SPECIAL ARTICLE

Current scenario of plasmid-mediated colistin resistance in Latin America

Cecilia Quirogaa,c, Marcela Nastrob, José Di Conzab,c,*

a Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasiología Médica (IMPA), Facultad de Medicina, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
b Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 954, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (1425), Ciudad Autónoma de Buenos Aires, Argentina

Received 22 December 2017; accepted 9 May 2018

KEYWORDS
mcr-1; Colistin resistance; \textit{Enterobacteriaceae}; Latin America

Abstract Colistin resistance can occur by chromosomal mutations and by acquisition of plasmid-carrying determinants, mainly \textit{mcr-1}. In the recent years, we have observed the outburst of this resistance gene in our region. Due to the risk of the rapid dissemination of \textit{mcr-1}, this finding has worried and alerted different actors from the health field and has become one of the most prolific topics. Our review compiles available reports of well-documented \textit{mcr-1}-positive strains of \textit{Enterobacteriaceae}, obtained from different samples in Argentina and other countries of Latin America. Furthermore, it addresses the association of \textit{mcr-1} with ESBL resistance markers and outlines the platforms involved in their dissemination.

© 2018 Asociación Argentina de Microbiología. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

PALABRAS CLAVE
mcr-1; Resistencia a colistina; \textit{Enterobacteriaceae}; América Latina

Escenario actual de la resistencia a la colistina mediada por plásmidos en América Latina

Resumen La resistencia a la colistina puede ocurrir por mutaciones cromosómicas o por la adquisición de determinantes localizados en plásmidos, el principal es \textit{mcr-1}. En los últimos años hemos observado la explosiva aparición de este gen de resistencia en nuestra región. Debido al riesgo que implica la rápida diseminación de \textit{mcr-1}, este hallazgo ha preocupado y alertado a los diferentes actores del área de la salud, y se ha convertido en uno de los temas de

* Corresponding author.
E-mail address: jdiconza@gmail.com (J. Di Conza).

https://doi.org/10.1016/j.ram.2018.05.001
0325-7541/© 2018 Asociación Argentina de Microbiología. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Polymyxins (colistin and polymyxin B) are polycationic peptides, which act by targeting the negative charges in bacterial lipopolysaccharide (LPS), the complex lipoglycan that makes up most of the gram-negative outer membrane. Colistin (Polymyxin E) is one of the few cationic antimicrobial peptides commercialized in both human and veterinary medicine. Since its introduction in the 1950s, colistin (COL) has been used mainly as a topical treatment in human medicine owing to its nephrotoxicity and neurotoxicity when given systemically. There are two commercially available forms: colistin sulphate (CS) and colistin methanesulphonate sodium (CMS), the latter being less toxic than colistin when administered parenterally and consequently being the most used both in parenteral and inhalational formulations. In aqueous solutions, CMS undergoes in vivo conversion1. On the other hand, CS is the only form of COL approved in pig production in some countries for the control of Enterobacteriaceae infections, particularly for those caused by Escherichia coli. However, COL has been massively used at sub-inhibitory concentrations as growth promoters for decades to improve weight gain and therefore to maximize feed conversion efficiency in animal production2. Noteworthy, the last survey conducted by the World Organization for Animal Health (OIE) in the year 2012 revealed that only 10 countries reported the use of COL as growth promoter39. Interestingly, in the late 2000s and after decades of COL use in swine, several studies began to report a significant COL resistance rate in Enterobacteriaceae4,43,33,49,59. The increasing incidence of infections caused by multiresistant gram-negative bacteria, especially the ones caused by carbapenemase-producing bacilli in the last years, has led to the use of polymyxins as one of the last resort treatments9.

Until very recently, COL resistance occurred by chromosomal mutations only, and therefore, this resistance phenotype was spread exclusively via clonal transmission of resistant isolates. However, two years ago Liu et al. reported the emergence of a plasmid-mediated colistin resistance determinant, mcr-139. Due to the risk of its rapid dissemination, this finding has worried and alerted different actors from the health field, becoming one of the most prolific topics.

