66] More specifically, the present 

data point out the disruption of the Glu66-Lys73-Glu69 H-bonding network as a crucial step for 

the subsequent Met/Lys ligand exchange that may involve either Lys73 or Lys79. For the WT 

protein the evidence points out Lys73 as the most likely triggering group, while for the nitrated 

protein the results are consistent with a qualitatively similar two steps minimal mechanism, 

except that in this case the reaction is triggered by the early deprotonation of the NO2-Tyr74 

residue. 
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Figure 7. Upper panel: selected snapshot of the MD simulation of WT Cyt displaying a detail of 

the Glu66-Lys73-Glu69 H-bonds. Lower panel: number of H-bond contacts of Lys73 established 

along MD simulations for WT Cyt with protonated Lys73 (WT-Cyt), WT cyt with deprotonated 

Lys73 (dp-Lys73) and the nitrated forms p-NO2-Cyt and dp-NO2-Cyt, both with residue Lys73 in 

the protonated state.  

4. CONCLUSIONS 

Electrostatic adsorption of WT Cyt and NO2-Cyt onto a negatively charged model surface 

results in a similar downshift of the apparent redox potential of both proteins with respect to 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 34

solution that is not paralleled by changes in the heme pocket structure and, therefore is ascribed 

to: (i) differences in the binding constants of the ferric versus ferrous proteins and (ii) to the 

potential drop across the complex electrode/SAM/protein/bulk interface. In their ferric states, 

both proteins adsorbed on SAM-coated electrodes undergo alkaline transitions that, according to 

the kinetic studies reported here, follow a mechanism qualitatively similar to WT Cyt in solution. 

The equilibrium constant for this conformational equilibrium in the reduced state is negligibly 

small (10-15-10-17), which explains that the reduced form of the Lys/His isomer cannot be 

detected in stationary experiments. 

Based on spectroelectrochemical studies and MD simulations, we assign Lys73 as the most 

likely triggering group for the alkaline transition of WT Cyt. Similar studies reveal a change of 

triggering group from Lys73 to Tyr74 in NO2-Cyt, which results in an early alkaline transition 

with pKa
alk = 7.1, i.e. within the range of the physiological pH of the mitochondrial 

intermembrane space.[68] The pKa
alk values of both protein variants are upshifted by about 1-1.6 

units with respect to solution when adsorbed on SAM-coated electrodes.  In contrast, the pKH of 

the triggering group of WT Cyt is not affected by adsorption. This contrasting behavior of pKa
alk 

and pKH suggests that the differences between adsorbed and dissolved proteins cannot be 

rationalized in terms of a locally different pH at the interface with respect to the bulk solution. 

Instead, the pKa
alk value reflects the interplay between the thermodynamic KH parameter and the 

dynamics of the ligand exchange step expressed through the rate constants kf and kb. The TR-

SERR experiments reveal that kf is largely insensitive to adsorption. In contrast, kb increases 

more than two orders of magnitude for the immobilized proteins with respect to WT Cyt in 

solution. These results can be rationalized in terms of preferential electrostatic destabilization of 
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the alkaline conformer compared to the native conformation and the pentacoordinated activated 

complex. 

Thus, in summary, post-translational nitration of Cyt results in an early alkaline transition at 

physiological pH which, therefore, might be of biological significance, probably related to an 

increase of peroxidatic activity as previously observed.[27,28] Electrostatic interactions of WT 

Cyt and NO2-Cyt with a model SAM-coated substrate have the effect of preventing the alkaline 

transition at physiologically relevant pH due to the upshift of the pKa
alk by more than 1 unit. 

Blockage of the alkaline transition at physiological pH as a consequence of electrostatic 

interactions is a result that one might anticipate on the basis that adsorption to SAM-coated 

electrodes involves the Lys residues belonging to the Ω-loop 70-85, which then might lose 

degrees of freedom required for undergoing the ligand exchange reaction. The present results 

reveal the counterintuitive fact that the Met/His→Lys/His is not slowed down upon adsorption 

via the loop 70-85. Instead, the upshift of the pKa in the adsorbed state is explained by a drastic 

acceleration of the back ligand exchange reaction Lys/His→Met/His. 

Certainly, the SAM/Cyt electrostatic complexes are simplified model systems that are unable 

to capture the specific interactions and mobility of real electrostatic partners of Cyt and, 

therefore, conclusions extracted in the present work cannot be directly extrapolated to in vivo 

conditions. However, the physicochemical concept that perturbations such as post-translational 

chemical modifications and electrostatic interactions may modulate pKa
alk in either direction 

through the relative magnitudes of KH, kf and kb appears to be general, thereby anticipating the 

possibility of Cyt attaining alternative conformations in vivo, depending on the specific cellular 

conditions and subcellular localization.  
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SUPLEMENTARY DATA 

Supplementary data to this article can be found online at…  
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