Acquired resistance to colistin

Acquired resistance to colistin in Enterobacteriaceae was described many years ago45,64, but in the last years colistin-resistant K. pneumoniae isolates were more frequently reported worldwide10,11,32,52, among others. In Latin America there are reports from Brazil, Ecuador, Venezuela and Colombia16,37,50,56,58. Acquired resistance to COL in Enterobacteriaceae was first documented in Argentina in the last years together with the emergence of KPC-producing isolates, probably derived from the use of this antimicrobial agent in the therapy of infections by these multidrug-resistant K. pneumoniae isolates. This resistance is believed to have occurred by selection of resistant subpopulations in the epidemic clone belonging to ST258. However, it has also been observed in non KPC-producing K. pneumoniae isolates probably as a result of clonal spread43. The last report of the PAHO (Panamerican Health Organization) from the year 2015 informed a COL resistance rate of 10.3% in K. pneumoniae isolates from hospitalized patients in Argentina, whereas in Escherichia coli and Enterobacter cloacae the percentage only reached 2.1%51. Similar results were obtained at the University Hospital José de San Martín, where COL resistance in K. pneumoniae in the year 2010 was 2% and 3%, 3.6%, 3.8%, 7%, 12% and 8%, respectively, in the subsequent years (unpublished results). With regard to E. coli isolates, COL resistance emerged in the last two years, where an important increase from 0.2% to 1.3% was observed, mostly as a result of plasmid-mediated resistance64. On the other hand, acquired resistance to COL remains very low in Acinetobacter baumannii (0.2%) and Pseudomonas aeruginosa (2.5%) isolates59.

Chromosomal resistance: different pathways

Bacteria often use different strategies to protect themselves from exposure to cationic antimicrobial peptides such as colistin. Such strategies include modifications of their lipopolysaccharides (LPSs), which are involved in the initial step of interaction between polymyxins and bacteria5,47,48. These alterations can be achieved by several coherent changes in lipid A (also called endotoxin molecule) of LPS. Among them, the cationic substitution of the phosphate group by the addition of 4-amino-4-deoxy-l-arabinose (L-Ara4N) and phosphoethanolamine (PEtN) are the most common LPS modifications. L-Ara4N modification is more effective than PETN modification because the decrease in the net charge leading to colistin resistance is more effective. The synthesis and transfer of L-Ara4N and PETN is mediated by an operon regulated by the activation of two-component systems (TCSs). PmrA/PmrB is the main
system contributing to polymyxin resistance (by environmental stimuli, and specific mutations within the TCS), although in some gram-negative species is known to occur via PhoP/PhoQ. Other modifications associated to chromosomal polymyxin resistance have been described, such as the reduction of acyl groups mediated by an lpxR-like deacetylation and hydroxylation of lipid A. Moreover, it was reported that K. pneumoniae uses alternative strategies such as participation of an efflux pump or capsule formation.

The plasmid-mediated resistance gene *mcr-1*

In 2015, the emergence of a plasmid-mediated colistin resistance marker, named *mcr-1*, was reported in China. Since then, numerous reports of the *mcr-1* gene have been documented in *Enterobacteriaceae* cultured from food, animals, environment and humans worldwide, most of them detected in over 20 countries within 3 months of its first report.

The *mcr-1* gene encodes a PEtN transferase leading to the addition of PETN to the lipid A. An *in silico* analysis of the amino acid sequence of this protein revealed that it is strongly related to enzymes present in gram-negative bacteria, some of which are intrinsically resistant to polymyxin. This gene was detected mainly in *E. coli* and to a lesser extent, in other bacteria such as *K. pneumoniae*. To date, several variants of *mcr-1* have been reported in the literature (mcr-1.2 to mcr-1.8, and mcr-1.10) or are deposited in Genbank (variants mcr-1.9, mcr-1.11, mcr-1.12, and mcr-1.13). These variants have one amino acid change each and exhibit a similar effect on colistin resistance compared with *mcr-1*.

Very recently, four additional *mcr* determinants have been reported, *mcr-2, mcr-3, mcr-4 and mcr-5*. The *mcr-2* gene was identified in an *E. coli* isolated from pigs and cattle in Belgium. This marker was also recovered from human samples in Switzerland. Phylogenetic analysis of *mcr-2*, which was also described as a PEtN transferase, showed 80.6% amino acid identity with *mcr-1* and provided strong evidence that this protein may have originated from *Moraxella catarrhalis*. The *mcr-3* gene was found in *E. coli* isolated from pigs in Malaysia, in a clinical sample of *K. pneumoniae* isolated from Thailand, and a clinical sample of *Salmonella Typhimurium* from the United States. Sequence analysis showed that *mcr-3* is closely related to PEtN from *Aeromonas* spp. The *mcr-4* gene was found in *Salmonella Typhimurium* and *E. coli* from human and food-producing animals in Europe. *MCR-4* has 34.0%, 35.0% and 49.0% amino acid sequence identity to *MCR-1, MCR-2* and *MCR-3*, respectively. It has been proposed that *mcr-4* may have emerged from a *Shewanella* species, a bacterium commonly present in aquatic niches. Lastly, *mcr-5* was initially found in 14 *Salmonella Paratyphi* B dTα+ isolates. *MCR-5* shares 36.11% protein identity with *MCR-1, 35.29% with MCR-2, 34.72% with MCR-3 and 33.71% with MCR-4. Sequence analysis revealed that *mcr-5* might have been transferred from the environmental rod *Cupravidus gilardii*.

These genes have completely changed the scenario of colistin resistance since they have become a potential threat to public health. In Argentina and other countries of Latin America, *mcr-1* occurrence is currently low, however, it is possible to observe its rapid increase (Table 1). Moreover, *mcr-5* has been recently found in a colistin-resistant *E. coli* isolate from Brazil (NZ_PDMU0000000000) (Fig. 1).

Furthermore, there is a clear association between this determinant and the different genes encoding β-lactamases, particularly those from the *blaCTX-M* family. It is worth mentioning that *mcr-1* can be found in isolates collected not only from human and animal clinical samples but also from different sources such as pigs, wild birds, penguins, poultry production and environmental niches (Table 1). Among these isolates, *E. coli* was the most common species reported in Brazil and Argentina.

The coexistence of *mcr-1* and carbapenem resistance determinants (such as KPC-2, NDM and IMP-8 carbapenemases) in human samples is of great concern (Table 1). These findings highlight that *Enterobacteriaceae* isolates carrying both *mcr-1* and carbapenemase-encoding genes may emerge as a serious threat to antimicrobial therapy.

Genetic environment and dissemination of the mcr gene

Previous studies have shown that *mcr* genes are commonly located in self-transferable plasmids, which are responsible for inter-species dissemination worldwide. Plasmid incompatibility groups IncI2, HI1, HI2, P, X1/X2, X3/X4, X4, FI, FIP and FII have been reported as carriers of the different *mcr* variants. Furthermore, a hybrid plasmid, identified as IncI2/IncFIB also harbored this
<table>
<thead>
<tr>
<th>Species (n)</th>
<th>Origin</th>
<th>Year</th>
<th>Country</th>
<th>Associated resistance (n)</th>
<th>COL MIC (μg/ml)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli (16)</td>
<td>Chicken and pig</td>
<td>2012-2013</td>
<td>Brazil</td>
<td>CTX-M-8 (6), CTX-M-15 (2), CTX-M-1 (1), CMY-2 (1)</td>
<td>1-16 (MIC<sub>50</sub> = 8)<sup>a</sup></td>
<td>27,28</td>
</tr>
<tr>
<td>E. coli (9)</td>
<td>Human (blood, urine, abdomen, bone, abscess)</td>
<td>2012-2016</td>
<td>Argentina</td>
<td>CTX-M-14 (2), CTX-M-2 (1), CTX-M-15 (1)</td>
<td>8-16 (MIC<sub>90</sub> = 8)<sup>b</sup></td>
<td>53</td>
</tr>
<tr>
<td>E. coli (10)</td>
<td>Human</td>
<td>2016</td>
<td>Argentina</td>
<td>No data<sup>h</sup></td>
<td>No data<sup>h</sup></td>
<td>53</td>
</tr>
<tr>
<td>E. coli (1)</td>
<td>Human (diabetic foot)</td>
<td>2016</td>
<td>Brazil</td>
<td>CTX-M-8</td>
<td>>4<sup>f</sup></td>
<td>26</td>
</tr>
<tr>
<td>E. coli (6)</td>
<td>Human (urine)</td>
<td>2014-2016</td>
<td>Argentina</td>
<td>ESBL, KPC</td>
<td>4-16<sup>d</sup></td>
<td>14.44</td>
</tr>
<tr>
<td>E. coli (1)</td>
<td>Human (peritoneal fluid)</td>
<td>2016</td>
<td>Ecuador</td>
<td>CTX-M-55</td>
<td>8<sup>a</sup></td>
<td>50</td>
</tr>
<tr>
<td>E. coli (31)</td>
<td>Healthy poultry</td>
<td>2013-2016</td>
<td>Argentina</td>
<td>CTX-M-2, CTX-M-14, CMY-2, qnrB, qnrS</td>
<td>4-32 (MIC<sub>50</sub> = 8)<sup>e</sup></td>
<td>21,22</td>
</tr>
<tr>
<td>E. coli (1)</td>
<td>Human (urine, neurogenic bladder)</td>
<td>2016</td>
<td>Argentina</td>
<td>CTX-M-type</td>
<td>8<sup>f</sup></td>
<td>5</td>
</tr>
<tr>
<td>E. coli (1)</td>
<td>Dog</td>
<td>2014</td>
<td>Argentina</td>
<td>CTX-M-2</td>
<td>8<sup>e</sup></td>
<td>57</td>
</tr>
<tr>
<td>E. coli (1)</td>
<td>Human (rectal swab)</td>
<td>2016</td>
<td>Argentina</td>
<td>IMP-8</td>
<td>8<sup>f</sup></td>
<td>24</td>
</tr>
<tr>
<td>E. coli (2)</td>
<td>Human (urine)</td>
<td>2016</td>
<td>Argentina</td>
<td>CTX-M-2 (1)</td>
<td>4-8<sup>e,f</sup></td>
<td>30</td>
</tr>
<tr>
<td>E. coli (7)</td>
<td>Human (urine, abdominal, skin)</td>
<td>2016</td>
<td>Argentina</td>
<td>ESBL (1)</td>
<td>>4<sup>d</sup></td>
<td>46</td>
</tr>
<tr>
<td>K. pneumoniae (1)</td>
<td>Human (mainly urine, blood, abdominal fluid)</td>
<td>2012-2016</td>
<td>Argentina</td>
<td>CTX-M-type (36), pAmpC (4), PER (1), SHV (1), KPC (1), NDM (2)<sup>f</sup></td>
<td>MIC<sub>50</sub> = 8; MIC<sub>90</sub> = 8<sup>b</sup></td>
<td>25,54</td>
</tr>
<tr>
<td>K. pneumoniae (1), Citrobacter amalonaticus (1)</td>
<td>Human (urine, abdominal fluid)</td>
<td>2016</td>
<td>Argentina</td>
<td>ESBL (2)</td>
<td>≥4 (MIC<sub>90</sub> = 4)<sup>d</sup></td>
<td>7</td>
</tr>
<tr>
<td>E. coli (5)</td>
<td>Human (fetal matter, urine, vaginal discharge, blood, abscess)</td>
<td>2013-2016</td>
<td>Colombia</td>
<td>No data<sup>h</sup></td>
<td>>4<sup>a</sup></td>
<td>59,60</td>
</tr>
<tr>
<td>E. coli (8), K. pneumoniae (1)</td>
<td>Food (chicken meat)</td>
<td>2016</td>
<td>Brazil</td>
<td>CTX-M-2 (4), CTX-M-8 (2), CMY-2 (1)</td>
<td>2-8<sup>e</sup></td>
<td>41</td>
</tr>
<tr>
<td>E. coli (4)</td>
<td>Environment and avian (penguin, seawater)</td>
<td>2012-2016</td>
<td>Brazil</td>
<td>No data<sup>h</sup></td>
<td>No data<sup>h</sup></td>
<td>29</td>
</tr>
<tr>
<td>E. coli (6)</td>
<td>Human (mainly urine, blood, peritoneal fluid, bone)</td>
<td>2016</td>
<td>Brazil</td>
<td>No data<sup>h</sup></td>
<td>4-8<sup>f</sup></td>
<td>31</td>
</tr>
<tr>
<td>E. coli (61)</td>
<td>Healthy poultry</td>
<td>2015-2016</td>
<td>Brazil</td>
<td>No data<sup>h</sup></td>
<td>>8<sup>a</sup></td>
<td>6</td>
</tr>
<tr>
<td>E. coli (5)</td>
<td>Wild birds (Kelp gulls)</td>
<td>2012</td>
<td>Argentina</td>
<td>CTX-M-2 (1), CTX-M-14 (4)</td>
<td>4-8<sup>e</sup></td>
<td>36</td>
</tr>
<tr>
<td>E. coli (1)</td>
<td>Penguin</td>
<td>2013</td>
<td>Brazil</td>
<td>CTX-M-1</td>
<td>8<sup>a</sup></td>
<td>61</td>
</tr>
<tr>
<td>E. coli (1)</td>
<td>Human (rectal swab)</td>
<td>2014</td>
<td>Brazil</td>
<td>KPC-2</td>
<td>4<sup>e</sup></td>
<td>16</td>
</tr>
<tr>
<td>K. pneumoniae (1)</td>
<td>Human (rectal swab)</td>
<td>2014</td>
<td>Brazil</td>
<td>KPC-2, CTX-M-15</td>
<td>4<sup>e</sup></td>
<td>17</td>
</tr>
<tr>
<td>E. coli (2)</td>
<td>Human</td>
<td>2015</td>
<td>Brazil</td>
<td>KPC-2 (1), CTX-M-2 (1)</td>
<td>4-8<sup>f</sup></td>
<td>15</td>
</tr>
<tr>
<td>K. pneumoniae (1)</td>
<td>Human</td>
<td>2016</td>
<td>Brazil</td>
<td>KPC-2</td>
<td>16<sup>e</sup></td>
<td>3</td>
</tr>
</tbody>
</table>

Susceptibility to colistin was evaluated by: (a) unspecified method, (b) agar dilution, (c) MicroScan system (Beckman Coulter), (d) Phoenix (Becton, Dickinson), (e) microdilution method, (f) Vitek-2, (g) NDM was detected in *C. amalonaticus*, (h) no data described in the Abstract.
resistance gene47. In South America only a few reports identify the plasmids responsible for \textit{mcr-1} spread. To date, only plasmids from incompatibility groups X4 and I2 carry the \textit{mcr-1} gene in our region12,21,41,68. An initial analysis of the plasmid backbone suggests that these elements are highly similar to those reported in China, Europe or North America.

A common feature of \textit{mcr-1} variants is their genetic environment. This gene is commonly adjacent to the \textit{pap2} gene. Both genes can be found either surrounded by two copies of insertion sequence IS\textit{Apl}1, yielding a composite transposon, downstream to a single copy of IS\textit{Apl}1 or in the absence of this element62. It has been proposed that the presence or absence of this IS correlates with the adaptation of \textit{mcr-1} to a new host. A composite transposon indicates a recent acquisition of this marker whereas the absence of IS\textit{Apl}1 or the presence of a single copy suggests that it has been already adapted. Since all three genetic environments have been found in different plasmids, it has been hypothesized that independent recombination events have led to the adaptation of the \textit{mcr-pap2} segment to specific incompatibility groups, which are in turn responsible for dissemination of polymyxin resistance. However, a recent report demonstrated that the composite transposon \textit{Tn6330}, which has two IS\textit{Apl}1 surrounding \textit{mcr-1}, can translocate to other plasmids23. Therefore, the possibility of a wider dissemination to plasmids from other incompatibility groups should be considered. It is worth noting that a study on IS\textit{Apl}1 function showed that when this sequence is active it is detrimental to the host, which leads to its loss63. Indirectly, this phenomenon might control the dissemination of \textit{mcr-1}.

In 2016 Xavier et al. identified the first \textit{mcr-2} gene in an IncX4 plasmid from bovine and porcine \textit{E. coli}64. Further analysis showed that \textit{mcr-2} is located at the same site as \textit{mcr-1} when found in the IncX4 plasmid. Despite this fact, \textit{mcr-2} was found surrounded by two copies of the insertion sequence IS\textit{IS595} allowing this DNA to generate circular intermediates65. This finding reveals the potentiality of \textit{mcr-2} to disseminate to other plasmids and therefore, to other organisms. More recently, novel \textit{mcr} determinants have been described. The \textit{mcr-3} gene has been found in plasmids from the IncHI2 group harbored in \textit{Enterobacteriaceae} as well as in the chromosome of \textit{Aeromonas veronii}18,70. When located in plasmids, \textit{mcr-3} is adjacent to the truncated transposon element \textit{TnAs2}70, a mobile element probably responsible for its spread. On the other hand, \textit{mcr-4} and \textit{mcr-5} genes were found in small non-self-transferable plasmids from the \textit{Col} family12,13. Furthermore, the \textit{mcr-5} gene is located in a \textit{Tn3}-family transposon.

Concluding remarks

The data summarized herein show the rapid spread of \textit{mcr-1} in Latin America. To the best of our knowledge, \textit{mcr-2}, \textit{mcr-3} and \textit{mcr-4} determinants have not been found in our region yet.

The \textit{mcr-1} marker has been found in a wide variety of ecological niches, which represents a troublesome scenario for public health. In the absence of new antimicrobial agents against multidrug-resistant gram-negative pathogens, the effect of plasmid-mediated colistin resistance on human health should not be underestimated.

There is an urgent need for surveillance and molecular epidemiological studies in both human and veterinary medicine addressing the dissemination of \textit{mcr-1} among bacterial isolates. The fact that most \textit{mcr} genes were found in other regions raises the question of whether a unique variant is locally disseminated or if the other variants were accurately sought.

Furthermore, we suggest a re-evaluation of the antimicrobial agents used in animal feeding in order to reduce the potential risk to pandrug resistance.

Funding

This work was supported by ANPCyT PICT 2013-1978, UBACyT 20020130100167BA and ANPCyT PICT 2015-1925.

Conflict of interest

The authors declare that they have no conflicts of interest.

Acknowledgements

The authors would like to thank Famiglietti A, Rodriguez CH and Gutkind G for their invaluable cooperation.

References

 Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H,
 Liang Z, Liu JH, Shen J. Emergence of plasmid-mediated colistin
 resistance mechanism MCR-1 in animals and human beings in
 China: a microbiological and molecular biological study. Lancet
 Kan B. MCR-1, a new MCR variant carried by an IncP plasmid
 in a colistin-resistant Salmonella enterica serovar Typhimurium
 2017;61:e02632–2716.
 41. Monte DF, Mema A, Fernandez MR, Cerdeira L, Esposito F, Galvão
 JA, Franco BDGM, Lincopan N, Landgraf M. Chicken meat as
 a reservoir of colistin-resistant Escherichia coli strains carrying
 42. Moulin G, Góchez D, Díaz F, Szabo M, Lasley J. Outcomes from
 the OIE’s questionnaire on antimicrobial use in animals in 2015.
 43. Nastro M, Carrazza N, Aprigliano F, Saposnik E, Barberis C,
 Garcia S, Vay C, Rodriguez CH, Famiglietti A. Emergence of
 colistin-resistant Klebsiella pneumoniae. Microbiological
 and epidemiological characterization of the isolates producing
 and non-producing KPC-type carbapenemase. Rev Argent
 44. Nastro M, Rodriguez CH, de Gregorio S, Foccoli M, Vay C,
 Famiglietti A. Resistencia adquirida a colistina en Klebsiella
 pneumoniae y E. coli en un Hospital Universitario. In: XXIII
 Congresso Latinoamericano de Microbiologia y XIV Congresso
 Argentino de Microbiologia ALAM-CAM. 2016.
 Herrera F, Relloso S, Smaeyevsky J. Emergencia de aislamientos
 de Escherichia coli con resistencia a colistina mediada por plásmidos.
 Aspectos clínicos y microbiológicos. In: XXIII Congresso Latinoamericano de
 Microbiologia y XIV Congresso Argentino de Microbiologia ALAM-CAM. 2016.
 47. Nikaido H. Molecular basis of bacterial outer membrane permeability
 48. Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance
 and the role of intrinsic resistance in bacteria. Front
 49. Olaitan AO, Morand S, Rolain JM. Emergence of colistin-resistant
 bacteria in humans without colistin usage: a new worry
 50. Ortega-Paredes D, Barba P, Zurita J. Colistin-resistant
 Escherichia coli clinical isolate harbouring the mcr-1 gene in
 Available from: www.paho.org [cited 2017].
 52. Poirel L, Jayol A, Nordmann P, Polymyxins:. Antibacterial
 activity, susceptibility testing, and resistance mechanisms
 encoded by plasmids or chromosomes. Clin Microbiol Rev.
 53. Rapoport M, Faccone D, Pasteran F, Ceriana P, Albornoz E,
 Petroni A, Group MCR, Corso AA. First description of
 mcr-1-mediated colistin resistance in human infections caused by
 2016;60:4412–3.
 A, MCR Group, Pasteran F, Corso A. Diseminación de aislamientos
 de colistina con resistencia plasmática a colistina mediada por
 mcr-1 en Argentina. In: XXIII Congreso Latinoamericano de
 Microbiología y XIV Congreso Argentino de Microbiología ALAM-
 CAM. 2016.
 55. Rhouma M, Beaudry F, Thériault W, Letellier A. Colistin in
 pig production: chemistry, mechanism of antibacterial action,
 microbial resistance emergence, and one health perspectives.
 56. Rossi F, Girardello R, Cory AP, Di Gioia TSR, de Almeida JN,
 Duarte AAJdaS. Emergence of colistin resistance in the largest
 university hospital complex of São Paulo, Brazil, over five years.
 57. Rumí MV, Di Conza J, Pereyra A, Gentilini E, Gutkind G. Detection
 of mcr-1 gene in Escherichia coli from companion animals
 58. Saavedra SY, Díaz L, Wiesner M, Correa A, Arévalo SA, Reyes
 J, Hidalgo AM, de la Cadena E, Perenguez M, Montaño LA,
 Ardila J, Rios R, Ovalle MV, Díaz P, Porras P, Villegas MV,
 Arias CA, Beltrán M, Duarte C. Genomic and molecular characteri-
 zation of clinical isolates of Enterobacteriaceae harboring
 59. Saavedra SY, Arévalo SA, Duarte C, Hidalgo AM, Montaño LA,
 Ovalle MV. Emergencia por detección del gen de resistencia a
 colistina mcr-1 en aislamientos clínicos de Salmonella enterica
 serovar Typhimurium y E. coli en Colombia. In: XXIII Congresso
 Latinoamericano de Microbiologia y XIV Congresso Argentino de
 Microbiologia ALAM-CAM. 2016.
 60. Saavedra SY, Díaz L, Wiesner M, Correa A, Arevalo SA, Reyes J,
 Hidalgo AN, De la Cadena E, Perenguez M, Montaño LA, Ardila
 J, Rios R, Ovalle MV, Diaz PL, Porras P, Villegas MV, Arias C,
 Beltrán M, Duarte C. Whole genome characterization of
 clinical isolates of Enterobacteriaceae harboring mcr-1 in
 61. Sellera FP, Fernandes MR, Sartori L, Carvalho MP, Esposito
 F, Nascimento CL, Dutra GH, Mamizuka EM, Pérez-Chaparro
 PJ, McCulloch JA, Lincopan N. Escherichia coli carrying
 IncX4 plasmid-mediated mcr-1 and blaCTX-M-1 genes in infected
 migratory Magellanic penguins (Spheniscus magellanicus).
 62. Snesrud E, He S, Chandler M, Dekker JP, Hickman AB, McGann
 P, Dyda F. A model for transposition of the colistin resis-
 63. Snesrud E, Ong AC, Corey B, Kwak YI, Clifford R, Gleeson T,
 isolates of mcr-1-positive Escherichia coli reveals a highly active
 ISAp1 transposon. Antimicrob Agents Chemother. 2017;61:
 64. Srinivas P, Rivard K. Polymyxins, resistance in Gram-negative
 66. Tijet N, Faccone D, Rapoport M, Seah C, Pasteran F, Ceriana
 P, Albornoz E, Corso A, Petroni A, Melano RG. Molecular
 characteristics of mcr-1-carrying plasmids and new mcr-1 vari-
 ant recovered from polyclonal clinical Escherichia coli from
 Expanding landscapes of the diversified mcr-1-bearing plasmid
 reservoirs. Microbiome. 2017;5:70.
 68. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye
 P, Goossens H, Malhotra-Kumar S. Identification of a
 novel plasmid-mediated colistin-resistance gene, mcr-2,
 in Escherichia coli, Belgium, June 2016. Eurosurveillance.